33
MRI Principles Wen-Yang Chiang Oct 13, 2007

MRI Principles (Advanced)

Embed Size (px)

DESCRIPTION

This document explains MRI principles from spin precession to k-space and pulse sequence. This document presents the most important concepts of MRI for both physicians and college students. Some real-word MRI images were used to explain some techniques being used on MRI scanners on daily basis.

Citation preview

  • MRI Principles

    Wen-Yang Chiang

    Oct 13, 2007

  • http://www.mrisprostatecancercenter.com/

    dr-wheeler_the_prostate_center_hifu.html

    http://www.med.umich.edu/opm/newspage/2004/b

    raintumor.htm

    Diffusion

    Tractography

    MRS

    HIFU

    Functional

    MRI

  • Magnetic Resonance Imaging

    Nuclear spinning

    generates micro magnet

    The alignment of nuclear

    spin using external

    magnetic field Apply RF pulse which is

    close to Larmor frequency

    Resonance

    Transform the received

    signal to image

    MRI

    Nuclear process within

    external magnetic field

    0B Provide spatial

    information

  • www.e-mri.org

    Basic Physics

  • Nuclear Spin

    www.e-mri.org

    Basic Physics

  • Processing & Larmor Frequency

    00 B www.e-mri.org

    Basic Physics

  • Net Magnetization

    www.e-mri.org

    Basic Physics

  • Excitation & Relaxation

    www.e-mri.org

    Signal

    Formation

  • 90 Pulse

    www.e-mri.org

    Signal

    Formation

  • 180 Pulse after 90 Pulse

    www.e-mri.org

    Signal

    Formation

  • 180 Pulse

    www.e-mri.org

    Signal

    Formation

  • Relaxation

    www.e-mri.org

    Signal

    Formation

  • Slice Selection

    www.e-mri.org

    Signal

    Formation

  • Slice Selection

    www.e-mri.org

    Signal

    Formation

  • Frequency Encoding

    www.e-mri.org

    Signal

    Formation

  • Frequency Encoding

    www.e-mri.org

    Signal

    Formation

  • Phase Encoding

    www.e-mri.org

    Signal

    Formation

  • Phase Encoding

    www.e-mri.org

    Signal

    Formation

  • Spatial Encoding

    dx

    dBg

    B

    x

    Different g or t

    dxextgS txgj )(),(

    Signal Interpretation

  • Sinusoidal Encoding

    greater gradient or longer t => higher frequency encoding

    Signal Interpretation

  • xB(x) = gx xB

    Spatial Encoding

    AB

    C

    + +=

    A

    B

    C

    Signal Interpretation

  • Sinusoidal Modulation

    x

    y

    x-dir gradient

    y-dir gradient

    2D sinusoidal wave function

    ),(

    ,)(),(

    yxv

    vdevtgS tvgj

    Signal Interpretation

  • MRI Reconstruction

    Superposition of sinusoidal functions

    tgk

    yxv

    kdekSv vkj

    ),(

    ,)(2

    1)(

    Image Formation

  • Contrast

    Image Formation

  • Contrast

    www.e-mri.org

    Image Formation

  • Spin Echo Sequence

    gz

    gy

    gx

    RF

    90 180 echo

    kx

    kyTR

    90

    TE/2

    Scan time = TR x # ky lines x NEX

    FID Spin Echo

  • K-Space & Image Space

  • kx

    ky

    Kmax = Kmax/2Kmax

  • Blurring

  • kx

    ky

    Kmax

    k = 2 k

  • Aliasing

  • This is just the

    beginning