27
The correction of forecast errors based on MOS: The impact of initial condition and model errors S. Vannitsem Institut Royal Météorologique de Belgique Dresden, July 30, 2009

MOS forecasts: The role of model and initial condition errorsdswc09/CONTRIBUTIONS/... · Two sources of errors affecting the forecasts and the data assimilation process:-initial condition

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • The correction of forecast errorsbased on MOS: The impact of

    initial condition and model errors

    S. Vannitsem

    Institut Royal Météorologique de Belgique

    Dresden, July 30, 2009

  • Outline

    1. Introduction2. The MOS technique3. The role of initial and model errors: a dynamical view4. Analysis of operational forecasts5. A unified MOS scheme for deterministic AND ensemble forecasts:

    EVMOS6. Conclusions and perspectives

  • The quality of atmospheric forecasts decreases as a function of time

    NCEP ensemble forecasts

  • Model error dynamics

    Eta model runs withTwo different convectiveschemes

    0.0001

    0.001

    0.01

    0.1

    1

    10

    0 2 4 6 8 10 12

    Mea

    n sq

    uare

    err

    or

    Time (hours)

    Kain-Fritch vs Betts-Miller-Janjic convective scheme

    U 500 hPaV 500 hPaU 850 hPaV 850 hPalinearquadratic

  • Two sources of errors affecting the forecasts and the data assimilation process:

    -initial condition errors-model errors

    See C. Nicolis, Rui A. P. Perdigao, and S. Vannitsem Dynamics of Prediction Errors under the Combined Effect of Initial Condition and Model Errors, Journal of the Atmospheric Sciences , 66, 766–778, 2009.

    How can we improve the forecast quality (Besides the improvement of the modeland the observational system)?

    Use of techniques to post-process the forecasts in order to improve their quality.

    What is corrected by the post-processing method?

  • The Model Output Statistics technique

    • ‘Deterministic’ approach: Linear techniques (Classical MOS, perfectprog), adaptative Kalman filtering. Ref: Glahn and Lowry, 1972, JAM, 11, 1203; Wilks, 2006, Academic Press;….

    • ‘Deterministic’ approach: Nonlinear techniques (Neural networks, nonlinear fits). Ref: Marzban, 2003, MWR, 131, 1103; Casaioli et al, 2003, NPG, 10, 373;….

    • Probabilistic approaches: correction of the (deterministic) precipitationforecasts. Ref: Lemcke and Kruizinga, 1988, MWR, 116, 1077;….

    • (True) Probabilistic approaches: Calibration of the ensemble forecasts. Ref: Roulston and Smith, 2003, Tellus, 55A, 16; Gneiting et al, 2005, MWR, 133, 1098; Wilks, 2006, MA, 13, 243; Hamill and Wilks, 2007, MWR, 135, 2379;…….

    Post-processing of forecasts in order to improve their qualitybased on information gathered from past forecasts

  • The Linear MOS technique

    Linear regression between a set of observables of forecasts and observations

    ∑=

    +=n

    iiic tVtttX

    1

    )()()()( βα

    ∑=

    −=M

    kkkc tXtXtJ

    1

    2, ))()(()( M past forecasts

    n=1

    22 )t(V)t(V)t(V)t(X)t(V)t(X)t(

    )t(V)t()t(X)t(

    ><>>=

  • Example of fit:

    Training:

    2 Summer seasons2002-2003

    Verification:

    2004-2005280

    285

    290

    295

    300

    280 285 290 295 300

    Lead time: 6 hours

    Obs

    erva

    tion,

    Cor

    rect

    ed fo

    reca

    sts

    Forecasts

    280

    285

    290

    295

    300

    305

    310

    280 285 290 295 300 305

    lead time: 60 hours

    Obs

    erva

    tins,

    Cor

    rect

    ed fo

    reca

    sts

    Forecasts

    280

    285

    290

    295

    300

    275 280 285 290 295 300

    Lead time: 120 hours

    Obs

    erva

    tions

    , Cor

    rect

    ed fo

    reca

    sts

    Forecasts

    2-m Temperature, Uccle

  • The mean square error

    Properties of the MOS forecast

    2)(

    2222

    )(

    222 )())(),(())()(()(

    )()(

    tVXXtV

    cc

    c

    ttVtXCtXtXt

    tXtX

    σβσσσ

    σ =>=>>=−>=

  • Short term dynamics of MOS forecasts (Formalism based on Nicolis, 2004, JAS)

