51
Multilevel Monte Carlo for evy Driven SDEs Felix Heidenreich TU Kaiserslautern AG Computational Stochastics August 2011 joint work with Steffen Dereich Philipps-Universit¨ at Marburg supported within DFG-SPP 1324 F. Heidenreich (TU Kaiserslautern) MLMC for L´ evy Driven SDEs August 2011 1 / 17

Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

  • Upload
    others

  • View
    18

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Multilevel Monte Carlo forLevy Driven SDEs

Felix Heidenreich

TU KaiserslauternAG Computational Stochastics

August 2011

joint work with Steffen DereichPhilipps-Universitat Marburg

supported within DFG-SPP 1324

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 1 / 17

Page 2: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Outline

1 Introduction

2 The Multilevel Monte Carlo Algorithm

3 Approximation of the Driving Levy Process

4 Result and Examples

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 2 / 17

Page 3: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Introduction

The Problem

SDE

dYt = a(Yt−) dXt , t ∈ [0, 1],

Y0 = y0,

with

a square integrable Levy process X = (Xt)t∈[0,1],

a deterministic initial value y0,

a Lipschitz continuous function a.

Computational problem: Compute

S(f ) = E[f (Y )]

for functionals f : D[0, 1]→ R.

Example: payoff f of a path dependent option.

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 3 / 17

Page 4: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Introduction

The Problem

SDE

dYt = a(Yt−) dXt , t ∈ [0, 1],

Y0 = y0,

with

a square integrable Levy process X = (Xt)t∈[0,1],

a deterministic initial value y0,

a Lipschitz continuous function a.

Computational problem: Compute

S(f ) = E[f (Y )]

for functionals f : D[0, 1]→ R.

Example: payoff f of a path dependent option.

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 3 / 17

Page 5: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Introduction

The Problem

SDE

dYt = a(Yt−) dXt , t ∈ [0, 1],

Y0 = y0,

with

a square integrable Levy process X = (Xt)t∈[0,1],

a deterministic initial value y0,

a Lipschitz continuous function a.

Computational problem: Compute

S(f ) = E[f (Y )]

for functionals f : D[0, 1]→ R.

Example: payoff f of a path dependent option.

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 3 / 17

Page 6: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Introduction

Standard Monte Carlo

For approximation Y of Y ,

S(f ) = E[f (Y )] ≈ E[f (Y )] ≈ 1

n

n∑i=1

f (Yi )︸ ︷︷ ︸=:SMC (f )

,

where (Yi )i=1,...,n i.i.d. copies of Y .

Error decomposition into weak error and Monte Carlo error

E[|S(f )− SMC (f )|2] = |E[f (Y )− f (Y )]︸ ︷︷ ︸=:bias(f (Y ))

|2 +1

nVar(f (Y ))︸ ︷︷ ︸

=Var(SMC (f ))

.

Classical approach: Use approximation Y with small bias, e.g. higher-order weak

Ito-Taylor schemes, or extrapolation techniques.

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 4 / 17

Page 7: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Introduction

Standard Monte Carlo

For approximation Y of Y ,

S(f ) = E[f (Y )] ≈ E[f (Y )] ≈ 1

n

n∑i=1

f (Yi )︸ ︷︷ ︸=:SMC (f )

,

where (Yi )i=1,...,n i.i.d. copies of Y .

Error decomposition into weak error and Monte Carlo error

E[|S(f )− SMC (f )|2] = |E[f (Y )− f (Y )]︸ ︷︷ ︸=:bias(f (Y ))

|2 +1

nVar(f (Y ))︸ ︷︷ ︸

=Var(SMC (f ))

.

Classical approach: Use approximation Y with small bias, e.g. higher-order weak

Ito-Taylor schemes, or extrapolation techniques.

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 4 / 17

Page 8: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Introduction

Standard Monte Carlo

For approximation Y of Y ,

S(f ) = E[f (Y )] ≈ E[f (Y )] ≈ 1

n

n∑i=1

f (Yi )︸ ︷︷ ︸=:SMC (f )

,

where (Yi )i=1,...,n i.i.d. copies of Y .

Error decomposition into weak error and Monte Carlo error

E[|S(f )− SMC (f )|2] = |E[f (Y )− f (Y )]︸ ︷︷ ︸=:bias(f (Y ))

|2 +1

nVar(f (Y ))︸ ︷︷ ︸

=Var(SMC (f ))

.

