MIT16_07F09_Lec02

Embed Size (px)

DESCRIPTION

sasafdsdadsa

Citation preview

  • 5/25/2018 MIT16_07F09_Lec02

    1/9

    S.Widnall16.07Dynamics

    Fall2009Version1.0

    LectureL2- DegreesofFreedomandConstraints,RectilinearMotion

    DegreesofFreedomDegreesoffreedomreferstothenumberofindependentspatialcoordinatesthatmustbespecifiedtodeterminethe positionofabody. Ifthebody isapointmass, onlythree coordinates arerequiredto determineitsposition. Ontheotherhand,ifthebodyisextended,suchasanaircraft,threepositioncoordinatesandthreeangularcoordinatesarerequiredtocompletelyspecify itspositionandorientationinspace.

    KinematicConstraintsInmanysituationsthenumberofindependentcoordinateswillbereducedbelowthisnumber,eitherbecausethe numberofspacial dimensions is reduced or because there are relationshipsspecified among thespatialcoordinates. Whensettingupproblemsforsolutionitisusefultothinkoftheserelationshipsasconstraints.For example, if a point mass is constrained to move in a plane (two dimensions) the number of spatialcoordinatesnecessarytodescribeitsmotionistwo. Ifinsteadofbeingapointmass,thisbodyhasextendeddimensions,suchasaflatplateconfinedtoaplane,itrequiresthreecoordinatestospecify itspositionandorientation: twopositioncoordinatesandoneangularcoordinate.

    1

  • 5/25/2018 MIT16_07F09_Lec02

    2/9

    If a particle is confined to move on acurve ineither two or three dimensions, suchas a bead moving on awire,thenumberofindependentcoordinatesnecessarytodescribeitsmotion isone.

    Anothersource

    of

    constraints

    on

    the

    motion

    of

    particles

    is

    connections

    between

    them.

    For

    example,

    the

    two

    particleconnectedbyacablepassingoverapulleyareconstrainedtomoveinequalandoppositedirections.More complex arrangements are possible and can be analyzed using these ideas. Two gears in contact areconstraintomovetogetheraccordingtotheir individualgeometry.

    Acylinderrollingonaplaneisconstrainedintwoways. Contactwiththeplanereducesthetwo-dimensionalmotion to one spatial coordinate along the plane, and the constraint of rolling provides a relationship betweentheangularcoordinatesandthespatialposition,resulting inasingledegreeoffreedomsystem.

    2

  • 5/25/2018 MIT16_07F09_Lec02

    3/9

    InternalForce-BalanceConstraintsAnother type of constraint occurs when we consider the of a system of particles and the necessary forcebalancethatoccursbetweentheparts. TheseconstraintsfollowdirectlyfromNewtonsthirdlaw: theforceofactionandreactionbetweentwobodiesareequalinmagnitudeandoppositeindirection. Wewillpursuethese ideas in greater depth later in the course. For now, we will give a simple example to illustrate theprinciple.Considerthesystemsshownina)andb).

    Systema)consists oftwo massesm incontactrestingona frictionlessplane inthepresence ofgravity. AforceF is applied to mass 1, and it is obvious that the two masses will accelerate at a =F/(2m). If welookatthetwomassesseparately,wecandeterminewhat internal forcemustexistbetweenthemtocausethe motion. It is clear that each mass feels a net force ofF/2, since its acceleration is a=F/(2m). Thisnetforcearisesbecausebetweenthetwomassesthere isanequalandopposite forceF/2actingacrosstheinterface. Anotherwaytolookatthisisthattheinterfacebetweenthebodiesisabodyofzeromass,andthereforecanhavenonetforceactinguponitotherwise itsaccelerationwouldbeinfinite.Systemb) is a bit more complex, primarily because the forces between one mass and the mass above itare shear forcesand must besuppliedby friction. Assumingthatthe frictioncoefficient is largeenough toacceleratethethreemassesanequalamountgivenbya=F/(3m),bythereasoningwehavediscussed,theforce balance is as sketched inb): equal and opposite normal forcesF 2/3 on the vertical surfaces, andequalandoppositeshearforcesF1/3onthehorizontalsurfaces.RectilinearMotionInmanycasewecangetanexactexpressionforthepositionofaparticleasafunctionoftime. Westartbyconsideringthe simple motion of aparticle along astraight line. Thepositionof particle Aatany instantcanbespecifiedbythecoordinateswithoriginatsomefixedpointO.

