16
OPTIMIZED SOLENOID BASED CAPTURE MECHANISM FOR A MUON COLLIDER/NEUTRINO FACTORY TARGET SYSTEM HISHAM KAMAL SAYED Physics Department BROOKHAVEN NATIONAL LABORATORY HIGGS FACTORY UCLA MARCH 22 2013

OPTIMIZEDSOLENOIDBASEDCAPTUREMECHANISMFORA) … · 13/22/13 Hisham)Sayed);)Higgs)factory)UCLA) 9. MOREC OOLING?! 0 2000 4000 6000 8000 10000 12000 0 50 100 150 200 250 300 350 Muon+/proton

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: OPTIMIZEDSOLENOIDBASEDCAPTUREMECHANISMFORA) … · 13/22/13 Hisham)Sayed);)Higgs)factory)UCLA) 9. MOREC OOLING?! 0 2000 4000 6000 8000 10000 12000 0 50 100 150 200 250 300 350 Muon+/proton

OPTIMIZED  SOLENOID  BASED  CAPTURE  MECHANISM  FOR  A  MUON  COLLIDER/NEUTRINO  FACTORY  TARGET  SYSTEM  

HISHAM  KAMAL  SAYED  Physics  Department  

BROOKHAVEN  NATIONAL  LABORATORY  

HIGGS  FACTORY  UCLA                      MARCH  22  2013  

Page 2: OPTIMIZEDSOLENOIDBASEDCAPTUREMECHANISMFORA) … · 13/22/13 Hisham)Sayed);)Higgs)factory)UCLA) 9. MOREC OOLING?! 0 2000 4000 6000 8000 10000 12000 0 50 100 150 200 250 300 350 Muon+/proton

LAYOUT  

1-­‐  Introducing  Muon  Collider  Target  &  Front  END    3-­‐  Capture  Solenoid  Field  Study:  QuesNons  that  needs  answers    

u     What  are  the  target  Solenoid  parameters  that  affect  the  parNcle  Capture  &  Transmission  at  target  or  aTer  cooling  

u     Can/How  Capture  Solenoid  change  the  quanNty  &  quality  of  captured  parNcles  ?!  u   Does  the  Nme  of  arrival  affect  the  efficiency  of  the  capturing  mechanism?  u   Does  the  proton  bunch  length  influence  the  muon/proton  yield  at  the  end  of  the  cooling  channel  ?      

 4-­‐  Muon  yield  at  end  of  decay  channel  5-­‐  Muon  yield  at  end  of  cooling  channel  6-­‐  Taper  scan  7-­‐  Time  of  arrival  dependence  &  Nme  scan  8-­‐  Results  of  taper  &  TOA  opNmizaNon  

Hisham  Sayed  -­‐  Higgs  factory  UCLA  13/22/13  

2  

Page 3: OPTIMIZEDSOLENOIDBASEDCAPTUREMECHANISMFORA) … · 13/22/13 Hisham)Sayed);)Higgs)factory)UCLA) 9. MOREC OOLING?! 0 2000 4000 6000 8000 10000 12000 0 50 100 150 200 250 300 350 Muon+/proton

MUON  COLLIDER/NEUTRINO  FACTORY  LAYOUT  

Target  System  Solenoid:  Capture  µ±  of  energies  ~  100-­‐400  MeV  from  a  4-­‐MW  proton  beam  (E  ~  8  GeV).  

Hisham  Sayed  -­‐  Higgs  factory  UCLA  13/22/13  

3  

Page 4: OPTIMIZEDSOLENOIDBASEDCAPTUREMECHANISMFORA) … · 13/22/13 Hisham)Sayed);)Higgs)factory)UCLA) 9. MOREC OOLING?! 0 2000 4000 6000 8000 10000 12000 0 50 100 150 200 250 300 350 Muon+/proton

TARGET  SYSTEM  CURRENT  BASELINE  DESIGN  

Ø  ProducNon  of  1014  µ/s  from  1015  p/s  (≈  4  MW  proton  beam)  

Ø  Capturing  low  energy  π's    Ø  Solenoid  coils  can  be  some  distance  from  proton  beam.    

