43
MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Embed Size (px)

Citation preview

Page 1: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

MR-DTI:Non-invasive imaging of neuroanatomy of white matter

Guido Gerig

Page 2: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 2

Acknowledgments

Contributors:

• Martin Styner • Susumu Mori• Andy Alexander• Gordon Kindlmann• Randy Gollub

• National Alliance for Medical Image Computing (NIH U54EB005149)

Page 3: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 3

Use of these slides

• Slides were borrowed from various researchers, and we are working on getting permissions for distribution.

• Slides can be used for own purposes. • Please do not distribute these slides. • Please do no put slides into public download

space.

Page 4: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

T1w T2w

Page 5: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 5

Page 6: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 6

5D 6Mo 14Mo

Page 7: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 7

Networking and Brain Connectivity

Major Fiber Tracts extracted from DT MRI

UNC Computer Science: Network wire cabinets

Page 8: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 8Diffusion Tensor Imaging (DT MRI) reveals

White Matter Structure

Gray matter

White matter

Courtesy of Susumu Mori, JHU

DT MRI

Page 9: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 9

White Matter Structure

• Goal: Measure properties associated with the directiondirection of white matter Fibers

White matter

Wh

ite M

atte

rF

ibe

rs

Page 10: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 10

Example: Corticospinal Tract

Tractography: Coronal viewTractography: Coronal view

Source: Duke NeuroAnatomy Web Resources (Christine Hulette)

B: Superior longitudinal fasciculus

C: Superior occipitofrontal fasciculus

D: Cingulum

E: Inferior longitudinal fasciculus

F: Inferior occipitofrontal fasciculus

Page 11: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 11

Diffusion

• Random ‘Walk’ of Water Molecules

1 2 3

x2 6D

DT-MRI A. Alexander

Page 12: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 12

Diffusion• Diffusion: Brownian motion of one material

through another

• Anisotropy: diffusion rate depends on direction

Gordon Kindlimann

Kleenex newspaper

Page 13: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 13

Biological Restricted Diffusion

• Sextra >> Sintra

• Diffusion influenced by mean free path– Tortuosity

DT-MRI A. Alexander

Page 14: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 14

Biological Restricted Diffusion

• Cellular degeneration (necrosis)- Diffusion increases

DT-MRI A. Alexander

Page 15: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 15

Aniostropic Restricted Diffusion

• Diffusion has angular dependence

DT-MRI A. Alexander

Page 16: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

How can we measure diffusion without perturbing the system?

Page 17: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 17

Page 18: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 18

Diffusion and white matter• Diffusion MRI measures diffusion of mainly water

molecules – Isotropic medium → molecules move with Brownian motion.– In biological tissues diffusion is often anisotropic

• In white matter: “Local structure”– Insulating myelin sheet, low probability to cross into axon– Dense axon bundles exhibits strongly directional local structure– Diffusion along fiber bundle is main diffusion direction

Myelin sheet Nodes of Ranvier

Main diffusion direction

Page 19: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 19

(An)isotropic diffusion

Free diffusion

Restricted diffusion

Isotropic diffusion

Anisotropic diffusion

Courtesy of Susumu Mori, John Hopkins University Medical School

Probability Distribution

Probability Distribution

Page 20: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 20

DWI (indirectly) senses the structure of the tissue by measuring water molecule

displacement along a chosen direction.

r

r'

y

diffusioncoefficientin the y direction(= Dy)

Start

End

Page 21: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 21

r

r'

If the path of the water molecule is affected by restrictions such as cellular material, the measured diffusion coefficient is reduced

extracellularspace

intracellularspace

Page 22: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 22

If the tissue structures are oriented, the path of the water molecule (and the measured diffusion coefficients) will reflect this.

r

r'

y

diffusioncoefficientin the y direction(= Dy)

x diffusion coefficientin the x direction(= Dx)

Dx > Dy

Page 23: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Magnetic Resonance Imaging (MRI)

• Larmor Frequency

• Magnetic Field Gradient, G

Page 24: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Diffusion Weighted (DW) MRI

• Accumulated Phase

)t(G

Page 25: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

DW-MRI II

x

N

ox Attenuation!

Page 26: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 26

The pixel signal intensity, S, is related to the b-value and the diffusion coefficient, D, through:

This equation (Steyskal Tanner Equation) has two unknowns, the signal intensity for b = 0

(S0) and D. Therefore, at least 2 measurements must be made, each at a

different b-value to calculate D.

