18
Modeling of structure Modeling of structure formation processes in formation processes in explosion welding explosion welding of large-size multilayer of large-size multilayer materials materials Rozen Rozen A.E. A.E. Muyzemnek Muyzemnek A.Y. A.Y. Zhuravlyov Zhuravlyov E.A. E.A. Los Los I.S. I.S. Vorobyov E.V. Vorobyov E.V. Rozen Rozen A.A. A.A. 1 EPNM-2012 Strasbourg PENZA STATE UNIVERSITY PENZA STATE UNIVERSITY , , Russia Russia E-mail: [email protected] Тел. (841-2)

Modeling of structure formation processes in explosion welding of large-size multilayer materials Rozen A.E. Muyzemnek A.Y. Zhuravlyov E.A. Los I.S. Vorobyov

Embed Size (px)

Citation preview

Page 1: Modeling of structure formation processes in explosion welding of large-size multilayer materials Rozen A.E. Muyzemnek A.Y. Zhuravlyov E.A. Los I.S. Vorobyov

Modeling of structure Modeling of structure formation processes in formation processes in

explosion weldingexplosion weldingof large-size multilayer of large-size multilayer

materialsmaterials

Rozen Rozen A.E.A.E. Muyzemnek Muyzemnek

A.Y. A.Y. Zhuravlyov Zhuravlyov

E.A. E.A. Los Los I.S.I.S.

Vorobyov E.V. Vorobyov E.V. Rozen Rozen A.A.A.A.

1

EPNM-2012Strasbourg

PENZA STATE UNIVERSITYPENZA STATE UNIVERSITY, , RussiaRussia

E-mail: [email protected]Тел. (841-2) 36-84-53

Page 2: Modeling of structure formation processes in explosion welding of large-size multilayer materials Rozen A.E. Muyzemnek A.Y. Zhuravlyov E.A. Los I.S. Vorobyov

2

EPNM-2012Strasbourg

1. Cowan G.R., Holzman A. Flow configuration in cojliting plates // J. Appl. Phys. 1963. – 34, № 4. – P. 928-939.

2. Wolsh J.M., Shreffler R.G., Willing E.J. Limiting condition for jet formation in high velocity collisions // I big. – 1953 - 24, № 3. – P. 349-359.

3. Абрахамсон Г.Р. Остаточные периодические деформации поверхности по действием перемешивающей струи // Тр. Амер. о-ва инж.-мех. Сер. Е. Прикладная механика. – 1961. – 28. – 28. - № 4. – С. 45-55.

4. Гордополов Ю.А., Дрёмин А.Н., Михайлов А.Н. К вопросу о волнообразовании при высокоскоростном соударении металлических тел // Тр. Амер. о-ва инж.-мех. Сер. Е. Прикладная механика. – 1977. – 13, № 2. – С. 288 – 291.

5. Дерибас А.А. Физика упрочнения и сварки взрывом. – 2- изд., доп. И перераб. – Новосибирск: Наука, 1980. – 222 с.

6. Bahrani A.S., Black T.I., Crossland B. The mechanics of wave formation in explosive welding // Proc. Roy. Soc. – 1967. – A296, № 1445. – P. 123-136.

7. Cowan G.R., Bergman O.R., Holizman F.H. Mechanism of bond zone wave formation in explosion-clad metals // Met. Trans. – 1971. - 2, № 11. – P. 3145 – 3155.

8. Klein W. The flow path in the contact zone in explosion welding // 3-rd Int. conf. of the center for high energy forming. Wail Colorado. – July, 1971. - 18 p.

9. Лысак В.И., Кузьмин С.В. Сварка взрывом. – М.: Машиностроение, 2005. – 512 с.

E-mail: [email protected]Тел. (841-2) 36-84-53

The basic publications on a themeThe basic publications on a theme

Page 3: Modeling of structure formation processes in explosion welding of large-size multilayer materials Rozen A.E. Muyzemnek A.Y. Zhuravlyov E.A. Los I.S. Vorobyov

The analysis of collision parameters in critical The analysis of collision parameters in critical modes of wave formation enabled to reveal modes of wave formation enabled to reveal the following features of the process:the following features of the process: for every fixed value of initial angle there is a critical

value of motion rate of a flyer, below which the waves cannot be formed (this value grows with increase of initial angle between the plates);

independent of initial angle for every combination of metals there is a certain critical value of a contact point velocity, below which the waves cannot be formed at all;

there is also a minimal value of motion rate of a flyer, below which the collision is, apparently, elastic;

wave formation takes place when the contact point velocity is less than velocity of sound in metals and the flow in moving coordinates is subsonic (having this condition met the waves are expected to be formed also in parallel positioning of plates, provided the detonation velocity of explosives applied is less than sound velocity).

3

EPNM-2012Strasbourg

E-mail: [email protected]Тел. (841-2) 36-84-53

Page 4: Modeling of structure formation processes in explosion welding of large-size multilayer materials Rozen A.E. Muyzemnek A.Y. Zhuravlyov E.A. Los I.S. Vorobyov

Multilayer composition of Al+Cu+AlMultilayer composition of Al+Cu+Al explosion welding schemaexplosion welding schema

4

EPNM-2012Strasbourg

E-mail: [email protected]Тел. (841-2) 36-84-53

Page 5: Modeling of structure formation processes in explosion welding of large-size multilayer materials Rozen A.E. Muyzemnek A.Y. Zhuravlyov E.A. Los I.S. Vorobyov