Ø  ≥  10-­‐year  life  against  radiaNon  damage  at  4  MW.  Ø  Proton  beam  readily  Nlted  with  respect  to  magneNc  

axis.  Ø  ⇒  Beam  dump  (mercury  pool)  out  of  the  way  of  

secondary  π's  and  µ's.  Ø  Shielding  of  the  superconducNng  magnets  from  

radiaNon  is  a  major  issue.  Ø  Magnet  stored  energy  ~  3  GJ  

     SC  magnets  

ResisNve  magnets  

Proton  beam  and  Mercury  jet  

Tungsten  beads  

Mercury  collecNon  pool  With  splash  miNgator  

5-­‐T  copper  magnet  insert;  10-­‐T  Nb3Sn  coil  +    5-­‐T  NbTi  outsert.  Desirable  to  eliminate  the  copper  magnet  (or  replace  by  a  20-­‐T  HTS  insert).  

Ø Hg  Target  Ø  θTarget=0.137  rad  Ø  RTarget=0.404  cm  

Ø Proton  Beam  Ø  E=8  GeV  Ø  θBeam=0.117  rad  Ø  σx=σy=0.1212  cm  (Gaussian  DistribuNon)  

Ø Solenoid  Field  Ø  IDS120h    à  20  T  peak  field  at  target  posiNon  (Z=-­‐37.5)  Ø  Aperture  at  Target  R=7.5  cm    -­‐  End  aperture  R  =  30  cm  Ø  Fixed  Field  Z  =  15  m    à  Bz=1.5  T      

Ø ProducNon:  Muons  within  energy  KE  cut  40-­‐180  MeV  end  of  decay  channel  

Ø  Nμ+π+κ/NP=0.3-­‐0.4  Hisham  Sayed  -­‐  Higgs  factory  UCLA  13/22/13  

4  

Page 5: OPTIMIZEDSOLENOIDBASEDCAPTUREMECHANISMFORA) … · 13/22/13 Hisham)Sayed);)Higgs)factory)UCLA) 9. MOREC OOLING?! 0 2000 4000 6000 8000 10000 12000 0 50 100 150 200 250 300 350 Muon+/proton

TAPERED  TARGET  SOLENOID    

0

5

10

15

20

0 5 10 15 20 25 30 35

Bz

[T]

z [m]

Ltaper= 5 [m]Ltaper=15 [m]Ltaper=25 [m]Ltaper=35 [m]

0

5

10

15

20

0 5 10 15 20 25 30 35

Bz

[T]

z [m]

Ltaper= 5 [m]Ltaper=15 [m]Ltaper=25 [m]Ltaper=35 [m]

0

5

10

15

20

0 5 10 15 20 25 30 35

Bz

[T]

z [m]

Ltaper= 5 [m]Ltaper=15 [m]Ltaper=25 [m]Ltaper=35 [m]

0

5

10

15

20

0 5 10 15 20 25 30 35

Bz

[T]

z [m]

Ltaper= 5 [m]Ltaper=15 [m]Ltaper=25 [m]Ltaper=35 [m]

0

5

10

15

20

0 5 10 15 20 25 30 35

Bz

[T]

z [m]

Ltaper= 5 [m]Ltaper=15 [m]Ltaper=25 [m]Ltaper=35 [m]

0

5

10

15

20

0 5 10 15 20 25 30 35

Bz

[T]

z [m]

Ltaper= 5 [m]Ltaper=15 [m]Ltaper=25 [m]Ltaper=35 [m]

0 5

10 15

20 25

30 35 0

0.05 0.1

0.15 0.2

0.25 0.3

0.35 0.4

0.45 0.5

0 2 4 6 8

10 12 14 16 18 20

Bz(

z,R

) [T

]

z [m]

R [m]

Bz(

z,R

) [T

]

Inverse-­‐Cubic  Taper    Bz (0, zi < z < z f ) =

B1[1+ a1(z− z1)+ a2 (z− z1)

2 + a3(z− z1)3]p

a1= − B1'

pB1a2 = 3

(B1 / B2 )1/p −1

(z2 − z1)2 −

2a1z2 − z1

a3 = −2(B1 / B2 )

