32
1 Towards the Technical Proposal, to be submitted to SPS-C Luca Stanco, on behalf of NESSiE Collaboration February, 15, 2012 Middle January: 1rst meeting/Organization End of January: Intermediate Work-Out Meeting (many meetings hold on) Middle February: End of Work/Start of TP drafting End of February: Intermediate Drafting Meeting Middle of March: TP document ready

NESSiE

  • Upload
    mahina

  • View
    39

  • Download
    0

Embed Size (px)

DESCRIPTION

NESSiE. Towards the Technical Proposal, to be submitted to SPS-C. Luca Stanco, on behalf of NESSiE Collaboration February, 15, 2012. Middle January: 1rst meeting/Organization End of January : Intermediate Work-Out Meeting (many meetings hold on) - PowerPoint PPT Presentation

Citation preview

Page 1: NESSiE

1

Towards the Technical Proposal, to be submitted to SPS-C

Luca Stanco, on behalf of NESSiE CollaborationFebruary, 15, 2012

Middle January: 1rst meeting/Organization

End of January: Intermediate Work-Out Meeting (many meetings hold on)

Middle February: End of Work/Start of TP drafting

End of February: Intermediate Drafting Meeting

Middle of March: TP document ready

Page 2: NESSiE

2

Content

- Working Areas/ Sharing of responsabilities

- Next Steps

1) Mechanics

1) Detectors/Electronics/DAQ

2) Prototypes

Page 3: NESSiE

GOAL/Problematiche

Sviluppare un DESIGN STUDY per un Rivelatore a 2 Moduli

- economico - quasi nessun R&D - veloce nei tempi di costruzione - totalmente compatibile con la proposta ICARUS (LAr) - autosufficiente - massimizzare l’output di Fisica

3

Gli Spectrometri sono essenziali per: - Identificazione della carica - controllo degli errori sistematici - chiara separazione di neutrini e anti-neutrini

Page 4: NESSiE

4

Issues considered/decided-upon in the last month

0) PIT definition and acknowledgement

1)Allow 100 cm for Magnet in Air and related detectors

1)Choose RPC with analog Read-Out for latter case

1)Assembling of Iron structure displaced of 500 cm from final position

4) Assembling of Air Magnet+Detectors in separate HALL

5) Construct a full prototype (MagnetS + Detectors + Electronics) similar to NEAR transverse view (1/2 height) with 5+5 iron slabs

Page 5: NESSiE

5

The general layout for the FAR site experimental hall is given in Fig. M1. The LAr detector is shown in yellow. The neutrino beam is entering the experimental hall for the LAr direction. Downstream, the air magnet part of the NESSIE spectrometer is shown in pink. The air magnet allows to track muonsemerging with low momentum

from the LAr volume. Further downstream, the iron magnet

is shown in red. This second part is designed to track higher momentum muons.

For safety reasons the LAr and the spectrometer volumes are separated by a containment wall shown in blue in Fig. M1. Fig. M1 shows also 2 of the 4 cranes needed for detector assembly and the expected location of the LAr cryo. plant and of the spectrometer gas system.

Page 6: NESSiE

6

FAR Hall

Fig. M2: preliminary details about the occupancy of the FAR experimental hall.

Page 7: NESSiE

7

NEAR Hall

Fig. M4: preliminary details about the occupancy of the NEAR experimental hall.

Page 8: NESSiE

“A slope of 1.23% has been constructed, mimicking the slope of the LEP/LHC tunnel at point 5.”

high-pressure air pads(30 bars)

8

Checked it is viablefor NESSiE Iron Magnet

Page 9: NESSiE

9

FAR NEAR

Iron Magnet

Page 10: NESSiE

10

Page 11: NESSiE

11

Other details: kind of material, chemical composition and mechanical characteristics

Material: S 235 JRG2 EN10025+A1(table)

Page 12: NESSiE

z

coil

xz

y

Campo magnetico nel ferro e in aria (sezione yz ; metà superiore) potenziale vettore

(Wb/m)

IronTop

CM (T)

z (m)

y (m)

AIR CM: 0.2 T (30 cm)Bobina sezione rettangolare : 54 mm x 19 mm170 (2 strati) avvolgimenti lungo y, densità corrente 4 A/mm2

Resistenza totale : 0.1 OhmVoltage : 700 V, Potenza 4.9 MW.