    3

  • 5/25/2018 MIT16_07F09_Lec02

    4/9

    Theinstantaneousvelocityisds

    v= =v . (1)dt

    We willbeusingthe dot notation, to indicate time derivative, e.g. ()d/dt. Here, apositive v meansthattheparticle ismovinginthedirectionof increasings,whereasanegativev, indicatesthattheparticleismovingintheoppositedirection. Theacceleration is

    dv d2sa= =v = = s . (2)

    dt dt2The above expression allows us to calculate the speed and the acceleration if s and/or v are given as afunctionoft,i.e. s(t)andv(t). Inmostcaseshowever,wewillknowtheaccelerationandthen,thevelocityandthepositionwillhavetobedeterminedfromtheaboveexpressionsbyintegration.

    Determiningthevelocity fromtheaccelerationFrom a(t)Iftheaccelerationisgivenasafunctionoft,a(t),thenthevelocitycanbedeterminedbysimpleintegrationofequation(2), t

    v(t) =v0 + a(t)dt. (3)t0

    Here,v0 isthevelocityattimet0,which isdeterminedbythe initialconditions.From a(v)Iftheaccelerationisgivenasafunctionofvelocitya(v),then,wecanstilluseequation(2),butinthiscasewewillsolveforthetimeasafunctionofvelocity,

    v dvt(v) =t0 + . (4)

    a(v)v0Once the relationship t(v) has been obtained, we can, in principle, solve for the velocity to obtain v(t).A typical example in which the acceleration is known as a function of velocity is when aerodynamic dragforcesarepresent. Dragforcescauseanaccelerationwhichopposesthemotionand istypicallyoftheforma(v)

    v2 (the sign meansproportional to, that is, a(v) =v2 for some , which is not a function ofvelocity).From a(s)Whenthe acceleration isgivenas a function of s then, we needtouse a combinationof equations (1) and(2),tosolvetheproblem. From

    dv dv ds dva=

    dt = ds dt =v ds (5)4

  • 5/25/2018 MIT16_07F09_Lec02

    5/9

    wecanwriteads=vdv . (6)

    Thisequationcannowbeusedtodeterminev asafunctionofs,

    v2

    (s)=

    v20 +2

    ss0 a(s)

    ds

    .

    (7)

    where,v0,isthevelocityoftheparticleatpoints0. Here,wehaveusedthefactthat,v v 2 2 2

    vdv= d(v2

    ) = v2

    v

    20 .v0 v0Aclassicalexampleofanaccelerationdependentonthespatialcoordinates,isthatinducedbyadeformedlinearspring. Inthiscase,theacceleration isoftheforma(s)s.Of course, when the acceleration is constant, any of the above expressions (3, 4, 7), can be employed. Inthiscaseweobtain,

    v=v0 +a(tt0), or v2 =v02 + 2a(ss0).Ifa=g,thisreducestothefamiliar

    v=v0 +g(tt0), or v2 =v02 + 2g(ss0) .

    Determiningtheposition fromthevelocityOnce we know the velocity, the position can be found by integrating ds = vdt from equation (1). Thus,whenthevelocityisknownasafunctionoftimewehave, t

    s=s0 + v(t)dt. (8)t0

    Ifthevelocityisknownasafunctionofposition,thens ds

    t=t0 + . (9)v(s)s0

    Here,s0 isthepositionattimet0.It isworthpointingoutthatequation(6),canalsobeusedtoderiveanexpressionforv(s),givena(v),

    s vv

    ss0 = ds= a(v)dv . (10)s0 v0This equation canbeused wheneverequation(4) isapplicable and gives v(s) insteadof t(v). For thecaseofconstantacceleration,eitherofequations(8,9),canbeusedtoobtain,

    1s=s0 +v0(tt0) + a(tt0)2 .

    2

    5

  • 5/25/2018 MIT16_07F09_Lec02

    6/9

    Inmanypracticalsituations,itmaynotbepossibletocarryouttheaboveintegrationsanalyticallyinwhichcase,numerical integration isrequired. Usually,numerical integrationwillalsoberequiredwheneitherthevelocityortheaccelerationdependonmorethanonevariable,i.e. v(s, t),or,a(s, v).