Classical approach: Use approximation Y with small bias, e.g. higher-order weak

Ito-Taylor schemes, or extrapolation techniques.

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 4 / 17

Page 9: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Introduction

Path-independent functions f in the diffusion case

Classical setting:

Brownian motion as driving process, i.e. X = W .

Compute expectations w.r.t. marginal in T > 0, i.e. S(f ) = E[f (Y (T ))] forf : R→ R.

Relation of error and computational cost: Weak approximation of order βyields

E[|S(f )− SMC (f )|2] ≤ ε2 with computational cost O(ε−2− 1β ).

Remedy: Only for sufficiently smooth f ∈ C 2(β+1).

Note: Variance reduction via Multilevel algorithm SML yields

E[|S(f )− SML(f )|2] ≤ ε2 with computational cost O(ε−2 log(ε)2).

Holds for f Lipschitz.

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 5 / 17

Page 10: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Introduction

Path-independent functions f in the diffusion case

Classical setting:

Brownian motion as driving process, i.e. X = W .

Compute expectations w.r.t. marginal in T > 0, i.e. S(f ) = E[f (Y (T ))] forf : R→ R.

Relation of error and computational cost: Weak approximation of order βyields

E[|S(f )− SMC (f )|2] ≤ ε2 with computational cost O(ε−2− 1β ).

Remedy: Only for sufficiently smooth f ∈ C 2(β+1).

Note: Variance reduction via Multilevel algorithm SML yields

E[|S(f )− SML(f )|2] ≤ ε2 with computational cost O(ε−2 log(ε)2).

Holds for f Lipschitz.

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 5 / 17

Page 11: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Introduction

Path-independent functions f in the diffusion case

Classical setting:

Brownian motion as driving process, i.e. X = W .

Compute expectations w.r.t. marginal in T > 0, i.e. S(f ) = E[f (Y (T ))] forf : R→ R.

Relation of error and computational cost: Weak approximation of order βyields

E[|S(f )− SMC (f )|2] ≤ ε2 with computational cost O(ε−2− 1β ).

Remedy: Only for sufficiently smooth f ∈ C 2(β+1).

Note: Variance reduction via Multilevel algorithm SML yields

E[|S(f )− SML(f )|2] ≤ ε2 with computational cost O(ε−2 log(ε)2).

Holds for f Lipschitz.

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 5 / 17

Page 12: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

The Multilevel Monte Carlo Algorithm

Multilevel Monte Carlo Algorithms

See Heinrich [1998], Giles [2006], Creutzig, Dereich, Muller-Gronbach, Ritter[2009], Avikainen [2009], Kloeden, Neuenkirch, Pavani [2009], Hickernell,Muller-Gronbach, Niu, Ritter [2010], Marxen [2010],...

Talks by Burgos, Giles, Roj, Szpruch, Xia...

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 6 / 17

Page 13: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

The Multilevel Monte Carlo Algorithm

Multilevel Monte Carlo AlgorithmsBasic idea:

Y (1),Y (2), . . . strong approximations for the solution Y with increasingaccuracy and increasing numerical cost.

Telescoping sum:

E[f (Y (m))] = E[f (Y (1))︸ ︷︷ ︸=D(1)

] +m∑

k=2

E[f (Y (k))− f (Y (k−1))︸ ︷︷ ︸=D(k)

]

Approximate E[D(1)], . . . ,E[D(m)] by independent Monte Carlo methods

S(f ) =m∑

k=1

1

nk

nk∑i=1

D(k)i ,

for (D(k)i )i=1,...,nj being i.i.d. copies of D(k), k = 1, . . . ,m.

Note: (Y (k),Y (k−1)) are coupled via X so that the variance of D(k) decreases.

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 6 / 17

Page 14: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

The Multilevel Monte Carlo Algorithm

Multilevel Monte Carlo AlgorithmsBasic idea:

Y (1),Y (2), . . . strong approximations for the solution Y with increasingaccuracy and increasing numerical cost.

