24
Eur. Phys. J. C (2019) 79:969 https://doi.org/10.1140/epjc/s10052-019-7451-7 Regular Article - Experimental Physics Measurements of triple-differential cross sections for inclusive isolated-photon+jet events in pp collisions at s = 8 TeV CMS Collaboration CERN, 1211 Geneva 23, Switzerland Received: 18 July 2019 / Accepted: 4 November 2019 / Published online: 25 November 2019 © CERN for the benefit of the CMS collaboration 2019 Abstract Measurements are presented of the triple- differential cross section for inclusive isolated-photon+jet events in pp collisions at s = 8 TeV as a function of photon transverse momentum ( p γ T ), photon pseudorapidity (η γ ), and jet pseudorapidity (η jet ). The data correspond to an integrated luminosity of 19.7 fb 1 that probe a broad range of the avail- able phase space, for |η γ | < 1.44 and 1.57 < |η γ | < 2.50, |η jet | < 2.5, 40 < p γ T < 1000 GeV, and jet transverse momentum, p jet T , > 25 GeV. The measurements are com- pared to next-to-leading order perturbative quantum chro- modynamics calculations, which reproduce the data within uncertainties. 1 Introduction Direct photons produced in the hard scattering of partons in proton–proton collisions are sensitive probes of the perturba- tive regime of quantum chromodynamics (pQCD) [1, 2] and provide useful constraints on the parton distribution func- tion (PDF) of gluons [35]. At leading order in pQCD, direct photons are produced mainly through quark-gluon scattering (qg qγ) with smaller contributions from quark antiquark annihilation (q ¯ q gγ). Photons can also be produced via fragmentation of the final state partons. These latter pho- tons are typically accompanied by other partons, and their contributions can be experimentally suppressed by requiring the photons to be isolated from other energy depositions in the calorimeters. A good understanding of isolated photon production also indirectly impacts all jet measurements at the LHC, because photon+jet events are commonly used to determine the absolute jet energy-scale. This process also constitutes a main background in important standard model (SM) processes, such as H γγ, as well as in searches for physics beyond the SM. This paper presents measurements of the triple-differential inclusive isolated-photon+jet cross sections using data col- e-mail: [email protected] lected by the CMS experiment during the 2012 run at s = 8 TeV corresponding to an integrated luminosity of 19.7 fb 1 . Measurement of the cross section as a function of differ- ent combinations of photon and jet pseudorapidities in the range of |η| < 2.5 allows for the exploration of parton colli- sions at different values of momentum transfer squared ( Q 2 ) and parton momentum fraction (x ). Given the photon trans- verse momentum range of p γ T = 40–1000 GeV, the mea- surement probes Q 2 = ( p γ T ) 2 in the range 10 3 –10 6 GeV 2 , and x T = 2 p γ T / s in the range 0.01–0.25, where x T is an approximation to the parton momentum fraction when both photon and jet are produced centrally. This measurement is complementary to previous ones [611] in the coverage of the Q 2 x phase space. The cross section can be written as: d 3 σ d p γ T d|η γ |d|η jet | i = 1 Δp γ Ti Δ|η γ | i Δ|η jet | i j U ij N i p i i L i , (1) where N i is the number of candidate events, p i is the sig- nal purity, i is the detection efficiency, L i is the effec- tive integrated luminosity, and Δp γ Ti , Δ|η γ | i , and Δ|η jet | i are the bin size in p γ T , |η γ |, and |η jet | in the i th data bin. U ij is the coefficient of the unfolding matrix between the true quantity in bin j and measured quantities in bin i . The paper is organized as follows. Section 2 provides a brief introduction to the CMS detector. Selection and recon- struction of events, with attention focused on issues of trig- gering, photon reconstruction, selections and efficiency, are detailed in Sect. 3. Section 4 describes the extraction of the signal photons from the energy depositions that originate from neutral meson decays, the unfolding, and the measure- ment of differential cross sections. The results of the mea- surement, along with comparison with theoretical predic- tions, are reported in Sect. 5. Finally, the summary is pre- sented in Sect. 6. 123

Measurements of triple-differential cross sections for …...of the ECAL for unconverted photons (photons that did not convert to electrons before reaching the ECAL) in the tens of

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Measurements of triple-differential cross sections for …...of the ECAL for unconverted photons (photons that did not convert to electrons before reaching the ECAL) in the tens of

Eur. Phys. J. C (2019) 79:969https://doi.org/10.1140/epjc/s10052-019-7451-7

Regular Article - Experimental Physics

Measurements of triple-differential cross sections for inclusiveisolated-photon+jet events in pp collisions at

√s = 8 TeV

CMS Collaboration∗

CERN, 1211 Geneva 23, Switzerland

Received: 18 July 2019 / Accepted: 4 November 2019 / Published online: 25 November 2019© CERN for the benefit of the CMS collaboration 2019

Abstract Measurements are presented of the triple-differential cross section for inclusive isolated-photon+jetevents in pp collisions at

√s = 8 TeV as a function of photon

transverse momentum (pγT), photon pseudorapidity (ηγ), and

jet pseudorapidity (ηjet). The data correspond to an integratedluminosity of 19.7 fb−1 that probe a broad range of the avail-able phase space, for |ηγ| < 1.44 and 1.57 < |ηγ| < 2.50,|ηjet| < 2.5, 40 < pγ

T < 1000 GeV, and jet transverse

momentum, pjetT , > 25 GeV. The measurements are com-

pared to next-to-leading order perturbative quantum chro-modynamics calculations, which reproduce the data withinuncertainties.

1 Introduction

Direct photons produced in the hard scattering of partons inproton–proton collisions are sensitive probes of the perturba-tive regime of quantum chromodynamics (pQCD) [1,2] andprovide useful constraints on the parton distribution func-tion (PDF) of gluons [3–5]. At leading order in pQCD, directphotons are produced mainly through quark-gluon scattering(qg → qγ) with smaller contributions from quark antiquarkannihilation (qq → gγ). Photons can also be produced viafragmentation of the final state partons. These latter pho-tons are typically accompanied by other partons, and theircontributions can be experimentally suppressed by requiringthe photons to be isolated from other energy depositions inthe calorimeters. A good understanding of isolated photonproduction also indirectly impacts all jet measurements atthe LHC, because photon+jet events are commonly used todetermine the absolute jet energy-scale. This process alsoconstitutes a main background in important standard model(SM) processes, such as H → γγ, as well as in searches forphysics beyond the SM.

This paper presents measurements of the triple-differentialinclusive isolated-photon+jet cross sections using data col-

� e-mail: [email protected]

lected by the CMS experiment during the 2012 run at√s =

8 TeV corresponding to an integrated luminosity of 19.7 fb−1.Measurement of the cross section as a function of differ-ent combinations of photon and jet pseudorapidities in therange of |η| < 2.5 allows for the exploration of parton colli-sions at different values of momentum transfer squared (Q2)and parton momentum fraction (x). Given the photon trans-verse momentum range of pγ

T = 40–1000 GeV, the mea-surement probes Q2 = (pγ

T)2 in the range 103–106 GeV2,and xT = 2pγ

T/√s in the range 0.01–0.25, where xT is an

approximation to the parton momentum fraction when bothphoton and jet are produced centrally. This measurement iscomplementary to previous ones [6–11] in the coverage ofthe Q2 − x phase space. The cross section can be writtenas:(

d3σ

dpγTd|ηγ|d|ηjet|

)i

= 1

ΔpγTiΔ|ηγ|iΔ|ηjet|i

∑jUi j

Ni piεiL′

i,

(1)

where Ni is the number of candidate events, pi is the sig-nal purity, εi is the detection efficiency, L′

i is the effec-tive integrated luminosity, and Δpγ

Ti , Δ|ηγ|i , and Δ|ηjet|iare the bin size in pγ

T, |ηγ|, and |ηjet| in the i th databin. Ui j is the coefficient of the unfolding matrix betweenthe true quantity in bin j and measured quantities in bini .

The paper is organized as follows. Section 2 provides abrief introduction to the CMS detector. Selection and recon-struction of events, with attention focused on issues of trig-gering, photon reconstruction, selections and efficiency, aredetailed in Sect. 3. Section 4 describes the extraction of thesignal photons from the energy depositions that originatefrom neutral meson decays, the unfolding, and the measure-ment of differential cross sections. The results of the mea-surement, along with comparison with theoretical predic-tions, are reported in Sect. 5. Finally, the summary is pre-sented in Sect. 6.

123

Page 2: Measurements of triple-differential cross sections for …...of the ECAL for unconverted photons (photons that did not convert to electrons before reaching the ECAL) in the tens of

969 Page 2 of 24 Eur. Phys. J. C (2019) 79 :969

2 The CMS detector

A detailed description of the CMS detector, together withdefinitions of the coordinate system and relevant kinematicvariables, is presented in Ref. [12]. The central feature ofthe CMS apparatus is a superconducting solenoid of 6 minternal diameter, providing a magnetic field of 3.8 T. Withinthe field volume are a silicon pixel and strip tracker, a leadtungstate crystal electromagnetic calorimeter (ECAL), and abrass and plastic scintillator hadronic calorimeter (HCAL),each composed of a barrel and two endcap sections. Muonsare measured in gas-ionization detectors embedded in thesteel flux-return yoke outside the solenoid. Extensive for-ward calorimetry complements the coverage provided by thebarrel and endcap detectors.

3 Event reconstruction and selection

The particle-flow algorithm [13] reconstructs and identifieseach individual particle with an optimized combination ofinformation from the various elements of the CMS detector.The identification and energy measurement of muons, elec-trons, photons, hadronic jets as well as the missing trans-verse momentum come from particle-flow objects. In addi-tion, the isolations of identified leptons and photons are mea-sured using the pT of particle-flow charged hadrons, pho-tons, and neutral hadrons. Jets are reconstructed using theanti-kT algorithm with a distance parameter of ΔR = 0.5[14], where R determines the size of the jet in η–φ spaceand φ is measured in radians. Corrections are applied to thejet energy as functions of jet η and pT to account for contri-butions from additional inelastic proton-proton interactionsin the same or neighboring bunch crossings (pileup), andfor the nonuniform and nonlinear response of the detectors[15]. Jets are further required to have at least minimal energydepositions in the tracker, HCAL, and ECAL to reject spu-rious jets associated with calorimeter noise as well as thoseassociated with muon and electron candidates that are eithermis-reconstructed or isolated [16]. Jets have typical energyresolutions of 15–20% at 30 GeV, 10% at 100 GeV, and 5%at 1 TeV [13].

Photons are selected from clusters of energy measured inthe ECAL with a small corresponding energy deposition inthe HCAL. For the reconstruction of the endcap photons,the depositions of energy in the preshower detector are alsoincluded. The calorimeter signals are calibrated and correctedfor changes in the detector response over time. The energyresolution of isolated photons is about 1% in the barrel sectionof the ECAL for unconverted photons (photons that did notconvert to electrons before reaching the ECAL) in the tensof GeV energy range. The remaining barrel photons in thesimilar energy range have a resolution of about 1.3% up to

a pseudorapidity of |η| = 1.0, rising to about 2.5% at |η| =1.4. In the endcaps, the resolution of unconverted photonsis about 2.5%, while the remaining endcap photons have aresolution between 3 and 4% [17].

Muons are identified by tracks in the muon spectrometermatched to tracks in the silicon tracker. Quality requirementsare placed on the silicon tracker and muon spectrometer trackmeasurements as well as on the matching between them.Matching muon spectrometer tracks to tracks measured in thesilicon tracker results in a relative pT resolution of 1.3–2.0%for muons in the momentum range 20 < pT < 100 GeVin the barrel (|η| < 1.2) and better than 6% in the endcaps(1.2 < |η| < 2.4) [18].

Events selected for this analysis are recorded using a two-level trigger system [19]. A hardware based level-1 triggerrequires a cluster of energy deposited within the ECAL abovea pre-defined pT threshold. This threshold is pT > 20 or22 GeV, and is raised to 30 GeV at high luminosity to keeptrigger rates at manageable levels. The CMS high-level trig-ger (HLT) applies a more complicated ECAL energy cluster-ing algorithm than that of level-1, and requires additional pT

trigger thresholds ranging from 30 to 150 GeV. HLT triggerswith thresholds below 90 GeV have additional loose calori-metric identification requirements, based on the electromag-netic (EM) shower, and are prescaled such that only a fractionof events satisfying the trigger requirements are recorded.Since the trigger rates for lower pT threshold triggers arecontrolled by applying larger prescale factors, the effectiveluminosity is smaller for the lower pT regions. Triggers arecombined for different pT ranges to maximize the number ofevents without loss of efficiency.