5 E-mail: [email protected]Тел. (841-2) 36-84-53

EPNM-2012StrasbourgExperiment resultsExperiment results

Page 6: Modeling of structure formation processes in explosion welding of large-size multilayer materials Rozen A.E. Muyzemnek A.Y. Zhuravlyov E.A. Los I.S. Vorobyov

6 E-mail: [email protected]Тел. (841-2) 36-84-53

EPNM-2012Strasbourg

Copper surfaceCopper surface

Page 7: Modeling of structure formation processes in explosion welding of large-size multilayer materials Rozen A.E. Muyzemnek A.Y. Zhuravlyov E.A. Los I.S. Vorobyov

7

EPNM-2012Strasbourg

E-mail: [email protected]Тел. (841-2) 36-84-53

Copper surfaceCopper surface

on the top on the bottom

Page 8: Modeling of structure formation processes in explosion welding of large-size multilayer materials Rozen A.E. Muyzemnek A.Y. Zhuravlyov E.A. Los I.S. Vorobyov

8

EPNM-2012Strasbourg

E-mail: [email protected]Тел. (841-2) 36-84-53

Copper surfaceCopper surface

α1

α2

Page 9: Modeling of structure formation processes in explosion welding of large-size multilayer materials Rozen A.E. Muyzemnek A.Y. Zhuravlyov E.A. Los I.S. Vorobyov

9

EPNM-2012Strasbourg

E-mail: [email protected]Тел. (841-2) 36-84-53

Asymmetric wave pattern Asymmetric wave pattern

Page 10: Modeling of structure formation processes in explosion welding of large-size multilayer materials Rozen A.E. Muyzemnek A.Y. Zhuravlyov E.A. Los I.S. Vorobyov

where peos- is the pressure from the state equation, V – is the volume fraction, E – is the internal energy density by a unit of initial volumeFraction of burnout F is determined by the following correlation

where

where VCJ – is the volume fraction of Chapman-Jouguet, t – is the current moment of time. If F is more than 1, this parameter is bound to value 1. In case of such calculation of the burnout fraction, the value F usually reaches 1 in several time steps, resulting in “blurred” front of burnout in some elements. After the value F reaches 1, it remains constant. Besides that, before detonation it is possible to consider the explosive material as elastic, perfectly plastic. In this case the researchers use test elastic stress as a new stress tensor.

10

E,VFpp еos

21,max FFF

0

3

2max1

1 e

eDAtt

F if

if

1

1

tt

tt

CJV

VF

1

12

The pressure in explosive elements The pressure in explosive elements

EPNM-2012Strasbourg

E-mail: [email protected]Тел. (841-2) 36-84-53

Page 11: Modeling of structure formation processes in explosion welding of large-size multilayer materials Rozen A.E. Muyzemnek A.Y. Zhuravlyov E.A. Los I.S. Vorobyov

Explosion welding schemaExplosion welding schema

EPNM-2012Strasbourg

E-mail: [email protected]Тел. (841-2) 36-84-53 11

Page 12: Modeling of structure formation processes in explosion welding of large-size multilayer materials Rozen A.E. Muyzemnek A.Y. Zhuravlyov E.A. Los I.S. Vorobyov

Explosion welding of three-Explosion welding of three-layers material. Numerical layers material. Numerical

simulation.simulation.

EPNM-2012Strasbourg

E-mail: [email protected]Тел. (841-2) 36-84-53 12

Page 13: Modeling of structure formation processes in explosion welding of large-size multilayer materials Rozen A.E. Muyzemnek A.Y. Zhuravlyov E.A. Los I.S. Vorobyov

13

Results of 2D modelingResults of 2D modelingAl+Cu+Al (2 + 2 +2)D = 1600 м/с The size of the 8 nodal volumetric element is 0,05 millimeters.

EPNM-2012Strasbourg

E-mail: [email protected]Тел. (841-2) 36-84-53

Page 14: Modeling of structure formation processes in explosion welding of large-size multilayer materials Rozen A.E. Muyzemnek A.Y. Zhuravlyov E.A. Los I.S. Vorobyov

Formation of a wave surfaceFormation of a wave surface

14

a) 26,6 mks

b) 27,6 mks

c) 29,6 mks

EPNM-2012Strasbourg

E-mail: [email protected]Тел. (841-2) 36-84-53

Page 15: Modeling of structure formation processes in explosion welding of large-size multilayer materials Rozen A.E. Muyzemnek A.Y. Zhuravlyov E.A. Los I.S. Vorobyov

15

EPNM-2012Strasbourg

E-mail: [email protected]Тел. (841-2) 36-84-53

Comparison of settlement and Comparison of settlement and experimental valuesexperimental values

Divergence – 27 %

Page 16: Modeling of structure formation processes in explosion welding of large-size multilayer materials Rozen A.E. Muyzemnek A.Y. Zhuravlyov E.A. Los I.S. Vorobyov

Thank you for attentionThank you for attention!!

16

EPNM-2012Strasbourg

E-mail: [email protected]Тел. (841-2) 36-84-53

Page 17: Modeling of structure formation processes in explosion welding of large-size multilayer materials Rozen A.E. Muyzemnek A.Y. Zhuravlyov E.A. Los I.S. Vorobyov

Resultant Resultant velocityvelocity

EPNM-2012Strasbourg

E-mail: [email protected]Тел. (841-2) 36-84-53 17

Page 18: Modeling of structure formation processes in explosion welding of large-size multilayer materials Rozen A.E. Muyzemnek A.Y. Zhuravlyov E.A. Los I.S. Vorobyov

Resultant Resultant pressurepressure

EPNM-2012Strasbourg

E-mail: [email protected]Тел. (841-2) 36-84-53 18