Telescoping sum:

E[f (Y (m))] = E[f (Y (1))︸ ︷︷ ︸=D(1)

] +m∑

k=2

E[f (Y (k))− f (Y (k−1))︸ ︷︷ ︸=D(k)

]

Approximate E[D(1)], . . . ,E[D(m)] by independent Monte Carlo methods

S(f ) =m∑

k=1

1

nk

nk∑i=1

D(k)i ,

for (D(k)i )i=1,...,nj being i.i.d. copies of D(k), k = 1, . . . ,m.

Note: (Y (k),Y (k−1)) are coupled via X so that the variance of D(k) decreases.

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 6 / 17

Page 15: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

The Multilevel Monte Carlo Algorithm

Multilevel Monte Carlo AlgorithmsBasic idea:

Y (1),Y (2), . . . strong approximations for the solution Y with increasingaccuracy and increasing numerical cost.

Telescoping sum:

E[f (Y (m))] = E[f (Y (1))︸ ︷︷ ︸=D(1)

] +m∑

k=2

E[f (Y (k))− f (Y (k−1))︸ ︷︷ ︸=D(k)

]

Approximate E[D(1)], . . . ,E[D(m)] by independent Monte Carlo methods

S(f ) =m∑

k=1

1

nk

nk∑i=1

D(k)i ,

for (D(k)i )i=1,...,nj being i.i.d. copies of D(k), k = 1, . . . ,m.

Note: (Y (k),Y (k−1)) are coupled via X so that the variance of D(k) decreases.

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 6 / 17

Page 16: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Approximation of the Driving Levy Process

Approximation of the driving Levy process XLevy-Ito-decomposition: X sum of three independent processes.

Xt = σWt + bt + Lt , t ≥ 0.

Brownian motion W ,

drift b = E[X1] ∈ R,

L2-martingale of compensated jumps L (jump-intensity measure ν).

Assumption: Simulations of ν|(−h,h)c/ν((−h, h)c) feasible for h > 0.

Thus: Cutoff of the small jumps.and approximate X by

X (h,ε) = (σWt + bt + L(h)t )t∈T (h,ε)

on random time discretization T (h,ε) with parameters h, ε > 0 such that

all the jump times of L(h) are included in T (h,ε),

step-size is at most ε (for approximation of W ).

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 7 / 17

Page 17: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Approximation of the Driving Levy Process

Approximation of the driving Levy process XLevy-Ito-decomposition: X sum of three independent processes.

Xt = σWt + bt + Lt , t ≥ 0.

Brownian motion W ,

drift b = E[X1] ∈ R,

L2-martingale of compensated jumps L (jump-intensity measure ν).

Assumption: Simulations of ν|(−h,h)c/ν((−h, h)c) feasible for h > 0.

Thus: Cutoff of the small jumps.

and approximate X by

X (h,ε) = (σWt + bt + L(h)t )t∈T (h,ε)

on random time discretization T (h,ε) with parameters h, ε > 0 such that

all the jump times of L(h) are included in T (h,ε),

step-size is at most ε (for approximation of W ).

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 7 / 17

Page 18: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Approximation of the Driving Levy Process

Approximation of the driving Levy process XLevy-Ito-decomposition: X sum of three independent processes.

Xt = σWt + bt + Lt , t ≥ 0.

Assumption: Simulations of ν|(−h,h)c/ν((−h, h)c) feasible for h > 0.

Thus: Cutoff of the small jumps.

Define

L(h)t =

∑s∈[0,t]

∆Xs · 1l{|∆Xs |≥h} − t

∫(−h,h)c

x ν(dx),

and approximate X by

X (h,ε) = (σWt + bt + L(h)t )t∈T (h,ε)

on random time discretization T (h,ε) with parameters h, ε > 0 such that

all the jump times of L(h) are included in T (h,ε),

step-size is at most ε (for approximation of W ).

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 7 / 17

Page 19: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Approximation of the Driving Levy Process

Approximation of the driving Levy process XLevy-Ito-decomposition: X sum of three independent processes.

Xt = σWt + bt + Lt , t ≥ 0.

Assumption: Simulations of ν|(−h,h)c/ν((−h, h)c) feasible for h > 0.

Thus: Cutoff of the small jumps.

Define

L(h)t =

∑s∈[0,t]

∆Xs · 1l{|∆Xs |≥h} − t

∫(−h,h)c

x ν(dx),

and approximate X by

X (h,ε) = (σWt + bt + L(h)t )t∈T (h,ε)

on random time discretization T (h,ε) with parameters h, ε > 0

such that

all the jump times of L(h) are included in T (h,ε),

step-size is at most ε (for approximation of W ).