Samples of simulated events used for signal and back-ground studies are described below. Events from bothphoton+jet production and QCD multijet production withenhanced EM content are generated using pythia version6.426 [20], and passed through the full CMS detector simu-lation implemented in Geant4 [21]. The EM-enriched QCDsample is generated by applying a filter that is designed toenhance the production efficiency of fake photons from jetswith EM fluctuations. The filter accepts events having pho-tons, electrons, or neutral hadrons with: (i) a pT > 15 GeVwithin a small region, and (ii) no more than one charged parti-cle in a cone of ΔR =

√(Δη)2 + (Δφ)2 < 0.2. Samples for

reconstruction efficiency studies of inclusive Z/γ∗ → e+e−and Z/γ∗ → μ+μ−γ are generated using MadGraph5.1.5.11 [22]. For generation purposes, the CTEQ6L [23]parton distribution functions are used along with underly-ing event tune Z2* [24] for all MC samples. All the sam-ples include simulation of the multiple pp interactions takingplace in each bunch crossing, which are weighted to producethe pileup distribution observed in data.

Events selected with the single-photon trigger are cho-sen offline by requiring at least one photon candidate with

123

Page 3: Measurements of triple-differential cross sections for …...of the ECAL for unconverted photons (photons that did not convert to electrons before reaching the ECAL) in the tens of

Eur. Phys. J. C (2019) 79 :969 Page 3 of 24 969

pγT > 40 GeV. Photon candidates must either be in the bar-

rel (|η| < 1.44) or endcap (1.57 < |ηγ| < 2.50) detectorregions. The leading jet is required to be separated from thephoton candidate by ΔR > 0.5, pass the jet identificationrequirements, and have pjet

T > 25 GeV and |η| < 2.5. There-

BDT response

Even

ts/(0

.1)

0

200

400

600

800

1000

(GeV) < 45γ

T 40 < p

| < 0.8γη|| < 0.8jetη|

/ndf = 1.102χ

( 8 TeV)-119.7 fbCMS

Data Sig+Bg template Bg template Sig template

BDT response1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1<(

D -

F)/D

>

−101

Fig. 1 An example fit of candidate boosted-decision-tree distributionwith a composite template (blue histogram). The signal (background)template is shown by the green (red) solid (hatched) region. The bottompanel shows the mean of the fit values for 500 templates varied withinthe signal and background shape uncertainties (F) subtracted from data(D) divided by the data

Table 1 Summary of uncertainties in the estimated purity for photonsin the barrel (endcap) region

Sources Barrel photons (%) Endcap photons (%)

Statistical 0.5–18.7 0.8–9.2

Signal template shape 0.2–3.7 0.3–7.3

Background template shape 0.4–5.2 1.3–88.7

Residual bias 0.01–4.7 0.05–10.1

Total systematic 0.6–7.8 1.5–89.3

fore, dijet events where a photon is radiated in a parton showerare included.

The dominant background originates from the decays ofneutral hadrons, such as π0 and η mesons, into photon pairswith small angular separation. To separate signal photonsfrom this background, photons are selected by requiring anarrow transverse shower shape in the ECAL (in the η coordi-nate), no matching reconstructed track candidates (except forelectron tracks from photon conversion), and minimal energymeasured in the HCAL region matched to the ECAL shower.Photon candidates are further required to be isolated fromnearby particle-flow candidates, such as charged hadrons andphotons, after removing those consistent with pileup [17]. Aphoton candidate is defined as isolated from charged hadrons

40 50 210 210×2 310

Bia

s co

rrec

ted

Purit

y

1−

0.5−

0

0.5

1

1.5

| < 2.5(+0.9)jetη 2.1 < || < 2.1(+0.6)jetη 1.5 < || < 1.5(+0.3)jetη 0.8 < |

| < 0.8jetη || < 0.8γη|

( 8 TeV)-119.7 fbCMS

(GeV)γT

p40 50 210 210×2 310

Bia

s co

rrec

ted

Purit

y

1−

0.5−

0

0.5

1

1.5

| < 2.5(+0.9)jetη 2.1 < || < 2.1(+0.6)jetη 1.5 < || < 1.5(+0.3)jetη 0.8 < |

| < 0.8jetη || < 1.44γη0.8 < |

( 8 TeV)-119.7 fbCMS

(GeV)γT

p

(GeV)γT

p

40 50 210 210×2 310

Bia

s co

rrec

ted

Purit

y

1−

0.5−

0

0.5

1

1.5

| < 2.5(+0.9)jetη 2.1 < || < 2.1(+0.6)jetη 1.5 < || < 1.5(+0.3)jetη 0.8 < |

| < 0.8jetη || < 2.1γη1.56 < |

( 8 TeV)-119.7 fbCMS

(GeV)γT

p40 50 210 210×2 310

Bia

s co

rrec

ted

Purit

y

1−

0.5−

0

0.5

1

1.5

| < 2.5(+0.9)jetη 2.1 < || < 2.1(+0.6)jetη 1.5 < || < 1.5(+0.3)jetη 0.8 < |

| < 0.8jetη || < 2.5γη2.1 < |

( 8 TeV)-119.7 fbCMS

Fig. 2 Purity estimates as a function of pγT for different photon and jet pseudorapidity regions. The values are offset by 0.3, 0.6 and 0.9 for

0.8 < |ηjet| < 1.5, 1.5 < |ηjet| < 2.1, and 2.1 < |ηjet| < 2.5 respectively. The total uncertainties are shown as error bars

123

Page 4: Measurements of triple-differential cross sections for …...of the ECAL for unconverted photons (photons that did not convert to electrons before reaching the ECAL) in the tens of

969 Page 4 of 24 Eur. Phys. J. C (2019) 79 :969

(GeV)γT

p50 210 210×2 310

|) (p

b/G

eV)

jet

η|d

|γ η

d| Tγ/(d

pσ3 d 4−10

2−10

1

210

410

610

810

1010 ( 8 TeV)-119.7 fbCMS)6| < 2.5 (X10jetη2.1 < |)4| < 2.1 (X10jetη1.5 < |)2| < 1.5 (X10jetη0.8 < |

| < 0.8jetη|

| < 0.8γη|

(GeV)γT

p50 210 210×2 310

|) (p

b/G

eV)

jet

η|d

|γ η

d| Tγ/(d

pσ3 d 4−10

2−10

1

210

410

610

810

1010 ( 8 TeV)-119.7 fbCMS)6| < 2.5 (X10jetη2.1 < |)4| < 2.1 (X10jetη1.5 < |)2| < 1.5 (X10jetη0.8 < |

| < 0.8jetη|

| < 1.44γη0.8 < |

Fig. 3 Measured triple-differential cross section distributions as afunction of pγ

T in different bins of |ηjet| for photons in the barrel region.Note that the distributions are multiplied by a factor of 102, 104 and

106 for 0.8 < |ηjet| < 1.5, 1.5 < |ηjet| < 2.1, and 2.1 < |ηjet| < 2.5respectively. The statistical (systematic) uncertainties are shown as errorbars (color bands)

(GeV)γT

p50 210 210×2 310

|) (p

b/G

eV)

jet

η|d

|γ η

d| Tγ/(d

pσ3 d 4−10

2−10

1

210

410

610

810

1010 ( 8 TeV)-119.7 fbCMS)6| < 2.5 (X10jetη2.1 < |)4| < 2.1 (X10jetη1.5 < |)2| < 1.5 (X10jetη0.8 < |

| < 0.8jetη|

| < 2.1γη1.56 < |

(GeV)γT

p50 210 210×2 310

|) (p

b/G

eV)

jet

η|d

|γ η

d| Tγ/(d

pσ3 d 4−10

2−10

1

210

410

610

810

1010 ( 8 TeV)-119.7 fbCMS)6| < 2.5 (X10jetη2.1 < |)4| < 2.1 (X10jetη1.5 < |)2| < 1.5 (X10jetη0.8 < |

| < 0.8jetη|

| < 2.5γη2.1 < |

Fig. 4 Measured triple-differential cross section distributions as afunction of pγ

T in different bins of |ηjet| for photons in the endcap region.Note that the distributions are multiplied by a factor of 102, 104 and

106 for 0.8 < |ηjet| < 1.5, 1.5 < |ηjet| < 2.1, and 2.1 < |ηjet| < 2.5respectively. The statistical (systematic) uncertainties are shown as errorbars (color bands)

Table 2 Summary of the uncertainties in the measured cross sectionvalues for photons in the barrel (endcap) region

Sources Barrel photons (%) Endcap photons (%)

Statistical 1–20 1–10

Purity 1–9 3–66

Efficiency 1–9 5–11

Luminosity 3 3

Unfolding 0–5 0–1

Total systematic 4–12 6–66

if the sum of the pT of the charged hadron particle-flow can-didates in a cone of radius ΔR < 0.3 around its directionis less than 5 GeV. To limit correlations of the selected pho-ton candidate’s shower energy with other photon quantities,an area in the vicinity of the photon candidate is eliminatedin the calculation of the photon isolation (calculated simi-

larly to charged hadron isolation but from the pT sum ofthe photon particle-flow candidates), leading to smaller cor-relation overall. Because of the pileup subtraction, the finalphoton isolation may be negative as calculated. Final pho-ton candidates are required to have less than 0.0 GeV for|η| < 1.44, −0.5 GeV for 1.5 < |η| < 2.1, and −1.0 GeVfor 2.1 < |η| < 2.5.

Several quantities related to the shape of the EM showerare then used in a boosted-decision-tree (BDT) [25] to dis-criminate between direct photons and photons from hadronicactivity. These quantities include the transverse width ofthe cluster in the η and φ coordinates in the ECAL, thecalorimetry-based likelihood of this shower to come froma conversion, the pseudorapidity of the cluster, and the aver-age pileup energy density of the event. Simulated samplesof photons originating from photon+jet events, where thereconstructed photons are matched to the generated photon,are used as training samples for the signal. Samples of sim-

123

Page 5: Measurements of triple-differential cross sections for …...of the ECAL for unconverted photons (photons that did not convert to electrons before reaching the ECAL) in the tens of

Eur. Phys. J. C (2019) 79 :969 Page 5 of 24 969

(GeV)γT

p50 210 210×2 310

Dat

a/Th

eory

00.20.40.60.8

11.21.41.61.8

2 DataExperimental uncertaintyTheory (NLO) uncertainty

( 8 TeV)-119.7 fbCMS

CJ15 PDFs| < 0.8γη|| < 0.8jetη|

(GeV)γT

p50 210 210×2 310

Dat

a/Th

eory

00.20.40.60.8

11.21.41.61.8

2 DataExperimental uncertaintyTheory (NLO) uncertainty

( 8 TeV)-119.7 fbCMS

CJ15 PDFs| < 0.8γη|| < 1.5jetη0.8 < |

(GeV)γT

p50 210 210×2 310

Dat

a/Th

eory

00.20.40.60.8

11.21.41.61.8

2 DataExperimental uncertaintyTheory (NLO) uncertainty

( 8 TeV)-119.7 fbCMS

CJ15 PDFs| < 0.8γη|| < 2.1jetη1.5 < |

(GeV)γT

p50 210 210×2 310

Dat

a/Th

eory

00.20.40.60.8

11.21.41.61.8

2 DataExperimental uncertaintyTheory (NLO) uncertainty

( 8 TeV)-119.7 fbCMS

CJ15 PDFs| < 0.8γη|| < 2.5jetη2.1 < |

Fig. 5 Ratio of triple-differential cross sections as a function of pγT

measured in data over the corresponding GamJet NLO theoretical pre-diction (obtained with the CJ15 PDFs) in different bins of |ηjet| for

|ηγ| < 0.8. Error bars on the data are statistical uncertainties, and bluebands represent the systematic uncertainties

ulated QCD multijet events selected at generation level ascontaining electromagnetically decaying final particles areused for background training. The background contributionfrom electrons misidentified as photons is determined fromsimulation, using W → eν sample, and found to be manyorders of magnitude smaller than the QCD multijet back-ground. Therefore, this background is not considered in theBDT training. The output from this BDT is then used to sta-tistically quantify the fraction of true photons in the candidatesample.

The efficiency of the photon selection is estimated fromsimulated photon+jet events. To validate the efficiency, largesamples of Z → e+e− events in data and simulation are com-pared. Since the electrons at CMS are reconstructed by pair-ing ECAL energy depositions with the tracks in the tracker,electron showers can be reconstructed as photons to validatephoton selection and identification. The trigger efficiency ismeasured to be approximately 100 (97)% with an uncertaintyof ≈3 (2)% for barrel (endcap) events above the correspond-ing trigger thresholds. To maintain well-defined trigger effi-ciencies and effective luminosities, the bins for the cross sec-tion are chosen so that maximum efficiency is maintained foreach trigger with a separate threshold. The photon selection

efficiencies for the offline preselection and isolation criteriaare estimated to be 84±3.4, 83±6.2, 81±6.5, and 88±10.1%in |η| < 0.8, 0.8 < |η| < 1.44, 1.56 < |η| < 2.1, and2.1 < |η| < 2.5 respectively for all bins in pγ

T. The statisti-cal uncertainty in these efficiencies is negligible, and the totaluncertainty is mainly due to differences between the electronand photon efficiencies observed in the simulation.