DbeSS

0

Page 27: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Equation for the diffusion attenuation

GG

b-value

Sig

nal I

nten

sity

D

lnSS0

2G2 2

3

D= - bD

Page 28: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 28

Measuring D for a Given Direction: Simplified model of two b values

(b=0 and b=nnnn)

b-value

ln(S)

slope = D

intercept = S0

0 1000

Page 29: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

DWI and ADC

1 G/cm 6 G/cm 10 G/cm 13 G/cm

b-value

Sig

nal I

nten

sity

Page 30: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 30

The b-value is the contrast “knob” in a diffusion experiment and is varied in magnitude and in a

specified number of directions.

Increasing the b-value increases the contrast between slow and fast diffusing water molecules.

Increasing b-value

Images courtesy: Susumu Mori (JHU)

Page 31: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 31

Apparent Diffusion Coefficient (ADC) Map with Different Measurement Direction

YX ZOnly the diffusion along a gradient direction can be measured

Courtesy of Susumu Mori, John Hopkins University Medical School

Gradient direction

Page 32: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

ASNR 2003 –Washington,DC DT-MRI Alexander

Diffusion Weighted Images

12 DW encoding directionsSi (b=912 sec/mm2)

T2W ReferenceSo (b ~ 0 sec/mm2)

)ˆˆexp( itioi ggbSS D

)3/(222 Gb

Courtesy JE Lee

Page 33: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 33

Measurement along Multiple Directions

Modified from DavidTuch, MGH

• Diffusion MRI measures along single gradient directions– Diffusion Weighted Images (DWI)

• In principle: Arbitrary gradient directions• 6 different directions → Tensor

– 12/24 directions → stability– Diffusion Tensor Imaging (DTI)

• High angular acquisition– Sampling of orientation diffusion– Higher order representations (fiber crossings)– Qball (D. Tuch, MGH), >256 dirs– Others: Van Wedeen (MIT), Frank (UCSD)

Page 34: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 34

DWI: Three Coordinate Systems

rightanterior

supe

riorWorld:

e.g. “RAS”

fast=I

med

ium

=J

slow=KImage:“IJK” Gradients:

g1 = (1,0,1)g2 = (1,-1,0)… Dxx, Dxy …

x

y

z

“ImageOrientation”

“MeasurementFrame”

Page 35: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

ASNR 2003 –Washington,DC DT-MRI Alexander

Measured Apparent Diffusivities

12 encoding directions

b

SSD ioi

lnln

Courtesy JE Lee

Page 36: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 36

What is “Diffusion – Weighted” Imaging?

In “Conventional” MRI, image contrast reflectsthe local relaxation (T1, T2) environment of the water molecules.

In “Diffusion-Weighted” Imaging (DWI), imagecontrast reflects the physical structure of the Tissue (via the local diffusion distribution).

Page 37: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 37

Simplification and assumption

Diffusion ellipsoidCourtesy of Susumu Mori, John Hopkins University Medical School

Orientational Diffusion Fct

Page 38: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

ASNR 2003 –Washington,DC DT-MRI Alexander

The Diffusion Tensor

zzzyzx

yzyyyx

xzxyxx

DDD

DDD

DDD

D

0,, zzyyxx DDD zyyzzxxzyxxy DDDDDD ;;

Courtesy JE Lee

Page 39: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

National Alliance for Medical Image Computing http://na-mic.org

DWI summary: MRI

• Diffusion: Brownian motion of one material through another

• Anisotropy: diffusion rate depends on direction

• Magnetic gradients create spatial planar waves of proton phase

• Destructive interference measures diffusion along gradient direction only

Kleenex newspaper

Page 40: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

National Alliance for Medical Image Computing http://na-mic.org

DWI crash course: Model

Single Tensor Model (Basser 1994)

A0

gi

Ai

D

Dxx Dxy Dxz

Dyy Dyz

Dzz

Tensorestimation

Page 41: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 41

Anisotropy & Color-coded Orientation

Isotropic GM

Anisotropic WM

Courtesy of Susumu Mori, John Hopkins University Medical School

Page 42: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Slide 42

DTI Tensor Visualization

Color: FA valueITK: DTIFiberTubeSpatialObject & SpatialObjectViewers (Julien Jomier)

Page 43: MR-DTI: Non-invasive imaging of neuroanatomy of white matter Guido Gerig

Here comes Ross Whitaker