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 7 / 17

Page 20: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Approximation of the Driving Levy Process

Approximation of the driving Levy process XLevy-Ito-decomposition: X sum of three independent processes.

Xt = σWt + bt + Lt , t ≥ 0.

Assumption: Simulations of ν|(−h,h)c/ν((−h, h)c) feasible for h > 0.

Thus: Cutoff of the small jumps.

Define

L(h)t =

∑s∈[0,t]

∆Xs · 1l{|∆Xs |≥h} − t

∫(−h,h)c

x ν(dx),

and approximate X by

X (h,ε) = (σWt + bt + L(h)t )t∈T (h,ε)

on random time discretization T (h,ε) with parameters h, ε > 0 such that

all the jump times of L(h) are included in T (h,ε),

step-size is at most ε (for approximation of W ).

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 7 / 17

Page 21: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Approximation of the Driving Levy Process

The coupled approximation

Compound Poisson approximations (L(h), L(h′)).

0.0 0.2 0.4 0.6 0.8 1.0

−0.6

−0.4

−0.2

0.0

0.2

compensated jumps greater h

time

L t(h)

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 8 / 17

Page 22: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Approximation of the Driving Levy Process

The coupled approximation

Compound Poisson approximations (L(h), L(h′)).

0.0 0.2 0.4 0.6 0.8 1.0

−0.6

−0.4

−0.2

0.0

0.2

compensated jumps greater h

time

L t(h)

0.0 0.2 0.4 0.6 0.8 1.0

−0.6

−0.4

−0.2

0.0

0.2

compensated jumps greater h'

time

L t(h)

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 8 / 17

Page 23: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Approximation of the Driving Levy Process

The coupled approximation

Approximation of σW on T (h,ε) ∪ T (h′,ε′).

0.0 0.2 0.4 0.6 0.8 1.0

−0.6

−0.4

−0.2

0.0

0.2

Brownian motion

time

Wt

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 8 / 17

Page 24: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Approximation of the Driving Levy Process

The coupled approximation

Approximation of σW on T (h,ε) and T (h′,ε′).

0.0 0.2 0.4 0.6 0.8 1.0

−0.6

−0.4

−0.2

0.0

0.2

Brownian motion for (h,ε)

time

Wt o

n T

ε

0.0 0.2 0.4 0.6 0.8 1.0

−0.6

−0.4

−0.2

0.0

0.2

Brownian motion for (h',ε')

time

Wt o

n T

ε '

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 8 / 17

Page 25: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Approximation of the Driving Levy Process

The coupled approximation

Piecewise constant approximation of (X (h,ε),X (h′,ε′)).

0.0 0.2 0.4 0.6 0.8 1.0

−0.6

−0.4

−0.2

0.0

0.2

approximation for (h,ε)

time

Xt(ε

)

0.0 0.2 0.4 0.6 0.8 1.0

−0.6

−0.4

−0.2

0.0

0.2

approximation for (h',ε')

time

Xt(ε

)

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 8 / 17

Page 26: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Approximation of the Driving Levy Process

Multilevel Euler Algorithm

Remember:

Telescoping sum

E[f (Y (m))] = E[f (Y (1))︸ ︷︷ ︸=D(1)

] +m∑

k=2

E[f (Y (k))− f (Y (k−1))︸ ︷︷ ︸=D(k)

]

Choice: (Y (k),Y (k−1)) Euler schemes with coupled input (X (hk ,εk ),X (hk−1,εk−1))

Parameters of the algorithm S(f ):

m (number of levels)

h1 > h2 > . . . > hm (approximation of L)

ε1 > ε2 > . . . > εm (approximation of W )

n1, . . . , nm (number of replications per level)

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 9 / 17

Page 27: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Approximation of the Driving Levy Process

Multilevel Euler Algorithm

Remember:

Telescoping sum

E[f (Y (m))] = E[f (Y (1))︸ ︷︷ ︸=D(1)

] +m∑

k=2

E[f (Y (k))− f (Y (k−1))︸ ︷︷ ︸=D(k)

]

Choice: (Y (k),Y (k−1)) Euler schemes with coupled input (X (hk ,εk ),X (hk−1,εk−1))