Distanza bobina – Iron Spectro : 40 cm

Page 13: NESSiE

z (m)

B (T)Simulation shows that the Magnetic Fields are perfectly contained

Page 14: NESSiE

14

PROTOTYPE

3 major issues to clarify:

1) interplay between magnetic fields and electronics of the detectors

2) interplay between Air and Iron magnetic fields (simulation ok but check compatibility with LAr instrumentation)

3) verify viability of mechanical structure (assembling and in-situ displacement) and cooling (Air magnet consumption about 5 MW)

To be build in Lecce (see next slide)

Page 15: NESSiE

1) MAGNETE IN ARIA (Coils – raffreddamento – strutture – etc.)

2) PROTOTIPO

3) SPETTROMETRI (NEAR & FAR)

3.1) TOP – BOTTOM – LAMIERE – STRUTTURE SUPP. (Progettazione – gare d’appalto – supervisione realizzazione – coordinamento installazione)

3.2) BOBINE – RAFFREDDAMENTO BOBINE (Progettazione – gare d’appalto – supervisione realizzazione)

3.3) STRUTTURA ASSEMBLAGGIO SPETTROMETRI (Progettazione – gare d’appalto – supervisione alla realizzazione)

3.4) TOOLS MONTAGGIO (Progettazione – supervisione alla realizzazione)

3.5) RIVELATORI “RPC”

3.6) RIVELATORI “HPT”

FRASCATI

4) INTEGRAZIONE GENERALE “ NESSIE” – COORDINAMENTO “NESSIE – CERN”

BOLOGNA

LECCE

PADOVA

PADOVA

LECCE

?

?

3.7) INTEGRAZIONE – COORDINAMENTO INSTALLAZIONE

BOLOGNA

NESSIE: TENTATIVO ORGANIZZAZIONE CAPITOLI MECCANICA SPETTROMETRI NEAR & FAR

Page 16: NESSiE

regime di lavoro standard:•miscela: Ar (75.4 %), R124A (freon, 20 %), ISOB (4.0 %), SF6 (0.6 %), 5refills/day•tensione di lavoro: 5700 V @ 900 mB corretti per le variazioni pressione•soglie sui discriminatori:

• - 40 mV per le strip verticali (31 Ohm)• + 26 mV per le strip orizzontali (24 Ohm)

•discriminatore sopra soglia, segnale di FAST_OR (16 strips adiacenti), controller board legge la FEB e time-stampa il segnale di FAST_OR , controller board inoltra i dati al «run manager» (software trigger) •condizione di trigger «di alto livello» del «run manager» per gli RPC: coincidenza di 3 piani / controller board su 22 usando un intervallo temporale di 200 ns, acquisizione dell’evento•monitoring delle efficienze ogni 12 ore usando i raggi cosmiciil trigger con la coincidenza di 3 piani su 22 consente di acquisire cosmici senza eccessivo dead time, cosmici utili se non indispensabili per verificare il corretto funzionamento del rivelatore in assenza di fascio•efficienza *accettanza misurata integrando sui 2 spettrometri (44 piani): 90 %

One page summary sugli RPC digitali di OPERA

Page 17: NESSiE
Page 18: NESSiE

18

WHICH detector for the Air Magnet ?

⇒ACCEPTANCE is critical !

On top of resolution (≲ 1 mm) …

Page 19: NESSiE

19

3 strips contain 85% of the total chargeinduced on the cathode (X) and 91% of

the total charge induced on the anode (Y)

X

Y

RPC with analog read-out seems the best solution in term of resolution/costs

Page 20: NESSiE

20

RPC with analog Read-Out for the Air Magnet: assembling

Two options:

1) large area (8x5 m2) sandwiched with honeycomb layers (à la OPERA)PRO: homogeneity (expecially for dE/dx)CONS: never tried

2) fully equipped alluminium-framed chambersPRO: positive past experience (e.g. CMS)CONS: inhomogeneity

Page 21: NESSiE

21

CMS experience

Page 22: NESSiE

22

Stima preliminare costi complessivi NESSiE-PS (in K€)(stima errore 20% su singolo valore)

2012: NESSiE, 80 K per R&D

2013: 2,500 (Apparati) + 200 (Consumi) + 150 (Missioni) = 2,850

2014: 4,300 (Apparati) + 350 (Consumi) + 300 (Missioni) = 4,950

2015: 1,500 (Apparati) + 250 (Consumi) + 350 (Missioni) = 2,100

2016: 0 (Apparati) + 300 (Consumi) + 250 (Missioni) = 550===================================================TOT: 8,300 (Apparati) + 1,100 (Consumi) + 1,050 (Missioni) = 10,450