4 Experimental measurement

The purity of the selected candidate events is measured binby bin in photon pγ

T and ηγ. In each bin, a data-based tem-plate for the BDT output is defined for the background, anda simulation-based template is defined for the signal. Thefinal purity is estimated using a binned maximum likelihoodmethod [26]:

F(x) = fsigS(x) + (1 − fsig)B(x). (2)

Here x is the BDT output, F(x) denotes the fit template, S(x)denotes the unity normalized signal template distribution,and B(x) denotes the unity normalized background templatedistribution. The fsig parameter describes the signal purity

123

Page 6: Measurements of triple-differential cross sections for …...of the ECAL for unconverted photons (photons that did not convert to electrons before reaching the ECAL) in the tens of

969 Page 6 of 24 Eur. Phys. J. C (2019) 79 :969

(GeV)γT

p50 210 210×2 310

Dat

a/Th

eory

00.20.40.60.8

11.21.41.61.8

2 DataExperimental uncertaintyTheory (NLO) uncertainty

( 8 TeV)-119.7 fbCMS

CJ15 PDFs| < 1.44γη0.8 < |

| < 0.8jetη|

(GeV)γT

p50 210 210×2 310

Dat

a/Th

eory

00.20.40.60.8

11.21.41.61.8

2 DataExperimental uncertaintyTheory (NLO) uncertainty

( 8 TeV)-119.7 fbCMS

CJ15 PDFs| < 1.44γη0.8 < |

| < 1.5jetη0.8 < |

(GeV)γT

p50 210 210×2 310

Dat

a/Th

eory

00.20.40.60.8

11.21.41.61.8

2 DataExperimental uncertaintyTheory (NLO) uncertainty

( 8 TeV)-119.7 fbCMS

CJ15 PDFs| < 1.44γη0.8 < |

| < 2.1jetη1.5 < |

(GeV)γT

p50 210 210×2 310

Dat

a/Th

eory

00.20.40.60.8

11.21.41.61.8

2 DataExperimental uncertaintyTheory (NLO) uncertainty

( 8 TeV)-119.7 fbCMS

CJ15 PDFs| < 1.44γη0.8 < |

| < 2.5jetη2.1 < |

Fig. 6 Ratio of triple-differential cross sections as a function of pγT

measured in data over the corresponding GamJet NLO theoretical pre-diction (obtained with the CJ15 PDFs) in different bins of |ηjet| for

0.80 < |ηγ| < 1.44. Error bars on the data are statistical uncertainties,and blue bands represent the systematic uncertainties

present in the data and is obtained by maximizing the likeli-hood, which is equivalent to minimizing the negative of thelog-likelihood defined as,

− log L( fsig; x1, x2, . . . xN ) = −ΣN log F(xi | fsig). (3)

In the above equation, L( fsig; x1, x2, . . . xN ) is the likelihoodfunction as a function of the fsig parameter, xi represent theindividual observed values, and N represents the total num-ber of data points. The template shape uncertainties are nottreated as nuisance parameters, but are characterized usingsample experiments as detailed in Sects. 4.1 and 4.2 below.

4.1 Signal templates

Signal templates are obtained using photon+jet simulatedevents. Because the signal template is obtained from sim-ulation, a data control sample is used to estimate poten-tial differences between data and simulation. Samples ofZ/γ∗ → μ+μ−γ events are obtained by selecting events inwhich there are two muons and a photon candidate that is pro-duced via final-state radiation from one of the muons. Requir-ing that the dimuon mass be less than the mass of the on-shellZ boson allows for the reconstruction of a mass peak in the

three-body mass (mμ+μ−γ) distribution. The sample of eventsin the peak of the distribution, 80 < mμ+μ−γ < 100 GeV, isenriched with photons, though some background under thepeak remains. The remaining background in the BDT distri-bution is estimated using the sidebands, which are obtainedby inverting the mμ+μ−γ criteria, and subtracted. The result-ing distribution for data photons is then compared to theresponse in the simulation in the limited range of pγ

T avail-able. The difference is assigned as a systematic uncertaintyin the signal shape for all pγ

T, in separate bins of ηγ.

4.2 Background templates

The background BDT templates are obtained using a datasideband in pileup-corrected particle-flow photon isolation.Except for the photon isolation constraint, the sideband datais required to pass the same requirements as the signal. Side-band optimization is performed using simulations to selecta photon isolation region with sufficient amount of data andminimum correlations between this quantity and the outputof the BDT that is used to fit for the final purity. Using amixture of simulated events containing both dijets and pho-ton+jets, a range of isolation windows are examined. For

123

Page 7: Measurements of triple-differential cross sections for …...of the ECAL for unconverted photons (photons that did not convert to electrons before reaching the ECAL) in the tens of

Eur. Phys. J. C (2019) 79 :969 Page 7 of 24 969

(GeV)γT

p50 210 210×2 310

Dat

a/Th

eory

00.20.40.60.8

11.21.41.61.8

2 DataExperimental uncertaintyTheory (NLO) uncertainty

( 8 TeV)-119.7 fbCMS

CJ15 PDFs| < 2.1γη1.56 < || < 0.8jetη|

(GeV)γT

p50 210 210×2 310

Dat

a/Th

eory

00.20.40.60.8

11.21.41.61.8

2 DataExperimental uncertaintyTheory (NLO) uncertainty

( 8 TeV)-119.7 fbCMS

CJ15 PDFs| < 2.1γη1.56 < || < 1.5jetη0.8 < |

(GeV)γT

p50 210 210×2 310

Dat

a/Th

eory

00.20.40.60.8

11.21.41.61.8

2 DataExperimental uncertaintyTheory (NLO) uncertainty

( 8 TeV)-119.7 fbCMS

CJ15 PDFs| < 2.1γη1.56 < || < 2.1jetη1.5 < |

(GeV)γT

p50 210 210×2 310

Dat

a/Th

eory

00.20.40.60.8

11.21.41.61.8

2 DataExperimental uncertaintyTheory (NLO) uncertainty

( 8 TeV)-119.7 fbCMS

CJ15 PDFs| < 2.1γη1.56 < || < 2.5jetη2.1 < |

Fig. 7 Ratio of triple-differential cross sections as a function of pγT

measured in data over the corresponding GamJet NLO theoretical pre-diction (obtained with the CJ15 PDFs) in different bins of |ηjet| for

1.56 < |ηγ| < 2.10. Error bars on the data are statistical uncertainties,and blue bands represent the systematic uncertainties

each bin of ηγ and pγT, a range of sideband windows are used

to generate background templates by varying the candidatephoton isolation constraint to an upper bound determined bydata set size (nominally 4.5–5 GeV). Based on the observeddata sample size, template shapes are generated randomlyfrom the simulated shapes and then are used to perform afit to a separate mixture of simulation with a known signalfraction. Based on these generated shapes, the bias betweenthe known signal fraction and the signal fraction from thefit is determined using 500 trials, and the central value ofthis distribution is taken as the bias induced by the residualcorrelations. Background shapes are estimated separately forthe different pseudorapidity and pT regions. The uncertaintyin the correction for the bias and the difference between thefinal selected data template and the simulated shape are thesystematic uncertainties in the background shape.

4.3 Fit and systematic uncertainties

In each bin of |ηγ|, |ηjet|, and pγT the purity is estimated

by a simultaneous fit to the BDT output using the previ-ously defined signal and background templates. An examplefit are shown in Fig. 1. The uncertainty in this measured

purity is estimated from sample distributions generated byvarying the signal and background fit templates within theirrespective uncertainties. For the signal template, where theuncertainty contribution is from differences between simu-lation and detector response, the shapes of sample distribu-tions are obtained by simultaneous variations across differentbins of the BDT template. On the other hand, the source ofbackground template shape uncertainty is the data sidebandstatistical uncertainty, which is uncorrelated across differentbins of the BDT distribution. Therefore, the sample distri-butions for the background template are created by allowingthe adjacent bins to vary independently of each other. Thepurity estimated in each bin and the associated uncertaintyis shown in Fig. 2. The signal purity is lower at larger pho-ton rapidities, where the selection criteria are less effectiveat separating direct photon signals from photons from mesondecays because of the smaller opening angle between thedaughter photons.

The residual bias caused by correlations is minimized, butnot completely eliminated, using the sideband optimizationprocess described in Sect. 4.2. To compensate for this residualbias, a correction is applied based on the estimated bias fromthe simulation. The correction applied to correct for resid-

123

Page 8: Measurements of triple-differential cross sections for …...of the ECAL for unconverted photons (photons that did not convert to electrons before reaching the ECAL) in the tens of

969 Page 8 of 24 Eur. Phys. J. C (2019) 79 :969

(GeV)γT

p50 210 210×2 310

Dat

a/Th

eory

00.20.40.60.8

11.21.41.61.8

2 DataExperimental uncertaintyTheory (NLO) uncertainty

( 8 TeV)-119.7 fbCMS

CJ15 PDFs| < 2.5γη2.1 < || < 0.8jetη|

(GeV)γT

p50 210 210×2 310

Dat

a/Th

eory

00.20.40.60.8

11.21.41.61.8

2 DataExperimental uncertaintyTheory (NLO) uncertainty

( 8 TeV)-119.7 fbCMS

CJ15 PDFs| < 2.5γη2.1 < || < 1.5jetη0.8 < |

(GeV)γT

p50 210 210×2 310

Dat

a/Th

eory

00.20.40.60.8

11.21.41.61.8

2 DataExperimental uncertaintyTheory (NLO) uncertainty

( 8 TeV)-119.7 fbCMS

CJ15 PDFs| < 2.5γη2.1 < || < 2.1jetη1.5 < |

(GeV)γT

p50 210 210×2 310

Dat

a/Th

eory

00.20.40.60.8

11.21.41.61.8

2 DataExperimental uncertaintyTheory (NLO) uncertainty

( 8 TeV)-119.7 fbCMS

CJ15 PDFs| < 2.5γη2.1 < || < 2.5jetη2.1 < |

Fig. 8 Ratio of triple-differential cross sections as a function of pγT

measured in data over the corresponding GamJet NLO theoretical pre-diction (obtained with the CJ15 PDFs) in different bins of |ηjet| for

2.1 < |ηγ| < 2.5. Error bars on the data are statistical uncertainties,and blue bands represent the systematic uncertainties

ual bias in purity decreases as pγT increases. These correc-

tions have associated uncertainties from the size of the sim-ulated data samples and systematic uncertainties of the tem-plate shapes. If the bias correction uncertainty is larger thanthe associated correction, then the correction is not applied,and the amount of bias is taken as an additional systematicuncertainty. The bias-related uncertainty ranges from 0.01 to4.70% (0.05–10.10%) in the barrel (endcap) region. A sum-mary of the uncertainty in the purity from different sourcesis provided in Table 1.

4.4 Unfolding

The cross section measurements are unfolded within the fidu-cial volume of acceptance and phase space, which are asdefined previously in this paper. With the excellent energyresolution of the ECAL, and the width of the selected bins,bin-to-bin migrations are small, but still corrected in the finalresult. The response matrix is determined from the true gen-erator level pγ

T and the smeared values obtained from the sim-ulation. The D’Agostini iterative unfolding method, imple-mented in the RooUnfold [27] package, is used to unfold thedetector effects. A systematic uncertainty in this unfolding,

due to the input pγT distribution, is obtained by reweighting

the input distribution to resemble the spectrum observed indata, reproducing the response matrix, and taking the dif-ference between the unfolded results from the reweightedresponse matrix to the unreweighted one. The final (small)uncertainty from this procedure is propagated to the finalcross section result.

5 Comparisons with theory

The measured cross sections are compared with next-to-leading order (NLO) predictions using the modified versionof the GamJet [28,29] package. The recent CJ15 [30] par-ton distribution functions are used as input to this predic-tion, and uncertainties are assigned based on the deviationfrom the 24 pairs of varied PDFs supplied with the CJ15set. A tolerance factor of 1, assuming that all of the datasetsused in the PDF calculation are statistically compatible andthe experimental uncertainties are Gaussian, is used for thetheoretical prediction. Set II of Bourhis–Fontannaz–Guillet(BFG) [31] fragmentation functions are applied to the matrixelement calculations to estimate the photon production via

123

Page 9: Measurements of triple-differential cross sections for …...of the ECAL for unconverted photons (photons that did not convert to electrons before reaching the ECAL) in the tens of

Eur. Phys. J. C (2019) 79 :969 Page 9 of 24 969

parton fragmentation. Although contributions from fragmen-tation photons are included in these predictions, an isolationcriterion requiring less than 4 GeV of hadronic energy withina cone of radius ΔR < 0.2 around the photon direction isutilized, removing a large fraction of them. The central val-ues of the renormalization, fragmentation, and PDF scalesare set to pγ

T. The scale uncertainty is quantified by varyingeach of the scales by factors of 0.5 and 2.0 independently, andthe largest variation is taken as the systematic uncertainty. Ingeneral, the scale (PDF) uncertainty is dominant in the low(high) photon pseudorapidity bins, with the total uncertaintyranging from 10 to 25% in most cases, and as high as 70%in some pγ

T bins in the high |ηjet| region.The measured triple-differential cross sections are shown

in Figs. 3 and 4. A summary of the uncertainty in the mea-sured cross sections from different sources is reported inTable 2. Comparison between data and theory, along with therespective uncertainties, are provided in Figs. 5, 6, 7 and 8.The measurements are in good agreement with the NLO QCDpredictions from GamJet except in the regions of low pγ

T forendcap photons, where differences of up to 60% are observedbetween central values of the data and theoretical predictions.