Parameters of the algorithm S(f ):

m (number of levels)

h1 > h2 > . . . > hm (approximation of L)

ε1 > ε2 > . . . > εm (approximation of W )

n1, . . . , nm (number of replications per level)

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 9 / 17

Page 28: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Approximation of the Driving Levy Process

Multilevel Euler Algorithm

Remember:

Telescoping sum

E[f (Y (m))] = E[f (Y (1))︸ ︷︷ ︸=D(1)

] +m∑

k=2

E[f (Y (k))− f (Y (k−1))︸ ︷︷ ︸=D(k)

]

Choice: (Y (k),Y (k−1)) Euler schemes with coupled input (X (hk ,εk ),X (hk−1,εk−1))

Parameters of the algorithm S(f ):

m (number of levels)

h1 > h2 > . . . > hm (approximation of L)

ε1 > ε2 > . . . > εm (approximation of W )

n1, . . . , nm (number of replications per level)

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 9 / 17

Page 29: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Result and Examples

ResultError: e2(S) = sup

f∈Lip(1)

E[|S(f )− S(f )|2]

Here: Lip(1) := {f : D[0, 1]→ R | f 1− Lipschitz w.r.t. supremum norm}

Cost: cost(S) �m∑

k=1

nkE[#breakpoints(Y (k)) + 1]

Theorem (Dereich, H.)

Let

β := inf

{p > 0 :

∫(−1,1)

|x |p ν(dx) <∞

}∈ [0, 2]

denote the Blumenthal-Getoor-index of the driving Levy process.Then, for suitably chosen parameters, cost(Sn) - n and

e(Sn) - n−( 1β∨1−

12 ).

Remark: Gaussian approximation improves result for β ≥ 1 (see Dereich, 2010).Order of convergence: 4−β

6β ∧12 for σ = 0 or β /∈ [1, 4/3],

and β6β−4 for σ 6= 0 and β ∈ [1, 4/3].

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 10 / 17

Page 30: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Result and Examples

ResultError: e2(S) = sup

f∈Lip(1)

E[|S(f )− S(f )|2]

Cost: cost(S) �m∑

k=1

nkE[#breakpoints(Y (k)) + 1]

Theorem (Dereich, H.)

Let

β := inf

{p > 0 :

∫(−1,1)

|x |p ν(dx) <∞

}∈ [0, 2]

denote the Blumenthal-Getoor-index of the driving Levy process.Then, for suitably chosen parameters, cost(Sn) - n and

e(Sn) - n−( 1β∨1−

12 ).

Remark: Gaussian approximation improves result for β ≥ 1 (see Dereich, 2010).Order of convergence: 4−β

6β ∧12 for σ = 0 or β /∈ [1, 4/3],

and β6β−4 for σ 6= 0 and β ∈ [1, 4/3].

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 10 / 17

Page 31: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Result and Examples

ResultError: e2(S) = sup

f∈Lip(1)

E[|S(f )− S(f )|2]

Cost: cost(S) �m∑

k=1

nkE[#breakpoints(Y (k)) + 1]

Theorem (Dereich, H.)

Let

β := inf

{p > 0 :

∫(−1,1)

|x |p ν(dx) <∞

}∈ [0, 2]

denote the Blumenthal-Getoor-index of the driving Levy process.Then, for suitably chosen parameters, cost(Sn) - n and

e(Sn) - n−( 1β∨1−

12 ).

Remark: Gaussian approximation improves result for β ≥ 1 (see Dereich, 2010).Order of convergence: 4−β

6β ∧12 for σ = 0 or β /∈ [1, 4/3],

and β6β−4 for σ 6= 0 and β ∈ [1, 4/3].

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 10 / 17

Page 32: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Result and Examples

ResultError: e2(S) = sup

f∈Lip(1)

E[|S(f )− S(f )|2]

Cost: cost(S) �m∑

k=1

nkE[#breakpoints(Y (k)) + 1]

Theorem (Dereich, H.)

Let

β := inf

{p > 0 :

∫(−1,1)

|x |p ν(dx) <∞

}∈ [0, 2]

denote the Blumenthal-Getoor-index of the driving Levy process.Then, for suitably chosen parameters, cost(Sn) - n and

e(Sn) - n−( 1β∨1−

12 ).