    The real system{ }

    { }),,(

    ),,(

    λ

    μ

    YXSdtYd

    YXFdtXd

    rrrr

    rrrr

    =

    =

    Xr

    Vr

    and span the same phase space

    Variablesnot describedby the model

    { })',V(GdtVd

    μ=rr

    r

    The model

    { }

    { })),(),(()0()(

    )'),(()0()(

    0

    0

    +=

    +=

    t

    t

    YXFdXtX

    VGdVtV

    μτττ

    μττ

    rrrrr

    rrrrFormal sols

  • )(21))()(( 32210

    2 tOtStSStt VC +++=−σσ

    Typical initial errors

    )0()0(X)0(V ε+= rrr Gaus random noise

    +Systematic error

    22

    2)0(1

    2)0(

    2)0(

    4)0(

    0

    ))0(())0((),0((2

    )))0(())0((),0((2

    XFXGVCS

    XFXGVCS

    SX

    rr

    rr

    −∝

    −∝

    +=

    ε

    ε

    ε

    σ

    σσσ

    >−>

  • ))))0(())0((()()0()0((2)))0(())0(((2

    )))0(())0(()()0()0((2

    ))0()0((

    0

    2'2

    '1

    22'0

    >⎥⎦⎤−−−=

  • Summary

    A. Correction of initial condition errors

    B. Correction of model errors

    - The systematic part is corrected.

    - The time-dependent part can be corrected provided thatthe covariance of the model error with the predictors is high.

    - Systematic initial error is corrected.

    - Random initial errors are only partially corrected.

    2)0(

    2)0(

    4)0(

    0X

    Sσσ

    σ

    ε

    ε

    +=

  • The Lorenz system

    zxzbxydtdz

    Gybxzxydtdy

    aFaxzydtdx

    −+−=

    +−−=

    +−−−= 22

    - Initial condition errors: N(0,s), s small- Model errors (parametric error on a, b, F or G)

    Chaotic for a=0.25, b=6, F=16, G=3

    Results obtained with 100,000 realizations starting from differentinitial conditions

  • The Lorenz system (continued)

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    101

    2 4 6 8 10

    Mea

    n S

    quar

    e E

    rror

    Time

    (a)

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    0.01 0.1 1

    10-1610-1410-1210-1010-810-610-410-2100

    0.01 0.1 1 10

    Mea

    n s

    quar

    e er

    ror

    Time

    (a)

    Initial cond

    ition error o

    nly

    Model error

    only

    Error in parameter a

    Correction of variable x

  • The Lorenz system (continued)

    10-12

    10-10

    10-8

    10-6

    10-4

    10-2

    100

    0.01 0.1 1 10

    ( Ym- Yt)2

    ( Yc- Yt)2, MOS X, Y

    ( Yc- Yt)2, MOS Y, XZ

    Mea

    n S

    quar

    e E

    rror

    Time

    Partial conclusions

    - IC not well corrected by MOS- MOS can correct model errors when model predictors well chosen

    Model errors only in the parameter b

    Correction of variable y

    Different MOS schemes

    - Predictors: X, Y- Predictors: Y, XZ

  • Application to the ECMWF forecasting system: temperature

    Data: temperature for the period December 1 2001 to November 30 2005

    - Training period: December 1 2001 to November 30 2003

    - Independent evaluation period: December 1 2003 to November 30 2005

    -Temperature 500 hPa, 850 hPa-Temperature at 2 meters

    Evaluation on a grid covering Belgium (verification using the set of analyses)

    (52 N, 2 E) to (49 N, 7 E)

    Evaluation at some synoptic stations: model forecast given by the closestgridpoint

  • 0

    1

    2

    3

    4

    5

    6

    0 20 40 60 80 100 120

    Raw forecastsMOS, T 850 hPa

    MS

    E

    Time (hours)

    Temperature at 850 hPa

    Results averaged over the wholegrid

    0

    1

    2

    3

    4

    5

    6

    7

    0 20 40 60 80 100 120

    Corrected forecastsRaw forecasts

    RM

    SE

    Time (hours)

    (a)

    2002-2003

    Temperature at 2 meters

    0

    1

    2

    3

    4

    5

    6

    0 20 40 60 80 100 120

    Corrected forecasts

    Raw forecasts

    RM

    SE

    Time (hours)

    (c)

    2004-2005

  • 1

    2

    3

    4

    5

    6

    7

    0 20 40 60 80 100 120

    Raw forecastsMOS, T2mMOS, T2m, T850hPaMOS, T2m, SH

    MS

    E

    Time (hours)

    (a)

    Uccle

    Uccle-Ukkel

    1

    2

    3

    4

    5

    6

    7

    8

    9

    0 20 40 60 80 100 120

    Raw forecastsMOS, T2m

    MS

    E

    Time (hours)

    (a)

    Uccle

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    0 20 40 60 80 100 120

    V CD C

    Cor

    rect

    ion

    s

    Time (hours)

    (b)Uccle

    Training + verif on 2002-2003

    Training: 2002-2003Analysis on 2004-2005

  • Other stations

    1

    2

    3

    4

    5

    6

    7

    8

    0 20 40 60 80 100 120

    Raw forecastsMOS, T2m

    MS

    E

    Time (hours)

    (a)

    Middelkerke

    0

    2

    4

    6

    8

    10

    12

    0 20 40 60 80 100 120

    Raw forecastsMOS, T2m

    MS

    E

    Time (hours)

    (a)

    Elsenborn

    Training + verif on 2002-2003

    A second predictor?