6 Summary

Measurements of the triple-differential inclusive isolated-photon+jet cross section were performed as a function ofphoton transverse momentum (pγ

T), photon pseudorapidity(ηγ), and jet pseudorapidity (ηjet). The measurements werecarried out in pp collision at

√s = 8 TeV using 19.7 fb−1

of data collected by the CMS detector covering a kinematicrange of |ηγ| < 1.44 and 1.57 < |ηγ| < 2.50, |ηjet| < 2.5,40 < pγ

T < 1000 GeV, and jet transverse momentum, pjetT ,

>25 GeV. The photon purity was estimated using a com-bination of templates from data and simulation, based ona multivariate technique. The measured cross sections arein good agreement with the next-to-leading order perturba-tive quantum chromodynamics (pQCD) prediction, and theexperimental uncertainties are comparable or smaller thanthe theoretical ones. These measured cross sections, in differ-ent combinations of photon and jet pseudorapidities, probepQCD over a wide range of parton momentum fractions.Inclusion of such gluon-sensitive data into the global partondistribution function (PDF) fit analyses has the potential toconstrain the gluon PDFs, particularly in the regions wherethe measured uncertainties are smaller than the uncertaintybands of theoretical predictions.

Acknowledgements We congratulate our colleagues in the CERNaccelerator departments for the excellent performance of the LHC andthank the technical and administrative staffs at CERN and at other CMSinstitutes for their contributions to the success of the CMS effort. Inaddition, we gratefully acknowledge the computing centers and per-sonnel of the Worldwide LHC Computing Grid for delivering so effec-

tively the computing infrastructure essential to our analyses. Finally, weacknowledge the enduring support for the construction and operationof the LHC and the CMS detector provided by the following fundingagencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium);CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES(Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS(Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT(Ecuador); MoER, ERC IUT, PUT and ERDF (Estonia); Academy ofFinland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France);BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hun-gary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy);MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania);MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS,SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (NewZealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal);JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia);MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR(Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei);ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK andTAEK (Turkey); NASU and SFFR (Ukraine); STFC (United King-dom); DOE and NSF (USA). Individuals have received support fromthe Marie-Curie program and the European Research Council and Hori-zon 2020 Grant, contract Nos. 675440, 752730, and 765710 (Euro-pean Union); the Leventis Foundation; the A.P. Sloan Foundation; theAlexander von Humboldt Foundation; the Belgian Federal Science Pol-icy Office; the Fonds pour la Formation à la Recherche dans l’Industrieet dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatiedoor Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS andFWO (Belgium) under the “Excellence of Science – EOS” – be.h projectn. 30820817; the Beijing Municipal Science & Technology Commis-sion, No. Z181100004218003; the Ministry of Education, Youth andSports (MEYS) of the Czech Republic; the Lendület (“Momentum”)Program and the János Bolyai Research Scholarship of the HungarianAcademy of Sciences, the New National Excellence Program ÚNKP,the NKFIA research grants 123842, 123959, 124845, 124850, 125105,128713, 128786, and 129058 (Hungary); the Council of Science andIndustrial Research, India; the HOMING PLUS program of the Foun-dation for Polish Science, cofinanced from European Union, RegionalDevelopment Fund, the Mobility Plus program of the Ministry of Sci-ence and Higher Education, the National Science Center (Poland), con-tracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543,2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by QatarNational Research Fund; the Ministry of Science and Education, grantno. 3.2989.2017 (Russia); the Programa Estatal de Fomento de la Inves-tigación Científica y Técnica de Excelencia María de Maeztu, grantMDM-2015-0509 and the Programa Severo Ochoa del Principado deAsturias; the Thalis and Aristeia programs cofinanced by EU-ESF andthe Greek NSRF; the Rachadapisek Sompot Fund for PostdoctoralFellowship, Chulalongkorn University and the Chulalongkorn Aca-demic into Its 2nd Century Project Advancement Project (Thailand);the Welch Foundation, contract C-1845; and the Weston Havens Foun-dation (USA).

Data Availability Statement This manuscript has no associated dataor the data will not be deposited. [Authors’ comment: Release andpreservation of data used by the CMS Collaboration as the basisfor publications is guided by the CMS policy as written in itsdocument “CMS data preservation, re-use and open access policy”(https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/RetrieveFile?docid=6032&filename=CMSDataPolicyV1.2.pdf&version=2).]

Open Access This article is distributed under the terms of the CreativeCommons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,and reproduction in any medium, provided you give appropriate credit

123

Page 10: Measurements of triple-differential cross sections for …...of the ECAL for unconverted photons (photons that did not convert to electrons before reaching the ECAL) in the tens of

969 Page 10 of 24 Eur. Phys. J. C (2019) 79 :969

to the original author(s) and the source, provide a link to the CreativeCommons license, and indicate if changes were made.Funded by SCOAP3.

References

1. J.M. Campbell, R.K. Ellis, C. Williams, Direct photon pro-duction at next-to-next-to-leading order. Phys. Rev. Lett. 118,222001 (2017). https://doi.org/10.1103/PhysRevLett.118.222001.arXiv:1612.04333

2. X. Chen et al., Isolated photon and photon+jet production at NNLOQCD accuracy. Submitted to: JHEP (2019). arXiv:1904.01044

3. D. d’Enterria, J. Rojo, Quantitative constraints on the gluon dis-tribution function in the proton from collider isolated-photondata. Nucl. Phys. B 860, 311 (2012). https://doi.org/10.1016/j.nuclphysb.2012.03.003. arXiv:1202.1762

4. L. Carminati et al., Sensitivity of the LHC isolated-gamma+jetdata to the parton distribution functions of the proton.EPL 101, 61002 (2013). https://doi.org/10.1209/0295-5075/101/61002. arXiv:1212.5511

5. J.M. Campbell, J. Rojo, E. Slade, C. Williams, Direct pho-ton production and PDF fits reloaded. Eur. Phys. J. C78, 470 (2018). https://doi.org/10.1140/epjc/s10052-018-5944-4.arXiv:1802.03021

6. ATLAS Collaboration, Measurement of the inclusive isolatedprompt photon cross section in pp collisions at

√s = 8 TeV with

the ATLAS detector. JHEP 08, 005 (2016). https://doi.org/10.1007/JHEP08(2016)005. arXiv:1605.03495

7. ATLAS Collaboration, Dynamics of isolated-photon plus jet pro-duction in pp collisions at

√s = 7TeV with the ATLAS detec-

tor. Nucl. Phys. B 875, 483 (2013). https://doi.org/10.1016/j.nuclphysb.2013.07.025. arXiv:1307.6795

8. CMS Collaboration, Measurement of the triple-differential crosssection for photon+jets production in proton-proton collisionsat

√s = 7TeV. JHEP 06, 009 (2014). https://doi.org/10.1007/

JHEP06(2014)009. arXiv:1311.61419. D0 Collaboration, Measurement of the differential cross section of

photon plus jet production in pp collisions at√s = 1.96TeV. Phys.

Rev. D 88, 072008 (2013). https://doi.org/10.1103/PhysRevD.88.072008. arXiv:1308.2708

10. ATLAS Collaboration, Measurement of the production cross sec-tion of an isolated photon associated with jets in proton-protoncollisions at

√s = 7 TeV with the ATLAS detector. Phys. Rev. D

85, 092014 (2012). https://doi.org/10.1103/PhysRevD.85.092014.arXiv:1203.3161

11. D0 Collaboration, Measurement of the differential cross sectionfor the production of an isolated photon with associated jet in ppcollisions at

√s = 1.96TeV. Phys. Lett. B 666, 435 (2008). https://

doi.org/10.1016/j.physletb.2008.06.076. arXiv:0804.110712. CMS Collaboration, The CMS experiment at the CERN LHC.

JINST 3, S08004 (2008). https://doi.org/10.1088/1748-0221/3/08/S08004

13. CMS Collaboration, Particle-flow reconstruction and globalevent description with the CMS detector. JINST 12, P10003(2017). https://doi.org/10.1088/1748-0221/12/10/p10003.arXiv:1706.04965

14. M. Cacciari, G.P. Salam, G. Soyez, The anti-kT jet clustering algo-rithm. JHEP 04, 063 (2008). https://doi.org/10.1088/1126-6708/2008/04/063. arXiv:0802.1189

15. CMS Collaboration, Jet energy scale and resolution inthe CMS experiment in pp collisions at 8 TeV. JINST12, P02014 (2017). https://doi.org/10.1088/1748-0221/12/02/P02014. arXiv:1607.03663

16. CMS Collaboration, Jet algorithms performance in 13 TeV data.CMS Physics Analysis Summary CMS-PAS-JME-16-003, CERN(2017)

17. CMS Collaboration, Performance of photon reconstruction andidentification with the CMS detector in proton-proton collisions at√s = 8 TeV. JINST 10, P08010 (2015). https://doi.org/10.1088/

1748-0221/10/08/P08010. arXiv:1502.0270218. CMS Collaboration, Performance of CMS muon reconstruction in

pp collision events at√s = 7 TeV. JINST 7, P10002 (2012). https://

doi.org/10.1088/1748-0221/7/10/P10002. arXiv:1206.407119. CMS Collaboration, The CMS trigger system. JINST 12,

P01020 (2017). https://doi.org/10.1088/1748-0221/12/01/P01020. arXiv:1609.02366

20. T. Sjöstrand, S. Mrenna, P. Skands, pythia 6.4 physics and manual.JHEP 05, 026 (2006). https://doi.org/10.1088/1126-6708/2006/05/026. arXiv:hep-ph/0603175

21. GEANT4 Collaboration, Geant4—a simulation toolkit. Nucl.Instrum. Methods A 506, 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

22. F. Maltoni, T. Stelzer, MadEvent: automatic event generationwith MadGraph. JHEP 02, 027 (2003). https://doi.org/10.1088/1126-6708/2003/02/027. arXiv:hep-ph/0208156

23. J. Pumplin et al., New generation of parton distributions with uncer-tainties from global QCD analysis. JHEP 07, 012 (2002). https://doi.org/10.1088/1126-6708/2002/07/012. arXiv:hep-ph/0201195

24. CMS Collaboration, Study of the underlying event at forward rapid-ity in pp collisions at

√s = 0.9, 2.76, and 7 TeV. JHEP 04, 072

(2013). https://doi.org/10.1007/JHEP04(2013)07225. B.P. Roe et al., Boosted decision trees as an alternative to artificial

neural networks for particle identification. Nucl. Instrum. Methods543, 577 (2005). https://doi.org/10.1016/j.nima.2004.12.018

26. W. Verkerke, D.P. Kirkby, The RooFit toolkit for data modeling.In: Computing in High Energy and Nuclear Physics (CHEP03):Proceedings, La Jolla, USA, March, 2003, pp. Note: eConfC030324,186 (2003) MOLT007 (2003). arXiv:physics/0306116

27. G. D’Agostini, Probability and measurement uncertainty inphysics: a Bayesian primer (1995). arXiv:hep-ph/9512295

28. H. Baer, J. Ohnemus, J.F. Owens, A calculation of the direct pho-ton plus jet cross section in the next-to-leading-logarithm approx-imation. Phys. Lett. B 234, 127 (1990). https://doi.org/10.1016/0370-2693(90)92015-B

29. H. Baer, J. Ohnemus, J.F. Owens, Next-to-leading-logarithm cal-culation of direct photon production. Phys. Rev. D 42, 61 (1990).https://doi.org/10.1103/PhysRevD.42.61

30. A. Accardi et al., Constraints on large-x parton distributionsfrom new weak boson production and deep-inelastic scatteringdata. Phys. Rev. D 93, 114017 (2016). https://doi.org/10.1103/PhysRevD.93.114017. arXiv:1602.03154

31. L. Bourhis, M. Fontannaz, J.P. Guillet, Quarks and gluon fragmen-tation functions into photons. Eur. Phys. J. C 2, 529 (1998). https://doi.org/10.1007/s100520050158. arXiv:hep-ph/9704447

123

Page 11: Measurements of triple-differential cross sections for …...of the ECAL for unconverted photons (photons that did not convert to electrons before reaching the ECAL) in the tens of