Remark: Gaussian approximation improves result for β ≥ 1 (see Dereich, 2010).Order of convergence: 4−β

6β ∧12 for σ = 0 or β /∈ [1, 4/3],

and β6β−4 for σ 6= 0 and β ∈ [1, 4/3].

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 10 / 17

Page 33: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Result and Examples

Remarks

Related results:

Jacod, Kurtz, Meleard and Protter [2007]

Marxen [2010]

Lower bound: Combine results of

Creutzig, Dereich, Muller-Gronbach and Ritter [2009] on lower bounds inrelation to quantization numbers and average Kolmogorov widths, and

Aurzada and Dereich [2009] on the coding complexity of Levy processes.

In the case X = Y , for every randomized algorithm Sn with cost(Sn) - n,

e(Sn) % n−12

up to some logarithmic terms.

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 11 / 17

Page 34: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Result and Examples

Remarks

Related results:

Jacod, Kurtz, Meleard and Protter [2007]

Marxen [2010]

Lower bound: Combine results of

Creutzig, Dereich, Muller-Gronbach and Ritter [2009] on lower bounds inrelation to quantization numbers and average Kolmogorov widths, and

Aurzada and Dereich [2009] on the coding complexity of Levy processes.

In the case X = Y , for every randomized algorithm Sn with cost(Sn) - n,

e(Sn) % n−12

up to some logarithmic terms.

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 11 / 17

Page 35: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Result and Examples

Remarks

Related results:

Jacod, Kurtz, Meleard and Protter [2007]

Marxen [2010]

Lower bound: Combine results of

Creutzig, Dereich, Muller-Gronbach and Ritter [2009] on lower bounds inrelation to quantization numbers and average Kolmogorov widths, and

Aurzada and Dereich [2009] on the coding complexity of Levy processes.

In the case X = Y , for every randomized algorithm Sn with cost(Sn) - n,

e(Sn) % n−12

up to some logarithmic terms.

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 11 / 17

Page 36: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Result and Examples

Example: α-stable processes

Truncated symmetric α-stable processes with α < 2 and truncation levelu > 0

Lebesgue density of the Levy measure

gν(x) =c

|x |1+α1l(−u,u)(x), x ∈ R\{0}.

Blumenthal-Getoor-index β = α.

By the Theorem e(Sn) -

{n−1/2, α < 1,

n−(1/α−1/2), α > 1.

In the sequel: X with u = 1 and c = 0.1, SDE with a(Xt) = Xt and y0 = 1,Lookback option with fixed strike 1

f (Y ) = ( supt∈[0,1]

(Yt)− 1)+.

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 12 / 17

Page 37: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Result and Examples

Example: α-stable processes

Truncated symmetric α-stable processes with α < 2 and truncation levelu > 0

Lebesgue density of the Levy measure

gν(x) =c

|x |1+α1l(−u,u)(x), x ∈ R\{0}.

Blumenthal-Getoor-index β = α.

By the Theorem e(Sn) -

{n−1/2, α < 1,

n−(1/α−1/2), α > 1.

In the sequel: X with u = 1 and c = 0.1, SDE with a(Xt) = Xt and y0 = 1,Lookback option with fixed strike 1

f (Y ) = ( supt∈[0,1]

(Yt)− 1)+.

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 12 / 17

Page 38: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Result and Examples

Example: α-stable processes

Truncated symmetric α-stable processes with α < 2 and truncation levelu > 0

Lebesgue density of the Levy measure

gν(x) =c

|x |1+α1l(−u,u)(x), x ∈ R\{0}.

Blumenthal-Getoor-index β = α.

By the Theorem e(Sn) -

{n−1/2, α < 1,

n−(1/α−1/2), α > 1.

In the sequel: X with u = 1 and c = 0.1, SDE with a(Xt) = Xt and y0 = 1,Lookback option with fixed strike 1

f (Y ) = ( supt∈[0,1]

(Yt)− 1)+.

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 12 / 17

Page 39: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Result and Examples

Adaptive choice of m and n1, . . . , nmChoose εk = 2−k and hk such that ν((−hk , hk)c) = 2k .

Given δ > 0, determine m and n1, . . . , nm such that

E[|S(f )− S(f )|2] = |E[f (Y )− f (Y (m))]︸ ︷︷ ︸=bias(f (Y (m)))

|2 + Var(S(f )) ≤ δ2.