Legenda “Apparati”: nel 2013 (Magnete-FAR), nel 2014 (rivelatori+Mag.NEAR), nel 2015 (DAQ)(vedi tab. 11 del Proposal SPSC-P-343)

Recupero “OPERA” su “Apparati” (70% valore originale):nel 2013: 1,500 (Ferro), nel 2014: 1000 (Ferro) + 1,850 (rpc+strips) = 4,350

Risultato: 6,100 – 10,450

Page 23: NESSiE

Tempistica Futura

MARZO 2012: preparazione di un Report TECNICO congiunto NESSiE+LAr

GIUGNO 2012: approvazione dell’esperimento da parte del CERN

SETTEMBRE 2012: richieste alla Commissione II per il 2013

GENNAIO 2013: Inizio gare e inizio produzione (NEAR 6 mesi dopo)

SETTEMBRE 2013: Inizio assemblaggio FAR (= T0, vedi dopo)

SETTEMBRE 2014: Inizio assemblaggio NEAR

GIUGNO 2015: Fine istallazione

23

Page 24: NESSiE

24

Sharing per Technical Proposal

1) Meccanica: LNF, BO, PD, LE

2) Rivelatori: PD, LNF…

3) Elettronica: BA, LE, PD

4) DAQ: PD, BO

DEFINIRE un TEMPO ZERO !

e.g. T0 = starting of 1rst Installation Item at CERN (Sep.2013 for SS)

TDT= Ready to take data: November 2015 for the Spectrometers

Page 25: NESSiE

25

Prossime RiunioniMechanics: 22 Febbraio (Genova) 13 March (Bologna)

RPC/Elettronics/DAQ: next week

Draft Tech.Prop.

1) Mechanics: General Structure Iron Magnet Air Magnet

2) Detectors: RPC in Iron Magnet RPC in Air Magnet Electronics (Iron and Air)

3) Prototypes: Magnets+Detectors+Electronics

Work out the different items in 1 and 2 week time

Page 26: NESSiE

26

BACKUP / OLD SLIDES

Page 27: NESSiE

27

➱ DUE Spectrometri “à la OPERA”, ottimizzati per le accettanze (recupero di contingenze: 300+300 rivelatori RPC 3 m2

possibile recupero di FERRO/Elettronica proprietà dell’ INFN)

750

cm

900 cm 500 cm

1800 + 700 m2 RPC20,000+12,000 digital channelsPrecision Trackers

FAR

NEAR600 cm50

0 cm

Page 28: NESSiE

28

Need to go to the lowest possible muon momentum (≈ 500 MeV) with best sensitive charge Id at low energy

➯ add coils for B in air

➯ dE/dx measure ➯ long lever-arm (add iron slabs)

Need to beat Multiple Scattering and Detector Resolutionaver a large E range:

Page 29: NESSiE

29

As a summarySPECTROMETERS complementing the LAr capabilities in measuring the muon momentum would provide valuable information in:

– measuring νμ disappearance in the full momentum range, which is a key ingredient for rejecting existing anomalies at exceeding ’s. or measuring the whole parameter space of sterile neutrino oscillations, i.e. prove sterile neutrino existence;

– measuring the neutrino flux at the close detector in the full muon momentum range, relevant to keep the systematic errors at the lowest possible values.

ALSO the measurement of the muon charge would provide valuableinformation in:

– separating μ from anti-μ in the anti-neutrino beam (where the μ contamination is large). A critical issue is to fully exploit the experimental capability of observing any difference between νμ → νe and anti-νμ → anti-νe (CP violation signature).

Page 30: NESSiE

30

21+21 Fe-5 cm slabs-3 cm RPC

Dario Orecchini

Page 31: NESSiE

31

MAGNETE in FERRO

MAGNETE in ARIA

Page 32: NESSiE

32

R. Arnaldi et al. “SpatialResolution of RPC in streamermode”, Nucl. Instr. & Meth.A 490 (2002) 51

HV

gas

The center-of-gravity method with analog readout is well justifiedby the charge profile:

- Gaussian shape with a width of ~ 5 mm- gas mixture and HV do not change these features- total charge depends strongly on gas mixture and HV

Cosmic ray test with ADC read-out and thin strips (2 mm)