Eur. Phys. J. C (2019) 79 :969 Page 11 of 24 969

CMS Collaboration

Yerevan Physics Institute, Yerevan, ArmeniaA. M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, AustriaW. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, M. Dragicevic, J. Erö, A. Escalante Del Valle, M. Flechl,R. Frühwirth1, V. M. Ghete, J. Hrubec, M. Jeitler1, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, N. Rad,H. Rohringer, J. Schieck1, R. Schöfbeck, M. Spanring, D. Spitzbart, W. Waltenberger, J. Wittmann, C.-E. Wulz1,M. Zarucki

Institute for Nuclear Problems, Minsk, BelarusV. Chekhovsky, V. Mossolov, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, BelgiumE. A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, A. Lelek, M. Pieters, H. Van Haevermaet, P. Van Mechelen,N. Van Remortel

Vrije Universiteit Brussel, Brussel, BelgiumS. Abu Zeid, F. Blekman, J. D’Hondt, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, I. Marchesini,S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs

Université Libre de Bruxelles, Bruxelles, BelgiumD. Beghin, B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, G. Fasanella, L. Favart,R. Goldouzian, A. Grebenyuk, A. K. Kalsi, T. Lenzi, J. Luetic, N. Postiau, E. Starling, L. Thomas, C. Vander Velde,P. Vanlaer, D. Vannerom, Q. Wang

Ghent University, Ghent, BelgiumT. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov2, D. Poyraz, C. Roskas, D. Trocino, M. Tytgat, W. Verbeke,B. Vermassen, M. Vit, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, BelgiumH. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, C. Caputo, P. David, C. Delaere, M. Delcourt, A. Giammanco,G. Krintiras, V. Lemaitre, A. Magitteri, K. Piotrzkowski, A. Saggio, M. Vidal Marono, P. Vischia, S. Wertz, J. Zobec

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, BrazilF. L. Alves, G. A. Alves, G. Correia Silva, C. Hensel, A. Moraes, M. E. Pol, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, BrazilE. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato3, E. Coelho, E. M. Da Costa, G. G. Da Silveira4,D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, D. Matos Figueiredo,M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, W. L. Prado Da Silva, L. J. Sanchez Rosas, A. Santoro,A. Sznajder, M. Thiel, E. J. Tonelli Manganote3, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulistaa , Universidade Federal do ABCb, São Paulo, BrazilS. Ahujaa , C. A. Bernardesa , L. Calligarisa , T. R. Fernandez Perez Tomeia , E. M. Gregoresb, P. G. Mercadanteb,S. F. Novaesa , SandraS. Padulaa

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, BulgariaA. Aleksandrov, R. Hadjiiska, P. Iaydjiev, A. Marinov, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

University of Sofia, Sofia, BulgariaA. Dimitrov, L. Litov, B. Pavlov, P. Petkov

Beihang University, Beijing, ChinaW. Fang5, X. Gao5, L. Yuan

Institute of High Energy Physics, Beijing, ChinaM. Ahmad, J. G. Bian, G. M. Chen, H. S. Chen, M. Chen, Y. Chen, C. H. Jiang, D. Leggat, H. Liao, Z. Liu,S. M. Shaheen6, A. Spiezia, J. Tao, E. Yazgan, H. Zhang, S. Zhang6, J. Zhao

123

Page 12: Measurements of triple-differential cross sections for …...of the ECAL for unconverted photons (photons that did not convert to electrons before reaching the ECAL) in the tens of

969 Page 12 of 24 Eur. Phys. J. C (2019) 79 :969

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, ChinaY. Ban, G. Chen, A. Levin, J. Li, L. Li, Q. Li, Y. Mao, S. J. Qian, D. Wang

Tsinghua University, Beijing, ChinaY. Wang

Universidad de Los Andes, Bogota, ColombiaC. Avila, A. Cabrera, C. A. Carrillo Montoya, L. F. Chaparro Sierra, C. Florez, C. F. González Hernández,M. A. Segura Delgado

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, CroatiaB. Courbon, N. Godinovic, D. Lelas, I. Puljak, T. Sculac

University of Split, Faculty of Science, Split, CroatiaZ. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, CroatiaV. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, M. Roguljic, A. Starodumov7, T. Susa

University of Cyprus, Nicosia, CyprusM. W. Ather, A. Attikis, M. Kolosova, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P. A. Razis, H. Rykaczewski

Charles University, Prague, Czech RepublicM. Finger8, M. Finger Jr.8

Escuela Politecnica Nacional, Quito, EcuadorE. Ayala

Universidad San Francisco de Quito, Quito, EcuadorE. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High EnergyPhysics, Cairo, EgyptM. A. Mahmoud9,10, A. Mahrous11, Y. Mohammed9

National Institute of Chemical Physics and Biophysics, Tallinn, EstoniaS. Bhowmik, A. Carvalho Antunes De Oliveira, R. K. Dewanjee, K. Ehataht, M. Kadastik, M. Raidal, C. Veelken

Department of Physics, University of Helsinki, Helsinki, FinlandP. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, FinlandJ. Havukainen, J. K. Heikkilä, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti,T. Lindén, P. Luukka, T. Mäenpää, H. Siikonen, E. Tuominen, J. Tuominiemi

Lappeenranta University of Technology, Lappeenranta, FinlandT. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, FranceM. Besancon, F. Couderc, M. Dejardin, D. Denegri, J. L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras,G. Hamel de Monchenault, P. Jarry, C. Leloup, E. Locci, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M. Ö. Sahin,M. Titov

Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, FranceA. Abdulsalam12, C. Amendola, I. Antropov, F. Beaudette, P. Busson, C. Charlot, R. Granier de Cassagnac, I. Kucher,A. Lobanov, J. Martin Blanco, C. Martin Perez, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, J. Rembser, R. Salerno,J. B. Sauvan, Y. Sirois, A. G. Stahl Leiton, A. Zabi, A. Zghiche

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, FranceJ.-L. Agram13, J. Andrea, D. Bloch, J.-M. Brom, E. C. Chabert, V. Cherepanov, C. Collard, E. Conte13, J.-C. Fontaine13,D. Gelé, U. Goerlach, M. Jansová, A.-C. Le Bihan, N. Tonon, P. Van Hove

123

Page 13: Measurements of triple-differential cross sections for …...of the ECAL for unconverted photons (photons that did not convert to electrons before reaching the ECAL) in the tens of

Eur. Phys. J. C (2019) 79 :969 Page 13 of 24 969

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3,Villeurbanne, FranceS. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon,Villeurbanne, FranceS. Beauceron, C. Bernet, G. Boudoul, N. Chanon, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco,S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I. B. Laktineh, H. Lattaud, M. Lethuillier, L. Mirabito,S. Perries, A. Popov14, V. Sordini, G. Touquet, M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, GeorgiaT. Toriashvili15

Tbilisi State University, Tbilisi, GeorgiaI. Bagaturia16

RWTH Aachen University, I. Physikalisches Institut, Aachen, GermanyC. Autermann, L. Feld, M. K. Kiesel, K. Klein, M. Lipinski, M. Preuten, M. P. Rauch, C. Schomakers, J. Schulz,M. Teroerde, B. Wittmer

RWTH Aachen University, III. Physikalisches Institut A, Aachen, GermanyA. Albert, D. Duchardt, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, S. Ghosh, A. Güth, T. Hebbeker, C. Heidemann,K. Hoepfner, H. Keller, L. Mastrolorenzo, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, T. Pook, M. Radziej,H. Reithler, M. Rieger, A. Schmidt, D. Teyssier, S. Thüer

RWTH Aachen University, III. Physikalisches Institut B, Aachen, GermanyG. Flügge, O. Hlushchenko, T. Kress, T. Müller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, D. Roy, H. Sert, A. Stahl17

Deutsches Elektronen-Synchrotron, Hamburg, GermanyM. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, I. Babounikau, K. Beernaert, O. Behnke, U. Behrens,A. Bermúdez Martínez, D. Bertsche, A. A. Bin Anuar, K. Borras18, V. Botta, A. Campbell, P. Connor,C. Contreras-Campana, V. Danilov, A. De Wit, M. M. Defranchis, C. Diez Pardos, D. Domínguez Damiani, G. Eckerlin,T. Eichhorn, A. Elwood, E. Eren, E. Gallo19, A. Geiser, J. M. Grados Luyando, A. Grohsjean, M. Guthoff, M. Haranko,A. Harb, H. Jung, M. Kasemann, J. Keaveney, C. Kleinwort, J. Knolle, D. Krücker, W. Lange, T. Lenz, J. Leonard,K. Lipka, W. Lohmann20, R. Mankel, I.-A. Melzer-Pellmann, A. B. Meyer, M. Meyer, M. Missiroli, G. Mittag, J. Mnich,V. Myronenko, S. K. Pflitsch, D. Pitzl, A. Raspereza, M. Savitskyi, P. Saxena, P. Schütze, C. Schwanenberger,R. Shevchenko, A. Singh, H. Tholen, O. Turkot, A. Vagnerini, M. Van De Klundert, G. P. Van Onsem, R. Walsh, Y. Wen,K. Wichmann, C. Wissing, O. Zenaiev

University of Hamburg, Hamburg, GermanyR. Aggleton, S. Bein, L. Benato, A. Benecke, T. Dreyer, A. Ebrahimi, E. Garutti, D. Gonzalez, P. Gunnellini, J. Haller,A. Hinzmann, A. Karavdina, G. Kasieczka, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, V. Kutzner, J. Lange,D. Marconi, J. Multhaup, M. Niedziela, C. E. N. Niemeyer, D. Nowatschin, A. Perieanu, A. Reimers, O. Rieger, C. Scharf,P. Schleper, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück, F. M. Stober, M. Stöver, B. Vormwald,I. Zoi

Karlsruher Institut fuer Technologie, Karlsruhe, GermanyM. Akbiyik, C. Barth, M. Baselga, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm,K. El Morabit, N. Faltermann, B. Freund, M. Giffels, M. A. Harrendorf, F. Hartmann17, S. M. Heindl, U. Husemann,I. Katkov14, S. Kudella, S. Mitra, M. U. Mozer, Th. Müller, M. Musich, M. Plagge, G. Quast, K. Rabbertz, M. Schröder,I. Shvetsov, H. J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, C. Wöhrmann, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, GreeceG. Anagnostou, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, G. Paspalaki

123

Page 14: Measurements of triple-differential cross sections for …...of the ECAL for unconverted photons (photons that did not convert to electrons before reaching the ECAL) in the tens of

969 Page 14 of 24 Eur. Phys. J. C (2019) 79 :969

National and Kapodistrian University of Athens, Athens, GreeceA. Agapitos, G. Karathanasis, P. Kontaxakis, A. Panagiotou, I. Papavergou, N. Saoulidou, E. Tziaferi, K. Vellidis

National Technical University of Athens, Athens, GreeceK. Kousouris, I. Papakrivopoulos, G. Tsipolitis

University of Ioánnina, Ioánnina, GreeceI. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas,J. Strologas, F. A. Triantis, D. Tsitsonis

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, HungaryM. Bartók21, M. Csanad, N. Filipovic, P. Major, M. I. Nagy, G. Pasztor, O. Surányi, G. I. Veres

Wigner Research Centre for Physics, Budapest, HungaryG. Bencze, C. Hajdu, D. Horvath22, Hunyadi, F. Sikler, T. Vámi, V. Veszpremi, G. Vesztergombi†

Institute of Nuclear Research ATOMKI, Debrecen, HungaryN. Beni, S. Czellar, J. Karancsi21, A. Makovec, J. Molnar, Z. Szillasi

Institute of Physics, University of Debrecen, Debrecen, HungaryP. Raics, Z. L. Trocsanyi, B. Ujvari

Indian Institute of Science (IISc), Bangalore, IndiaS. Choudhury, J. R. Komaragiri, P. C. Tiwari

National Institute of Science Education and Research, HBNI, Bhubaneswar, IndiaS. Bahinipati24, C. Kar, P. Mal, K. Mandal, A. Nayak25, S. Roy Chowdhury, D. K. Sahoo24, S. K. Swain

Panjab University, Chandigarh, IndiaS. Bansal, S. B. Beri, V. Bhatnagar, S. Chauhan, R. Chawla, N. Dhingra, R. Gupta, A. Kaur, M. Kaur, S. Kaur, P. Kumari,M. Lohan, M. Meena, A. Mehta, K. Sandeep, S. Sharma, J. B. Singh, A. K. Virdi, G. Walia

University of Delhi, Delhi, IndiaA. Bhardwaj, B. C. Choudhary, R. B. Garg, M. Gola, S. Keshri, Ashok Kumar, S. Malhotra, M. Naimuddin, P. Priyanka,K. Ranjan, Aashaq Shah, R. Sharma