    Sensible heat flux

    A second predictor?

    TMP 850 hPa

  • New Linear MOS

    )()(

    )()()()()(

    )()()()(

    2

    2

    22

    22

    tt

    tVtVtXtXt

    tVttXt

    V

    X

    σσβ

    βα

    =><><

    =

    >=<

    )(, tX kc

    Intermediate cost function:

    Minimization

    ∑= +

    −+=

    M

    k

    kk

    ttttXtVtttJ

    1222

    2

    )()()())())()()((()(

    δκ σβσβα

    κβςα ++=X δς +=V

    One ‘free’ parameter: 2

    2

    2

    2

    tofixed X

    V

    σσ

    σσλ

    κ

    δ=

    ∑∑==

    +−+

    −=

    M

    k

    kkM

    k

    kk

    tttX

    tttVtJ

    12

    2

    12

    2

    )()))(()((

    )())()(()(

    κδ σβςα

    σς

    Needs some knowledge aboutthe sources of errors

  • 2)(

    2)(

    222 )())()(()(

    )()(

    tXtVCC

    C

    ttXtXt

    tXtX

    σσβσ =>=>>=>

  • 268

    270

    272

    274

    276

    278

    280

    282

    284

    286

    288

    268 270 272 274 276 278 280 282 284 286 288

    Observations

    Forecasts

    Lead time: 24 hours, Initial time: 12

    RAWEVMOSLMOS

    268

    270

    272

    274

    276

    278

    280

    282

    284

    286

    288

    268 270 272 274 276 278 280 282 284 286 288

    Observations

    Forecasts

    Lead time: 120 hours, Initial time: 12

    RAWEVMOSLMOS

    265

    270

    275

    280

    285

    290

    266 268 270 272 274 276 278 280 282 284 286

    Observations

    Forecasts

    Lead time: 240 hours, Initial time: 12

    RAWEVMOSLMOS

    Control Forecast is used.

    Training: DJF 2002-2004

    Verif: DJF 2002

    MOS at Station ‘Uccle’.

  • 0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    0 50 100 150 200 250

    RMSE, SPREAD

    Time (hours)

    (a)

    DMO, RMSEEVMOS-1, RMSE

    DMO, SPREADEVMOS-1, SPREAD

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    0 50 100 150 200 250

    RMSE, SPREAD

    Time (hours)

    (b)

    DMO, RMSENGR, RMSE

    DMO, SPREADNGR, SPREAD

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    0 50 100 150 200 250

    RMSE, SPREAD

    Time (hours)

    (c)

    DMO, RMSEEVMOS-2, RMSE

    DMO, SPREADEVMOS-2, SPREAD

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    0 50 100 150 200 250

    RMSE, SPREAD

    Time (hours)

    (d)

    DMO, RMSELMOS-2, RMSEDMO, SPREAD

    LMOS-2, SPREAD

    Application to an operational ensemble: ECMWF, Winter, Uccle

    2 meter Temperature

  • Conclusions on MOS

    A dynamical analysis of the MOS correction has been undertaken with emphasison the correction of

    -initial condition errors-Model errors

    Both partly corrected butcorrection more sensitiveto model errors.

    )))0(())0((),0(( XFXGVCrr

    −One central quantity

    An additional model observable can improveconsiderably the correction if proportional to G-F

  • For the ECMWF deterministic forecast:

    TMP 2m

    - Substantial corrections with MOS with 1 observable - MOS with 2 observables:

    In the central part of Belgium: Tmp 850 hPaOn the coast: Sensible Heat Flux

    TMP 850 hPa

    - No correction. Mainly initial condition errors

    More infos:

    Vannitsem S. and C. Nicolis, Dynamical properties of Model Output Statistics forecasts. Mon. Wea. Rev., 136, 405-419, 2008.

    Vannitsem S., Dynamical properties of MOS forecasts. Analysis of the ECMWF operational forecasting system. Weather and Forecasting, 23, 1032-1043, 2008.

  • Correction of Ensemble forecasts based on EVMOS

    A unified Scheme for both deterministic and ensemble forecasts is proposed,based on the assumption that the forecast displays errors.

    -Do not damp the ensemble spread anymore.

    -The correction provides a mean and a variabilityin agreement with the observations

    -The scheme can be trained on the control forecast only.

    References:

    Vannitsem, S., A unified Linear Model Output Statistics scheme for both deterministic and ensemble forecasts. Accepted inQuart. J. Roy. Met. Soc., 2009

    The correction of forecast errors based on MOS: The impact of initial condition and model errors The Model Output Statistics techniqueSummaryThe Lorenz systemThe Lorenz system (continued)New Linear MOS