First step: Estimate expectations E[D(1)], . . . ,E[D(5)] and variancesVar(D(1)), . . . ,Var(D(5)).

−5

−4

−3

−2

−1

level k

log 1

0(bia

s k) a

nd lo

g 10(v

ark)

1 2 3 4

Bias and variance estimation for α=0.5

● = bias= variance

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

level k

log 1

0(bia

s k) a

nd lo

g 10(v

ark)

1 2 3 4 5

Bias and variance estimation for α=0.8

● = bias= variance

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 13 / 17

Page 40: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Result and Examples

Adaptive choice of m and n1, . . . , nmChoose εk = 2−k and hk such that ν((−hk , hk)c) = 2k .Given δ > 0, determine m and n1, . . . , nm such that

E[|S(f )− S(f )|2] = |E[f (Y )− f (Y (m))]︸ ︷︷ ︸=bias(f (Y (m)))

|2 + Var(S(f )) ≤ δ2.

First step: Estimate expectations E[D(1)], . . . ,E[D(5)] and variancesVar(D(1)), . . . ,Var(D(5)).

−5

−4

−3

−2

−1

level k

log 1

0(bia

s k) a

nd lo

g 10(v

ark)

1 2 3 4

Bias and variance estimation for α=0.5

● = bias= variance

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

level k

log 1

0(bia

s k) a

nd lo

g 10(v

ark)

1 2 3 4 5

Bias and variance estimation for α=0.8

● = bias= variance

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 13 / 17

Page 41: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Result and Examples

Adaptive choice of m and n1, . . . , nmChoose εk = 2−k and hk such that ν((−hk , hk)c) = 2k .Given δ > 0, determine m and n1, . . . , nm such that

E[|S(f )− S(f )|2] = |E[f (Y )− f (Y (m))]︸ ︷︷ ︸=bias(f (Y (m)))

|2 + Var(S(f )) ≤ δ2.

First step: Estimate expectations E[D(1)], . . . ,E[D(5)] and variancesVar(D(1)), . . . ,Var(D(5)).

−5

−4

−3

−2

−1

level k

log 1

0(bia

s k) a

nd lo

g 10(v

ark)

1 2 3 4

Bias and variance estimation for α=0.5

● = bias= variance

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

level k

log 1

0(bia

s k) a

nd lo

g 10(v

ark)

1 2 3 4 5

Bias and variance estimation for α=0.8

● = bias= variance

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 13 / 17

Page 42: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Result and Examples

Adaptive choice of m and n1, . . . , nm

Highest level of accuracy m:

E[D(1)], . . . ,E[D(5)] together with extrapolation give control of thebias(f (Y (k))) for k ∈ N.

Choose m such that

|bias(f (Y (m)))|2 ≤ δ2

2.

Replication numbers n1, . . . , nm:

Var(D(1)), . . . ,Var(D(5)) together with extrapolation give control ofVar(D(k)) for k = 1, . . . ,m.

Choose n1, . . . , nm with minimal cost(S) such that

Var(S) =m∑

k=1

Var(D(k))

nk≤ δ2

2.

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 14 / 17

Page 43: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Result and Examples

Adaptive choice of m and n1, . . . , nm

Highest level of accuracy m:

E[D(1)], . . . ,E[D(5)] together with extrapolation give control of thebias(f (Y (k))) for k ∈ N.

Choose m such that

|bias(f (Y (m)))|2 ≤ δ2

2.

Replication numbers n1, . . . , nm:

Var(D(1)), . . . ,Var(D(5)) together with extrapolation give control ofVar(D(k)) for k = 1, . . . ,m.

Choose n1, . . . , nm with minimal cost(S) such that

Var(S) =m∑

k=1

Var(D(k))

nk≤ δ2

2.

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 14 / 17

Page 44: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Result and Examples

Adaptive choice of m and n1, . . . , nm

Highest level of accuracy m:

E[D(1)], . . . ,E[D(5)] together with extrapolation give control of thebias(f (Y (k))) for k ∈ N.

Choose m such that

|bias(f (Y (m)))|2 ≤ δ2

2.

Replication numbers n1, . . . , nm:

Var(D(1)), . . . ,Var(D(5)) together with extrapolation give control ofVar(D(k)) for k = 1, . . . ,m.

Choose n1, . . . , nm with minimal cost(S) such that

Var(S) =m∑

k=1

Var(D(k))

nk≤ δ2

2.