Saha Institute of Nuclear Physics, HBNI, Kolkata, IndiaR. Bhardwaj26, M. Bharti26, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep26, D. Bhowmik, S. Dey, S. Dutt26,S. Dutta, S. Ghosh, M. Maity27, K. Mondal, S. Nandan, A. Purohit, P. K. Rout, A. Roy, G. Saha, S. Sarkar, T. Sarkar27,M. Sharan, B. Singh26, S. Thakur26

Indian Institute of Technology Madras, Madras, IndiaP. K. Behera, A. Muhammad

Bhabha Atomic Research Centre, Mumbai, IndiaR. Chudasama, D. Dutta, V. Jha, V. Kumar, D. K. Mishra, P. K. Netrakanti, L. M. Pant, P. Shukla, P. Suggisetti

Tata Institute of Fundamental Research-A, Mumbai, IndiaT. Aziz, M. A. Bhat, S. Dugad, G. B. Mohanty, N. Sur, RavindraKumar Verma

Tata Institute of Fundamental Research-B, Mumbai, IndiaS. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Karmakar, S. Kumar, G. Majumder,K. Mazumdar, N. Sahoo

Indian Institute of Science Education and Research (IISER), Pune, IndiaS. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, A. Rastogi, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, IranS. Chenarani28, E. Eskandari Tadavani, S. M. Etesami28, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri,F. Rezaei Hosseinabadi, B. Safarzadeh29, M. Zeinali

123

Page 15: Measurements of triple-differential cross sections for …...of the ECAL for unconverted photons (photons that did not convert to electrons before reaching the ECAL) in the tens of

Eur. Phys. J. C (2019) 79 :969 Page 15 of 24 969

University College Dublin, Dublin, IrelandM. Felcini, M. Grunewald

INFN Sezione di Baria , Università di Barib, Politecnico di Baric, Bari, ItalyM. Abbresciaa ,b, C. Calabriaa ,b, A. Colaleoa , D. Creanzaa ,c, L. Cristellaa ,b, N. De Filippisa ,c, M. De Palmaa ,b,A. Di Florioa ,b, F. Erricoa ,b, L. Fiorea , A. Gelmia ,b, G. Iasellia ,c, M. Incea ,b, S. Lezkia ,b, G. Maggia ,c, M. Maggia ,G. Minielloa ,b, S. Mya ,b, S. Nuzzoa ,b, A. Pompilia ,b, G. Pugliesea ,c, R. Radognaa , A. Ranieria , G. Selvaggia ,b,A. Sharmaa , L. Silvestrisa , R. Vendittia , P. Verwilligena

INFN Sezione di Bolognaa , Università di Bolognab, Bologna, ItalyG. Abbiendia , C. Battilanaa ,b, D. Bonacorsia ,b, L. Borgonovia ,b, S. Braibant-Giacomellia ,b, R. Campaninia ,b,P. Capiluppia ,b, A. Castroa ,b, F. R. Cavalloa , S. S. Chhibraa ,b, G. Codispotia ,b, M. Cuffiania ,b, G. M. Dallavallea ,F. Fabbria , A. Fanfania ,b, E. Fontanesi, P. Giacomellia , C. Grandia , L. Guiduccia ,b, F. Iemmia ,b, S. Lo Meoa ,30,S. Marcellinia , G. Masettia , A. Montanaria , F. L. Navarriaa ,b, A. Perrottaa , F. Primaveraa ,b, A. M. Rossia ,b, T. Rovellia ,b,G. P. Sirolia ,b, N. Tosia

INFN Sezione di Cataniaa , Università di Cataniab, Catania, ItalyS. Albergoa ,b, A. Di Mattiaa , R. Potenzaa ,b, A. Tricomia ,b, C. Tuvea ,b

INFN Sezione di Firenzea , Università di Firenzeb, Firenze, ItalyG. Barbaglia , K. Chatterjeea ,b, V. Ciullia ,b, C. Civininia , R. D’Alessandroa ,b, E. Focardia ,b, G. Latino, P. Lenzia ,b,M. Meschinia , S. Paolettia , L. Russoa ,31, G. Sguazzonia , D. Stroma , L. Viliania

INFN Laboratori Nazionali di Frascati, Frascati, ItalyL. Benussi, S. Bianco, F. Fabbri, D. Piccolo

INFN Sezione di Genovaa , Università di Genovab, Genova, ItalyF. Ferroa , R. Mulargiaa ,b, E. Robuttia , S. Tosia ,b

INFN Sezione di Milano-Bicoccaa , Università di Milano-Bicoccab, Milano, ItalyA. Benagliaa , A. Beschib, F. Brivioa ,b, V. Cirioloa ,b,17, S. Di Guidaa ,b,17, M. E. Dinardoa ,b, S. Fiorendia ,b, S. Gennaia ,A. Ghezzia ,b, P. Govonia ,b, M. Malbertia ,b, S. Malvezzia , D. Menascea , F. Monti, L. Moronia , M. Paganonia ,b,D. Pedrinia , S. Ragazzia ,b, T. Tabarelli de Fatisa ,b, D. Zuoloa ,b

INFN Sezione di Napolia , Università di Napoli ’Federico II’ b, Napoli, Italy, Università della Basilicatac, Potenza,Italy, Università G. Marconid , Roma, ItalyS. Buontempoa , N. Cavalloa ,c, A. De Iorioa ,b, A. Di Crescenzoa ,b, F. Fabozzia ,c, F. Fiengaa , G. Galatia , A. O. M. Iorioa ,b,L. Listaa , S. Meolaa ,d ,17, P. Paoluccia ,17, C. Sciaccaa ,b, E. Voevodinaa ,b

INFN Sezione di Padovaa , Università di Padovab, Padova, Italy, Università di Trentoc, Trento, ItalyP. Azzia , N. Bacchettaa , D. Biselloa ,b, A. Bolettia ,b, A. Bragagnolo, R. Carlina ,b, P. Checchiaa , M. Dall’Ossoa ,b,P. De Castro Manzanoa , T. Dorigoa , U. Dossellia , F. Gasparinia ,b, U. Gasparinia ,b, A. Gozzelinoa , S. Y. Hoh,S. Lacapraraa , P. Lujan, M. Margonia ,b, A. T. Meneguzzoa ,b, J. Pazzinia ,b, M. Presillab, P. Ronchesea ,b, R. Rossina ,b,F. Simonettoa ,b, A. Tiko, E. Torassaa , M. Tosia ,b, M. Zanettia ,b, P. Zottoa ,b, G. Zumerlea ,b

INFN Sezione di Paviaa , Università di Paviab, Pavia, ItalyA. Braghieria , A. Magnania , P. Montagnaa ,b, S. P. Rattia ,b, V. Rea , M. Ressegottia ,b, C. Riccardia ,b, P. Salvinia , I. Vaia ,b,P. Vituloa ,b

INFN Sezione di Perugiaa , Università di Perugiab, Perugia, ItalyM. Biasinia ,b, G. M. Bileia , C. Cecchia ,b, D. Ciangottinia ,b, L. Fanòa ,b, P. Laricciaa ,b, R. Leonardia ,b, E. Manonia ,G. Mantovania ,b, V. Mariania ,b, M. Menichellia , A. Rossia ,b, A. Santocchiaa ,b, D. Spigaa

INFN Sezione di Pisaa , Università di Pisab, Scuola Normale Superiore di Pisac, Pisa, ItalyK. Androsova , P. Azzurria , G. Bagliesia , L. Bianchinia , T. Boccalia , L. Borrello, R. Castaldia , M. A. Cioccia ,b,R. Dell’Orsoa , G. Fedia , F. Fioria ,c, L. Gianninia ,c, A. Giassia , M. T. Grippoa , F. Ligabuea ,c, E. Mancaa ,c, G. Mandorlia ,c,A. Messineoa ,b, F. Pallaa , A. Rizzia ,b, G. Rolandi32, P. Spagnoloa , R. Tenchinia , G. Tonellia ,b, A. Venturia , P. G. Verdinia

123

Page 16: Measurements of triple-differential cross sections for …...of the ECAL for unconverted photons (photons that did not convert to electrons before reaching the ECAL) in the tens of

969 Page 16 of 24 Eur. Phys. J. C (2019) 79 :969

INFN Sezione di Romaa , Sapienza Università di Romab, Rome, ItalyL. Baronea ,b, F. Cavallaria , M. Cipriania ,b, D. Del Rea ,b, E. Di Marcoa ,b, M. Diemoza , S. Gellia ,b, E. Longoa ,b,B. Marzocchia ,b, P. Meridiania , G. Organtinia ,b, F. Pandolfia , R. Paramattia ,b, F. Preiatoa ,b, S. Rahatloua ,b, C. Rovellia ,F. Santanastasioa ,b

INFN Sezione di Torinoa , Università di Torinob, Torino, Italy, Università del Piemonte Orientalec, Novara, ItalyN. Amapanea ,b, R. Arcidiaconoa ,c, S. Argiroa ,b, M. Arneodoa ,c, N. Bartosika , R. Bellana ,b, C. Biinoa , A. Cappatia ,b,N. Cartigliaa , F. Cennaa ,b, S. Cometti, M. Costaa ,b, R. Covarellia ,b, N. Demariaa , B. Kiania ,b, C. Mariottia , S. Masellia ,E. Migliorea ,b, V. Monacoa ,b, E. Monteila ,b, M. Montenoa , M. M. Obertinoa ,b, L. Pachera ,b, N. Pastronea , M. Pelliccionia ,G. L. Pinna Angionia ,b, A. Romeroa ,b, M. Ruspaa ,c, R. Sacchia ,b, R. Salvaticoa ,b, K. Shchelinaa ,b, V. Solaa , A. Solanoa ,b,D. Soldia ,b, A. Staianoa

INFN Sezione di Triestea , Università di Triesteb, Trieste, ItalyS. Belfortea , V. Candelisea ,b, M. Casarsaa , F. Cossuttia , A. Da Rolda ,b, G. Della Riccaa ,b, F. Vazzolera ,b, A. Zanettia

Kyungpook National University, Daegu, KoreaD. H. Kim, G. N. Kim, M. S. Kim, J. Lee, S. Lee, S. W. Lee, C. S. Moon, Y. D. Oh, S. I. Pak, S. Sekmen, D. C. Son,Y. C. Yang

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, KoreaH. Kim, D. H. Moon, G. Oh

Hanyang University, Seoul, KoreaB. Francois, J. Goh33, T. J. Kim

Korea University, Seoul, KoreaS. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, K. Lee, K. S. Lee, S. Lee, J. Lim, S. K. Park, Y. Roh

Sejong University, Seoul, KoreaH. S. Kim

Seoul National University, Seoul, KoreaJ. Almond, J. Kim, J. S. Kim, H. Lee, K. Lee, K. Nam, S. B. Oh, B. C. Radburn-Smith, S. h. Seo, U. K. Yang, H. D. Yoo,G. B. Yu

University of Seoul, Seoul, KoreaD. Jeon, H. Kim, J. H. Kim, J. S. H. Lee, I. C. Park

Sungkyunkwan University, Suwon, KoreaY. Choi, C. Hwang, J. Lee, I. Yu

Vilnius University, Vilnius, LithuaniaV. Dudenas, A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, MalaysiaZ. A. Ibrahim, M. A. B. Md Ali34, F. Mohamad Idris35, W. A. T. Wan Abdullah, M. N. Yusli, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, MexicoJ. F. Benitez, A. Castaneda Hernandez, J. A. Murillo Quijada

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, MexicoH. Castilla-Valdez, E. De La LaCruz-Burelo, M. C. Duran-Osuna, I. Heredia-De La Cruz36, R. Lopez-Fernandez,J. Mejia Guisao, R. I. Rabadan-Trejo, M. Ramirez-Garcia, G. Ramirez-Sanchez, R. Reyes-Almanza, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, MexicoS. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, MexicoJ. Eysermans, I. Pedraza, H. A. Salazar Ibarguen, C. Uribe Estrada

123

Page 17: Measurements of triple-differential cross sections for …...of the ECAL for unconverted photons (photons that did not convert to electrons before reaching the ECAL) in the tens of

Eur. Phys. J. C (2019) 79 :969 Page 17 of 24 969

Universidad Autónoma de San Luis Potosí, San Luis Potosí, MexicoA. Morelos Pineda

University of Auckland, Auckland, New ZealandD. Krofcheck

University of Canterbury, Christchurch, New ZealandS. Bheesette, P. H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, PakistanA. Ahmad, M. Ahmad, M. I. Asghar, Q. Hassan, H. R. Hoorani, W. A. Khan, M. A. Shah, M. Shoaib, M. Waqas

National Centre for Nuclear Research, Swierk, PolandH. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, M. Szleper, P. Traczyk, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, PolandK. Bunkowski, A. Byszuk37, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski,A. Pyskir, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, PortugalM. Araujo, P. Bargassa, C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar,N. Leonardo, J. Seixas, G. Strong, O. Toldaiev, J. Varela

