29
High-Fluence Blazars as Possible PeV Neutrino Sources: Synergies with MeV Roopesh Ojha for the LAT and TANAMI Collaborations M. Kadler, K. Mannheim, F. Krauß (arXiv:1602.02012)X

MeV Gamma-ray Neutrinos Synergy

Embed Size (px)

Citation preview

Page 1: MeV Gamma-ray Neutrinos Synergy

High-Fluence Blazars as Possible PeV Neutrino Sources: Synergies

with MeV

Roopesh Ojha

for the LAT and TANAMI Collaborations

M. Kadler, K. Mannheim, F. Krauß

(arXiv:1602.02012)X

Page 2: MeV Gamma-ray Neutrinos Synergy
Page 3: MeV Gamma-ray Neutrinos Synergy
Page 4: MeV Gamma-ray Neutrinos Synergy
Page 5: MeV Gamma-ray Neutrinos Synergy

Take Home Message

•  Integrated flux of FSRQs can explain the IceCube signal

•  First time that a single blazar can explain an individual PeV neutrino (~5% chance coincidence)

•  The MeV flux is the best proxy for the neutrino flux

Page 6: MeV Gamma-ray Neutrinos Synergy

Evidence of High-Energy Extraterrestrial Neutrinos

IceCube Collaboration 2013; Aartsen et al. 2014

Page 7: MeV Gamma-ray Neutrinos Synergy

E~1.1PeV

E~1.0PeV E~2PeV

IceCube Collaboration 2013; Aartsen et al. 2014

Strong Signal of PeV-Energy Extraterrestrial Neutrinos

Page 8: MeV Gamma-ray Neutrinos Synergy

Astrophysical Sources Inside the PeV-Neutrino Fields

Median pos. uncertainty of 2PeV event: 15.9deg

111 known γ-ray point

sources:

•  53 unidentified •  23 Galactic

•  35 extragalactic

2LAC AGN:

•  1 SB, 2 RGs •  17 blazars

Page 9: MeV Gamma-ray Neutrinos Synergy

Basic Model: Photopion Production in Blazar Jets

UV seed photons:

ε~30eV

Rel. protons (jet)

Energy threshold: ~2PeV

Neutrino Spectrum (Γ~10)

100TeV 10 PeV

~1 PeV

For details, see Krauß et al. 2014

Neutrino Spectrum

(Γ~10, θ varies)

100TeV 10 PeV

~1 PeV

For details, see Krauß et al. 2014

Page 10: MeV Gamma-ray Neutrinos Synergy

Integration

Maximum Neutrino Output

è need high-fluence!

Mannheim & Biermann 1998 Mücke et al. 2000

Page 11: MeV Gamma-ray Neutrinos Synergy

Multiwavelength Monitoring of ~90 AGN Jets South of

-30◦

Includes the radio- and γ-ray brightest AGN in the IceCube PeV

neutrino fields

Page 12: MeV Gamma-ray Neutrinos Synergy

R50 confidence region of HESE-35 (BigBird)

•  Median pos. uncertainty: 15.9deg ⇒ 17 gamma blazars

(2LAC) + EGB

•  Compiled and integrated all SEDs

–  Prediction: 13 events

•  Use this field to determine empirical scaling factor:

Page 13: MeV Gamma-ray Neutrinos Synergy

100TeV 10 PeV

~1 PeV

0.5 Nmax

Flavor Corrected

Theoretical Scaling Factor

Things to consider: 1.  Different neutrino flavors 2.  UV seed photons needed (FSRQs) 3.  PeV peaks might be smeared out to

~(0.03-10)PeV Ø  100TeV 10 PeV

~1 PeV

0.25 Nmax

FSRQ Fraction

100TeV 10 PeV

~1 PeV

0.0125 Nmax

Predicted

100TeV 10 PeV

~1 PeV

Nmax

Maximum

Page 14: MeV Gamma-ray Neutrinos Synergy

Major Radio Outburst: •  Radio core flux density increased from 1.5Jy to

6Jy in late 2012 to early 2013 •  Strongest outburst ever seen by TANAMI

Calorimetric Output in BigBird field dominated by a single source:

PKS B1424-418

Page 15: MeV Gamma-ray Neutrinos Synergy

Gamma Outburst coincident with BigBird arrival time

Calorimetric Output in BigBird field dominated by a single source:

PKS B1424-418

Page 16: MeV Gamma-ray Neutrinos Synergy

SED: High state over months è High fluence

Calorimetric Output in BigBird field dominated by a single source:

PKS B1424-418

Page 17: MeV Gamma-ray Neutrinos Synergy

Calorimetric Output in BigBird field dominated by a single source:

PKS B1424-418

Poisson probability: ~11%

9-month outburst yields highest predicted neutrino count:

Page 18: MeV Gamma-ray Neutrinos Synergy

Chance Coincidence?

Most dramatic blazar outburst of the (far) southern

sky

Highest-energy neutrino (seen in the southern sky)

~5%

Calorimetric Output in BigBird field dominated by a single source:

PKS B1424-418

Page 19: MeV Gamma-ray Neutrinos Synergy

Summary

•  Integrated flux of FSRQs can explain the IceCube PeV signal

•  First time that a single blazar can explain an individual PeV neutrino (~11% detection probability; 5% chance coincidence)

•  Association expected for ~50% of all PeV events

Page 20: MeV Gamma-ray Neutrinos Synergy

Synergy with MeV: “Classical” Argument

•  Most powerful sources have their emission maximum in the MeV range (Dave T.)

•  Measuring and modeling their SED in this range vital to constrain emission models.

Page 21: MeV Gamma-ray Neutrinos Synergy

Synergy with MeV: “Neutrino” Argument

•  Our model: FSRQ neutrino spectra should have a strong peak in the PeV range

•  FSRQ flux should be proportional to the integrated keV through GeV EM flux

•  The MeV range is the central piece of this interval and is where the SED maximum is located

⇒ MeV flux is the best proxy for the neutrino flux

Page 22: MeV Gamma-ray Neutrinos Synergy

Polarization •  Only hadronic models predict neutrinos and

high polarization in the MeV band

Page 23: MeV Gamma-ray Neutrinos Synergy

EM

Neutrino

Grav. Waves

Page 24: MeV Gamma-ray Neutrinos Synergy
Page 25: MeV Gamma-ray Neutrinos Synergy

Take Home Message

•  Integrated flux of FSRQs can explain the IceCube signal

•  First time that a single blazar can explain an individual PeV neutrino (~5% chance coincidence)

•  The MeV flux is the best proxy for the neutrino flux

Page 26: MeV Gamma-ray Neutrinos Synergy

BACKUP!

Page 27: MeV Gamma-ray Neutrinos Synergy

Could We Prove Blazar Population from 22(+15) Gamma Photons?

•  Pick 22 random gamma-ray photons •  Add 15 random-position fake events

Credit: LAT collaboration

Page 28: MeV Gamma-ray Neutrinos Synergy

•  Merge and treat them like the IceCube events (with appropriate LAT PSF for each event’s energy)

Could We Prove Blazar Population from 22(+15) Gamma Photons?

•  Slight preference for Gal. plane; consistent with isotropy •  Slight preference for Gal. plane; consistent with isotropy Ø  Only one coincidence with a bright blazar: 3C454.3

Aartsen et al. 2014

Page 29: MeV Gamma-ray Neutrinos Synergy

Pion Photoproduction

1.  Assume presence of accelerated protons (hadronic jet models)

2.  Pion photoproduction 3.  Estimate neutrino flux from

bolometric high-energy flux