    Example

    Reentry,Ballistic

    Coefficient,

    Terminal

    Velocity

    TerminalVelocityTerminal velocity occurs when the acceleration becomes zero and the velocity Consider an air-droppedpayloadstartingfromrest. Theforceonthebodyisacombinationofgravityandairdragandhastheform

    1F =mg v2 (11)CDA

    2ApplyingNewtons lawandsolvingfortheaccelerationaweobtain

    a=g2

    1v2CD

    mA

    (12)Thequantity CDmA characterizes the combined effect of bodyshape and mass on the acceleration; it isanimportantparameterinthestudyofreentry;itiscalledtheBallisticCoefficient. Itisdefinedas= CDmA.Unlikemanycoefficientsthatappearinaerospaceproblems,theBallisticCoefficientisnotnon-dimensional,buthasunitsofmass/length2 orkg/meters2 inmksunits. Also,insomeapplications,theballisticcoefficientisdefinedastheinverse,B= CDmA,so itpaystobecareful initsapplication. Equation13thenbecomes

    1a=g v2/ (13)

    2Terminalvelocityoccurswhentheforceofgravityequalsthedragontheobjectresultinginzeroacceleration.Thisbalancegivestheterminalvelocityas

    vterminal = 2gm

    CDA =2g

    (14)For the Earth, atmospheric density at sea level is = 1.225kg/m3; we shall deal with the variation ofatmosphericdensitywithaltitudewhenweconsideratmosphericreentryofspacevehicles. Typicalvalueof rangefrom=1(AssumingCD =.5,atennisballhas=35.) to=1000forareentryvehicle. Asanexample,consideratypicalcaseof=225,wherethevariousparametersthengivethefollowingexpressionfortheacceleration

    a=g0.002725v2m/s.Here g = 9.81m/s2, is the acceleration due to gravity andv isthe downwardvelocity. It is clear fromthisexpressionthatinitiallytheaccelerationwillbeg. Therefore,thevelocitywillstarttoincreaseandkeeponincreasinguntila=0,atwhichpointthevelocitywillstayconstant. Theterminalvelocityisthengivenby,

    0 =g0.002725v2 or vf =60m/s .f

    6

  • 5/25/2018 MIT16_07F09_Lec02

    7/9

    Todeterminethevelocityasafunctionoftime,theaccelerationcanbere-writtenintroducingtheterminalvelocityas,a=g(1(v/vf)2) . Wethenuseexpression(4),andwrite

    1 v dv 1 v 1/2 1/2 vf vf +vt= = ( + )d v= ln .

    g 0 1(v/vf)2 g 0 1 + (v/vf) 1(v/vf) 2g vfvSolvingforv weobtain, 2gt/vf

    v=vf e2gt/vf

    1m/s.

    e + 1Wecaneasilyverifythat for larget,v=vf. Wecanalsofindouthow longdoes ittakeforthepayloadtoreach,say,95%oftheterminalvelocity,

    vf 1.95t= ln = 11.21s .

    2g 0.05To obtain an expression for the velocity as a function of the traveled distance we can use expression (10)andwrite

    v 21 v dv vs= g 1(v/vf)2 =2

    fgln(1(v/vf)2).0

    Solvingforv weobtain v=vf 1e2gs/v2 m/s .f

    We see that for, say, v = 0.95vf, s = 427.57m. This is the distance traveled by the payload in 11.21s,whichcanbecomparedwiththedistancethatwouldbetraveledinthesametime ifweweretoneglectairresistance,sno drag =gt2/2=615.75m.

    Example Spring-masssystemHere, we consider a mass allowed to move without friction on a horizontal slider and subject to the forceexertedbyalinearspring. Initiallythesystemisinequilibrium(noforceonthespring)ats=0. Suddenly,themass isgivenavelocityv0 andthen thesystem is left freeto oscillate. Weknow that the effectofthespring istocauseanaccelerationtothebody,opposingthemotion,oftheforma=s,where >0 isaconstant.

    Usingequation(7),wehavev2 =v

    0

    2s2 .Thedisplacementcannowbeobtainedusingexpression(9),

    s ds 1 st= = arcsin ,

    20 v0s2 v0

    7

  • 5/25/2018 MIT16_07F09_Lec02

    8/9

    whichgives,s=v0

    sin

    t .Finally,thevelocityasafunctionoftime issimply,v=v0cost. Werecognizethismotionasthatofanundampedharmonicoscillator.

    References[1] R.Dugas, AHistoryofMechanics,Dover,1988.

    ADDITIONALREADINGJ.L.MeriamandL.G.Kraige,EngineeringMechanics,DYNAMICS,5thEdition

    1/1,1/2,1/3,1/4,1/5(EffectorAltitudeonly),1/6,1/7,3/2

    8

  • 5/25/2018 MIT16_07F09_Lec02

    9/9

    MIT OpenCourseWarehttp://ocw.mit.edu

    16.07 Dynamics

    Fall 2009

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/