Joint Institute for Nuclear Research, Dubna, RussiaS. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavine, A. Lanev, A. Malakhov,V. Matveev38,39, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin,A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), RussiaV. Golovtsov, Y. Ivanov, V. Kim40, E. Kuznetsova41, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov,V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, RussiaYu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov,A. Shabanov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow,RussiaV. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov,V. Stolin, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, RussiaT. Aushev

National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Moscow, RussiaM. Chadeeva42, P. Parygin, E. Popova, V. Rusinov

P.N. Lebedev Physical Institute, Moscow, RussiaV. Andreev, M. Azarkin, I. Dremin39, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, RussiaA. Belyaev, E. Boos, M. Dubinin43, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin,S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

Novosibirsk State University (NSU), Novosibirsk, RussiaA. Barnyakov44, V. Blinov44, T. Dimova44, L. Kardapoltsev44, Y. Skovpen44

123

Page 18: Measurements of triple-differential cross sections for …...of the ECAL for unconverted photons (photons that did not convert to electrons before reaching the ECAL) in the tens of

969 Page 18 of 24 Eur. Phys. J. C (2019) 79 :969

Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’, Protvino, RussiaI. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin,S. Slabospitskii, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

National Research Tomsk Polytechnic University, Tomsk, RussiaA. Babaev, S. Baidali, V. Okhotnikov

Faculty of Physics and VINCA Institute of Nuclear Sciences, University of Belgrade, Belgrade, SerbiaP. Adzic45, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, SpainJ. Alcaraz Maestre, A. lvarez Fernández, I. Bachiller, M. Barrio Luna, J. A. Brochero Cifuentes, M. Cerrada, N. Colino,B. De La Cruz, A. Delgado Peris, C. Fernandez Bedoya, J. P. Fernández Ramos, J. Flix, M. C. Fouz, O. Gonzalez Lopez,S. Goy Lopez, J. M. Hernandez, M. I. Josa, D. Moran, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo,L. Romero, S. Sánchez Navas, M. S. Soares, A. Triossi

Universidad Autónoma de Madrid, Madrid, SpainC. Albajar, J. F. de Trocóniz

Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo,SpainJ. Cuevas, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, J. R. González Fernández,E. Palencia Cortezon, V. Rodríguez Bouza, S. Sanchez Cruz, J. M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, SpainI. J. Cabrillo, A. Calderon, B. Chazin Quero, J. Duarte Campderros, M. Fernandez, P. J. Fernández Manteca,A. García Alonso, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, P. Martinez Ruiz del Arbol,F. Matorras, J. Piedra Gomez, C. Prieels, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila,R. Vilar Cortabitarte

Department of Physics, University of Ruhuna, Matara, Sri LankaN. Wickramage

CERN, European Organization for Nuclear Research, Geneva, SwitzerlandD. Abbaneo, B. Akgun, E. Auffray, G. Auzinger, P. Baillon, A. H. Ball, D. Barney, J. Bendavid, M. Bianco, A. Bocci,C. Botta, E. Brondolin, T. Camporesi, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen, G. Cucciati, D. d’Enterria,A. Dabrowski, N. Daci, V. Daponte, A. David, A. De Roeck, N. Deelen, M. Dobson, M. Dünser, N. Dupont,A. Elliott-Peisert, P. Everaerts, F. Fallavollita46, D. Fasanella, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, A. Gilbert,K. Gill, F. Glege, M. Gruchala, M. Guilbaud, D. Gulhan, J. Hegeman, C. Heidegger, V. Innocente, A. Jafari, P. Janot,O. Karacheban20, J. Kieseler, A. Kornmayer, M. Krammer1, C. Lange, P. Lecoq, C. Lourenço, L. Malgeri, M. Mannelli,A. Massironi, F. Meijers, J. A. Merlin, S. Mersi, E. Meschi, P. Milenovic47, F. Moortgat, M. Mulders, J. Ngadiuba,S. Nourbakhsh, S. Orfanelli, L. Orsini, F. Pantaleo17, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer,M. Pierini, F. M. Pitters, D. Rabady, A. Racz, T. Reis, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, M. Selvaggi,A. Sharma, P. Silva, P. Sphicas48, A. Stakia, J. Steggemann, D. Treille, A. Tsirou, A. Vartak, V. Veckalns49, M. Verzetti,W. D. Zeuner

Paul Scherrer Institut, Villigen, SwitzerlandL. Caminada50, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H. C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe,S. A. Wiederkehr

ETH Zurich-Institute for Particle Physics and Astrophysics (IPA), Zurich, SwitzerlandM. Backhaus, L. Bäni, P. Berger, N. Chernyavskaya, G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer,T. A. Gómez Espinosa, C. Grab, D. Hits, T. Klijnsma, W. Lustermann, R. A. Manzoni, M. Marionneau, M. T. Meinhard,F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pauss, G. Perrin, L. Perrozzi, S. Pigazzini, C. Reissel, D. Ruini,D. A. Sanz Becerra, M. Schönenberger, L. Shchutska, V. R. Tavolaro, K. Theofilatos, M. L. Vesterbacka Olsson, R. Wallny,D. H. Zhu

123

Page 19: Measurements of triple-differential cross sections for …...of the ECAL for unconverted photons (photons that did not convert to electrons before reaching the ECAL) in the tens of

Eur. Phys. J. C (2019) 79 :969 Page 19 of 24 969

Universität Zürich, Zurich, SwitzerlandT. K. Aarrestad, C. Amsler51, D. Brzhechko, M. F. Canelli, A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus,B. Kilminster, S. Leontsinis, I. Neutelings, G. Rauco, P. Robmann, D. Salerno, K. Schweiger, C. Seitz, Y. Takahashi,A. Zucchetta

National Central University, Chung-Li, TaiwanT. H. Doan, R. Khurana, C. M. Kuo, W. Lin, A. Pozdnyakov, S. S. Yu

National Taiwan University (NTU), Taipei, TaiwanP. Chang, Y. Chao, K. F. Chen, P. H. Chen, W.-S. Hou, Y. F. Liu, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, ThailandB. Asavapibhop, N. Srimanobhas, N. Suwonjandee

ukurova University, Physics Department, Science and Art Faculty, Adana, TurkeyA. Bat, F. Boran, S. Cerci52, S. Damarseckin, Z. S. Demiroglu, F. Dolek, C. Dozen, I. Dumanoglu, E. Eskut, G. Gokbulut,Y. Guler, E. Gurpinar, I. Hos53, C. Isik, E. E. Kangal54, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut,K. Ozdemir55, A. Polatoz, B. Tali52, U. G. Tok, S. Turkcapar, I. S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, TurkeyB. Isildak56, G. Karapinar57, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, TurkeyI. O. Atakisi, E. Gülmez, M. Kaya58, O. Kaya59, S. Ozkorucuklu60, S. Tekten, E. A. Yetkin61

Istanbul Technical University, Istanbul, TurkeyM. N. Agaras, A. Cakir, K. Cankocak, Y. Komurcu, S. Sen62

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, UkraineB. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, UkraineL. Levchuk

University of Bristol, Bristol, United KingdomF. Ball, J. J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher, J. Goldstein, G. P. Heath, H. F. Heath,L. Kreczko, D. M. Newbold63, S. Paramesvaran, B. Penning, T. Sakuma, D. Smith, V. J. Smith, J. Taylor, A. Titterton

Rutherford Appleton Laboratory, Didcot, United KingdomK. W. Bell, A. Belyaev64, C. Brew, R. M. Brown, D. Cieri, D. J. A. Cockerill, J. A. Coughlan, K. Harder, S. Harper,J. Linacre, K. Manolopoulos, E. Olaiya, D. Petyt, C. H. Shepherd-Themistocleous, A. Thea, I. R. Tomalin, T. Williams,W. J. Womersley

Imperial College, London, United KingdomR. Bainbridge, P. Bloch, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, D. Colling, P. Dauncey, G. Davies,M. Della Negra, R. Di Maria, G. Hall, G. Iles, T. James, M. Komm, C. Laner, L. Lyons, A.-M. Magnan, S. Malik,A. Martelli, J. Nash65, A. Nikitenko7, V. Palladino, M. Pesaresi, D. M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez,A. Shtipliyski, G. Singh, M. Stoye, T. Strebler, S. Summers, A. Tapper, K. Uchida, T. Virdee17, N. Wardle,D. Winterbottom, J. Wright, S. C. Zenz

Brunel University, Uxbridge, United KingdomJ. E. Cole, P. R. Hobson, A. Khan, P. Kyberd, C. K. Mackay, A. Morton, I. D. Reid, L. Teodorescu, S. Zahid

Baylor University, Waco, USAK. Call, J. Dittmann, K. Hatakeyama, H. Liu, C. Madrid, B. McMaster, N. Pastika, C. Smith

Catholic University of America, Washington DC, USAR. Bartek, A. Dominguez

The University of Alabama, Tuscaloosa, USAA. Buccilli, S. I. Cooper, C. Henderson, P. Rumerio, C. West

123

Page 20: Measurements of triple-differential cross sections for …...of the ECAL for unconverted photons (photons that did not convert to electrons before reaching the ECAL) in the tens of

969 Page 20 of 24 Eur. Phys. J. C (2019) 79 :969

Boston University, Boston, USAD. Arcaro, T. Bose, D. Gastler, S. Girgis, D. Pinna, C. Richardson, J. Rohlf, L. Sulak, D. Zou

Brown University, Providence, USAG. Benelli, B. Burkle, X. Coubez, D. Cutts, M. Hadley, J. Hakala, U. Heintz, J. M. Hogan66, K. H. M. Kwok, E. Laird,G. Landsberg, J. Lee, Z. Mao, M. Narain, S. Sagir67, R. Syarif, E. Usai, D. Yu

University of California, Davis, Davis, USAR. Band, C. Brainerd, R. Breedon, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway,P. T. Cox, R. Erbacher, C. Flores, G. Funk, W. Ko, O. Kukral, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout,M. Shi, D. Stolp, D. Taylor, K. Tos, M. Tripathi, Z. Wang, F. Zhang

University of California, Los Angeles, USAM. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, S. Erhan, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, S. Regnard,D. Saltzberg, C. Schnaible, V. Valuev

University of California, Riverside, Riverside, USAE. Bouvier, K. Burt, R. Clare, J. W. Gary, S. M. A. Ghiasi Shirazi, G. Hanson, G. Karapostoli, E. Kennedy, F. Lacroix,O. R. Long, M. Olmedo Negrete, M. I. Paneva, W. Si, L. Wang, H. Wei, S. Wimpenny, B. R. Yates

University of California, San Diego, La Jolla, USAJ. G. Branson, P. Chang, S. Cittolin, M. Derdzinski, R. Gerosa, D. Gilbert, B. Hashemi, A. Holzner, D. Klein, G. Kole,V. Krutelyov, J. Letts, M. Masciovecchio, S. May, D. Olivito, S. Padhi, M. Pieri, V. Sharma, M. Tadel, J. Wood,F. Würthwein, A. Yagil, G. Zevi Della Porta

University of California, Santa Barbara-Department of Physics, Santa Barbara, USAN. Amin, R. Bhandari, C. Campagnari, M. Citron, V. Dutta, M. Franco Sevilla, L. Gouskos, R. Heller, J. Incandela,H. Mei, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, S. Wang, J. Yoo

California Institute of Technology, Pasadena, USAD. Anderson, A. Bornheim, J. M. Lawhorn, N. Lu, H. B. Newman, T. Q. Nguyen, J. Pata, M. Spiropulu, J. R. Vlimant,R. Wilkinson, S. Xie, Z. Zhang, R. Y. Zhu

Carnegie Mellon University, Pittsburgh, USAM. B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, M. Sun, I. Vorobiev, M. Weinberg

University of Colorado Boulder, Boulder, USAJ. P. Cumalat, W. T. Ford, F. Jensen, A. Johnson, E. MacDonald, T. Mulholland, R. Patel, A. Perloff, K. Stenson,K. A. Ulmer, S. R. Wagner

Cornell University, Ithaca, USAJ. Alexander, J. Chaves, Y. Cheng, J. Chu, A. Datta, K. Mcdermott, N. Mirman, J. R. Patterson, D. Quach, A. Rinkevicius,A. Ryd, L. Skinnari, L. Soffi, S. M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek

Fermi National Accelerator Laboratory, Batavia, USAS. Abdullin, M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L. A. T. Bauerdick, A. Beretvas,J. Berryhill, P. C. Bhat, K. Burkett, J. N. Butler, A. Canepa, G. B. Cerati, H. W. K. Cheung, F. Chlebana, M. Cremonesi,J. Duarte, V. D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon,R. M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima,M. J. Kortelainen, B. Kreis, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, J. Lykken, K. Maeshima, J. M. Marraffino,D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O’Dell, K. Pedro, C. Pena, O. Prokofyev, G. Rakness, F. Ravera,A. Reinsvold, L. Ristori, A. Savoy-Navarro68, B. Schneider, E. Sexton-Kennedy, A. Soha, W. J. Spalding, L. Spiegel,S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N. V. Tran, L. Uplegger, E. W. Vaandering, C. Vernieri,M. Verzocchi, R. Vidal, M. Wang, H. A. Weber, A. Whitbeck