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 14 / 17

Page 45: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Result and Examples

Adaptive choice of m and n1, . . . , nm

Highest level of accuracy m:

E[D(1)], . . . ,E[D(5)] together with extrapolation give control of thebias(f (Y (k))) for k ∈ N.

Choose m such that

|bias(f (Y (m)))|2 ≤ δ2

2.

Replication numbers n1, . . . , nm:

Var(D(1)), . . . ,Var(D(5)) together with extrapolation give control ofVar(D(k)) for k = 1, . . . ,m.

Choose n1, . . . , nm with minimal cost(S) such that

Var(S) =m∑

k=1

Var(D(k))

nk≤ δ2

2.

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 14 / 17

Page 46: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Result and Examples

Adaptive choice of m and n1, . . . , nmExpample of n1, . . . , nm with α = 0.5.

Precisions δ = (0.003, 0.002, 0.001, 0.0006, 0.0003).

Highest levels m = (3, 3, 4, 4, 5).

3

4

5

6

level k

log 1

0((nk))

1 2 3 4 5

Replication numbers for αα = 0.5

precision δδ:

= 0.003= 0.002= 0.001= 6e−04= 3e−04

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 15 / 17

Page 47: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Result and Examples

Adaptive choice of m and n1, . . . , nmExpample of n1, . . . , nm with α = 0.8.

Precisions δ = (0.01, 0.004, 0.002, 0.001, 0.0007).

Highest levels m = (4, 5, 6, 7, 7).

2

3

4

5

6

level k

log 1

0((nk))

1 2 3 4 5 6 7

Replication numbers for αα = 0.8

precision δδ:

= 0.01= 0.004= 0.002= 0.001= 7e−04

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 15 / 17

Page 48: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Result and Examples

Adaptive choice of m and n1, . . . , nmExpample of n1, . . . , nm with α = 1.2.

Precisions δ = (0.02, 0.01, 0.007, 0.005, 0.0035).

Highest levels m = (7, 8, 9, 10, 11).

2.0

2.5

3.0

3.5

4.0

4.5

5.0

level k

log 1

0((nk))

1 2 3 4 5 6 7 8 9 10 11

Replication numbers for αα = 1.2

precision δδ:

= 0.02= 0.01= 0.007= 0.005= 0.0035

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 15 / 17

Page 49: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Result and Examples

Empirical relation of error and cost

α = 0.5 0.8 1.2MLMC 0.47 0.46 0.38MC 0.45 0.34 0.23

4.5 5.0 5.5 6.0 6.5 7.0

−3.5

−3.0

−2.5

−2.0

log10((cost))

log 1

0((err

or))

Error and cost of MLMC and classical MC

= MLMC= MC

αα= 0.5= 0.8= 1.2

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 16 / 17

Page 50: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Result and Examples

Summary and Conclusions

Summary:

Multilevel algorithm for a wide class of functionals and processes.

Up to log’s asymptotically optimal for Blumenthal-Getoor-index β ≤ 1.

Heuristics to achieve desired precision δ > 0.

Numerical results match the analytical results.

Improvement for β ≥ 1 via Gaussian correction, see Dereich [2010].

Work to do:

Further examples of Levy processes.

Implementation of the ML-algorithm with Gaussian correction.

The gap between the upper and lower bound for β > 1.

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 17 / 17

Page 51: Multilevel Monte Carlo for Lévy Driven SDEsparallel.bas.bg/dpa/IMACS_MCM_2011/Talks/Felix_Heidenreich.pdf · Multilevel Monte Carlo for L evy Driven SDEs Felix Heidenreich TU Kaiserslautern

Result and Examples

Summary and Conclusions

Summary:

Multilevel algorithm for a wide class of functionals and processes.

Up to log’s asymptotically optimal for Blumenthal-Getoor-index β ≤ 1.

Heuristics to achieve desired precision δ > 0.

Numerical results match the analytical results.

Improvement for β ≥ 1 via Gaussian correction, see Dereich [2010].

Work to do:

Further examples of Levy processes.

Implementation of the ML-algorithm with Gaussian correction.

The gap between the upper and lower bound for β > 1.

F. Heidenreich (TU Kaiserslautern) MLMC for Levy Driven SDEs August 2011 17 / 17