University of Florida, Gainesville, USAD. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerhoff, L. Cadamuro, A. Carnes, D. Curry, R. D. Field,S. V. Gleyzer, B. M. Joshi, J. Konigsberg, A. Korytov, K. H. Lo, P. Ma, K. Matchev, G. Mitselmakher, D. Rosenzweig,K. Shi, D. Sperka, J. Wang, S. Wang, X. Zuo

123

Page 21: Measurements of triple-differential cross sections for …...of the ECAL for unconverted photons (photons that did not convert to electrons before reaching the ECAL) in the tens of

Eur. Phys. J. C (2019) 79 :969 Page 21 of 24 969

Florida International University, Miami, USAY. R. Joshi, S. Linn

Florida State University, Tallahassee, USAA. Ackert, T. Adams, A. Askew, S. Hagopian, V. Hagopian, K. F. Johnson, T. Kolberg, G. Martinez, T. Perry, H. Prosper,A. Saha, C. Schiber, R. Yohay

Florida Institute of Technology, Melbourne, USAM. M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, M. Rahmani, T. Roy, M. Saunders,F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USAM. R. Adams, L. Apanasevich, D. Berry, R. R. Betts, R. Cavanaugh, X. Chen, S. Dittmer, O. Evdokimov, C. E. Gerber,D. A. Hangal, D. J. Hofman, K. Jung, J. Kamin, C. Mills, M. B. Tonjes, N. Varelas, H. Wang, X. Wang, Z. Wu, J. Zhang

The University of Iowa, Iowa City, USAM. Alhusseini, B. Bilki69, W. Clarida, K. Dilsiz70, S. Durgut, R. P. Gandrajula, M. Haytmyradov, V. Khristenko,J.-P. Merlo, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul71, Y. Onel, F. Ozok72, A. Penzo, C. Snyder, E. Tiras,J. Wetzel

Johns Hopkins University, Baltimore, USAB. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A. V. Gritsan, W. T. Hung, P. Maksimovic, J. Roskes,U. Sarica, M. Swartz, M. Xiao

The University of Kansas, Lawrence, USAA. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, A. Bylinkin, J. Castle, S. Khalil, A. Kropivnitskaya,D. Majumder, W. Mcbrayer, M. Murray, C. Rogan, S. Sanders, E. Schmitz, J. D. Tapia Takaki, Q. Wang

Kansas State University, Manhattan, USAS. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, D. R. Mendis, T. Mitchell, A. Modak, A. Mohammadi

Lawrence Livermore National Laboratory, Livermore, USAF. Rebassoo, D. Wright

University of Maryland, College Park, USAA. Baden, O. Baron, A. Belloni, S. C. Eno, Y. Feng, C. Ferraioli, N. J. Hadley, S. Jabeen, G. Y. Jeng, R. G. Kellogg,J. Kunkle, A. C. Mignerey, S. Nabili, F. Ricci-Tam, M. Seidel, Y. H. Shin, A. Skuja, S. C. Tonwar, K. Wong

Massachusetts Institute of Technology, Cambridge, USAD. Abercrombie, B. Allen, V. Azzolini, A. Baty, R. Bi, S. Brandt, W. Busza, I. A. Cali, M. D’Alfonso, Z. Demiragli,G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, Y. Iiyama, G. M. Innocenti, M. Klute, D. Kovalskyi,Y.-J. Lee, P. D. Luckey, B. Maier, A. C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, D. Rankin,C. Roland, G. Roland, Z. Shi, G. S. F. Stephans, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T. W. Wang, B. Wyslouch

University of Minnesota, Minneapolis, USAA. C. Benvenuti†, R. M. Chatterjee, A. Evans, P. Hansen, J. Hiltbrand, Sh. Jain, S. Kalafut, M. Krohn, Y. Kubota, Z. Lesko,J. Mans, R. Rusack, M. A. Wadud

University of Mississippi, Oxford, USAJ. G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USAE. Avdeeva, K. Bloom, D. R. Claes, C. Fangmeier, F. Golf, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko,J. Monroy, J. E. Siado, G. R. Snow, B. Stieger

State University of New York at Buffalo, Buffalo, USAA. Godshalk, C. Harrington, I. Iashvili, A. Kharchilava, C. Mclean, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbahani

123

Page 22: Measurements of triple-differential cross sections for …...of the ECAL for unconverted photons (photons that did not convert to electrons before reaching the ECAL) in the tens of

969 Page 22 of 24 Eur. Phys. J. C (2019) 79 :969

Northeastern University, Boston, USAG. Alverson, E. Barberis, C. Freer, Y. Haddad, A. Hortiangtham, G. Madigan, D. M. Morse, T. Orimoto,A. Tishelman-charny, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood

Northwestern University, Evanston, USAS. Bhattacharya, J. Bueghly, O. Charaf, T. Gunter, K. A. Hahn, N. Odell, M. H. Schmitt, K. Sung, M. Trovato, M. Velasco

University of Notre Dame, Notre Dame, USAR. Bucci, N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D. J. Karmgard, K. Lannon, W. Li, N. Loukas,N. Marinelli, F. Meng, C. Mueller, Y. Musienko38, M. Planer, R. Ruchti, P. Siddireddy, G. Smith, S. Taroni, M. Wayne,A. Wightman, M. Wolf, A. Woodard

The Ohio State University, Columbus, USAJ. Alimena, L. Antonelli, B. Bylsma, L. S. Durkin, S. Flowers, B. Francis, C. Hill, W. Ji, T. Y. Ling, W. Luo, B. L. Winer

Princeton University, Princeton, USAS. Cooperstein, P. Elmer, J. Hardenbrook, N. Haubrich, S. Higginbotham, A. Kalogeropoulos, S. Kwan, D. Lange,M. T. Lucchini, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, J. Salfeld-Nebgen, D. Stickland,C. Tully

University of Puerto Rico, Mayaguez, USAS. Malik, S. Norberg

Purdue University, West Lafayette, USAA. Barker, V. E. Barnes, S. Das, L. Gutay, M. Jones, A. W. Jung, A. Khatiwada, B. Mahakud, D. H. Miller, N. Neumeister,C. C. Peng, S. Piperov, H. Qiu, J. F. Schulte, J. Sun, F. Wang, R. Xiao, W. Xie

Purdue University Northwest, Hammond, USAT. Cheng, J. Dolen, N. Parashar

Rice University, Houston, USAZ. Chen, K. M. Ecklund, S. Freed, F. J. M. Geurts, M. Kilpatrick, Arun Kumar, W. Li, B. P. Padley, R. Redjimi, J. Roberts,J. Rorie, W. Shi, Z. Tu, A. Zhang

University of Rochester, Rochester, USAA. Bodek, P. de Barbaro, R. Demina, Y. T. Duh, J. L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han,O. Hindrichs, A. Khukhunaishvili, E. Ranken, P. Tan, R. Taus

Rutgers, The State University of New Jersey, Piscataway, USAB. Chiarito, J. P. Chou, Y. Gershtein, E. Halkiadakis, A. Hart, M. Heindl, E. Hughes, S. Kaplan,R. Kunnawalkam Elayavalli, S. Kyriacou, I. Laflotte, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur,S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen

University of Tennessee, Knoxville, USAA. G. Delannoy, J. Heideman, G. Riley, S. Spanier

Texas A & M University, College Station, USAO. Bouhali73, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang,T. Kamon74, S. Luo, D. Marley, R. Mueller, D. Overton, L. Perniè, D. Rathjens, A. Safonov

Texas Tech University, Lubbock, USAN. Akchurin, J. Damgov, F. De Guio, P. R. Dudero, S. Kunori, K. Lamichhane, S. W. Lee, T. Mengke, S. Muthumuni,T. Peltola, S. Undleeb, I. Volobouev, Z. Wang

Vanderbilt University, Nashville, USAS. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, F. Romeo, J. D. Ruiz Alvarez,P. Sheldon, S. Tuo, J. Velkovska, M. Verweij, Q. Xu

123

Page 23: Measurements of triple-differential cross sections for …...of the ECAL for unconverted photons (photons that did not convert to electrons before reaching the ECAL) in the tens of

Eur. Phys. J. C (2019) 79 :969 Page 23 of 24 969

University of Virginia, Charlottesville, USAM. W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, Y. Wang,E. Wolfe, F. Xia

Wayne State University, Detroit, USAR. Harr, P. E. Karchin, N. Poudyal, J. Sturdy, P. Thapa, S. Zaleski

University of Wisconsin-Madison, Madison, WI, USAJ. Buchanan, C. Caillol, D. Carlsmith, S. Dasu, I. De Bruyn, L. Dodd, B. Gomber75, M. Grothe, M. Herndon, A. Hervé,U. Hussain, P. Klabbers, A. Lanaro, K. Long, R. Loveless, T. Ruggles, A. Savin, V. Sharma, N. Smith, W. H. Smith,N. Woods

† Deceased

1: Also at Vienna University of Technology, Vienna, Austria2: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France3: Also at Universidade Estadual de Campinas, Campinas, Brazil4: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil5: Also at Université Libre de Bruxelles, Bruxelles, Belgium6: Also at University of Chinese Academy of Sciences, Beijing, China7: Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’,

Moscow, Russia8: Also at Joint Institute for Nuclear Research, Dubna, Russia9: Also at Fayoum University, El-Fayoum, Egypt

10: Now at British University in Egypt, Cairo, Egypt11: Now at Helwan University, Cairo, Egypt12: Also at Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia13: Also at Université de Haute Alsace, Mulhouse, France14: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia15: Also at Tbilisi State University, Tbilisi, Georgia16: Also at Ilia State University, Tbilisi, Georgia17: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland18: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany19: Also at University of Hamburg, Hamburg, Germany20: Also at Brandenburg University of Technology, Cottbus, Germany21: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary22: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary23: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary24: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India25: Also at Institute of Physics, Bhubaneswar, India26: Also at Shoolini University, Solan, India27: Also at University of Visva-Bharati, Santiniketan, India28: Also at Isfahan University of Technology, Isfahan, Iran29: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran30: Also at ITALIAN NATIONAL AGENCY FOR NEW TECHNOLOGIES, ENERGY AND SUSTAINABLE ECONOMIC

DEVELOPMENT, Bologna, Italy31: Also at Università degli Studi di Siena, Siena, Italy32: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy33: Also at Kyung Hee University, Department of Physics, Seoul, Korea34: Also at International Islamic University, of Malaysia, Kuala Lumpur, Malaysia35: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia36: Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico37: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland38: Also at Institute for Nuclear Research, Moscow, Russia39: Now at National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia

123

Page 24: Measurements of triple-differential cross sections for …...of the ECAL for unconverted photons (photons that did not convert to electrons before reaching the ECAL) in the tens of

969 Page 24 of 24 Eur. Phys. J. C (2019) 79 :969

40: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia41: Also at University of Florida, Gainesville, USA42: Also at P.N. Lebedev Physical Institute, Moscow, Russia43: Also at California Institute of Technology, Pasadena, USA44: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia45: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia46: Also at INFN Sezione di Pavia a , Università di Pavia b, Pavia, Italy47: Also at University of Belgrade, Belgrade, Serbia48: Also at National and Kapodistrian University of Athens, Athens, Greece49: Also at Riga Technical University, Riga, Latvia50: Also at Universität Zürich, Zurich, Switzerland51: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria52: Also at Adiyaman University, Adiyaman, Turkey53: Also at Istanbul Aydin University, Istanbul, Turkey54: Also at Mersin University, Mersin, Turkey55: Also at Piri Reis University, Istanbul, Turkey56: Also at Ozyegin University, Istanbul, Turkey57: Also at Izmir Institute of Technology, Izmir, Turkey58: Also at Marmara University, Istanbul, Turkey59: Also at Kafkas University, Kars, Turkey60: Also at Istanbul University, Istanbul, Turkey61: Also at Istanbul Bilgi University, Istanbul, Turkey62: Also at Hacettepe University, Ankara, Turkey63: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom64: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom65: Also at Monash University, Faculty of Science, Clayton, Australia66: Also at Bethel University, St. Paul, USA67: Also at Karamanoglu Mehmetbey University, Karaman, Turkey68: Also at Purdue University, West Lafayette, USA69: Also at Beykent University, Istanbul, Turkey70: Also at Bingol University, Bingol, Turkey71: Also at Sinop University, Sinop, Turkey72: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey73: Also at Texas A&M University at Qatar, Doha, Qatar74: Also at Kyungpook National University, Daegu, Korea75: Also at University of Hyderabad, Hyderabad, India

123