1/p −1(z2 − z1)

3 +a1

(z2 − z1)2

Bz (r, z) = (−1)nn∑ a0

(2n) (z)(n!)2

( r2)2n

Off-­‐axis  field    approximaNon   Br (r, z) = (−1)n+1n∑ a0

(2n+1)(z)(n+1)(n!)2

( r2)2n+1

a0(n) =

dna0dzn

=dnBz (0, z)

dzn

1.5  T   2.5  T   3.5  T  

1.5  T   2.5  T   3.5  T  

5  

Page 6: OPTIMIZEDSOLENOIDBASEDCAPTUREMECHANISMFORA) … · 13/22/13 Hisham)Sayed);)Higgs)factory)UCLA) 9. MOREC OOLING?! 0 2000 4000 6000 8000 10000 12000 0 50 100 150 200 250 300 350 Muon+/proton

MARS  SIMULATIONS  &  TRANSMISSION  

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250 300

N [

Muon

s]

Z [m]

Ltaper= 4.00 m n1Ltaper= 12.00 m n1Ltaper= 24.00 m n1Ltaper= 40.00 m n1Ltaper= 4.00 m n0

Ltaper= 12.00 m n0Ltaper= 24.00 m n0Ltaper= 40.00 m n0

Ltaper= 4.00 m NLtaper= 12.00 m NLtaper= 24.00 m NLtaper= 40.00 m N

Nmuons{Good}  

Nmuons{Pz  cut}  

Nmuons{All  cuts}  

Good  parNcles  condiNons/cuts  Ø  Survived  the  buncher-­‐phase  rotator  and  cooling  

secNons  Ø  AcceleraNon  acceptance  cuts  

Ø  0.1  <Pz<  0.3  GeV      Ø  Transverse  cut  R  <  0.03  m      Ø  Longitudinal  cut  <  0.015  m  

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

500 1000 1500 2000 2500 3000 3500 4000 4500

N[m

uons

]/N[p

]

Zend [m]

Bz=20 -> 1.5 T15 -> 1.5 T

15 -> 1.66 T15 -> 1.8 T

MARS  simulaNon  results  CounNng  muons  at  50  m  with  K.E.  80-­‐140  MeV   MARS-­‐ICOOL  simulaNon  results  

CounNng  muons  at  various  z  

Ltaper  [cm]  

rfinal=30  cm  

Rini=7.5-­‐10  cm  

Bi=20-­‐15  T  

Hisham  Sayed  -­‐  Higgs  factory  UCLA  13/22/13  

6  

Page 7: OPTIMIZEDSOLENOIDBASEDCAPTUREMECHANISMFORA) … · 13/22/13 Hisham)Sayed);)Higgs)factory)UCLA) 9. MOREC OOLING?! 0 2000 4000 6000 8000 10000 12000 0 50 100 150 200 250 300 350 Muon+/proton

PHASE  SPACE  DISTRIBUTIONS  (SHORT  VERSUS  LONG  TAPER)  

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Meson/Proton

R [m]

Bz=20-1.5 z=50

Ltaper=4.00Ltaper=40.00

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 0.5 1 1.5 2 2.5 3

Meson/Proton

Pz [GeV/c]

Bz=20-1.5 z=50 m

Ltaper=4.00 Ltaper=40.00

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0 0.05 0.1 0.15 0.2 0.25

Meson/Proton

Pt [GeV/c]

Bz=20-1.5 z=50

Ltaper=4.00 Ltaper=40.00

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0 1 2 3 4 5 6 7

Meson/Proton

Ptotal [GeV/c]

Bz=20-1.5 z=50 m

Ltaper=4.00 Ltaper=40.00

π  Good  μ  

All  μ  

Good  μ  

All  μ  

Good  μ  

All  μ  

Good  μ  

All  μ  

No  difference  between  short  &  long  solenoid  taper  produced  parNcles  Hisham  Sayed  -­‐  Higgs  factory  UCLA  13/22/13  

7  

Page 8: OPTIMIZEDSOLENOIDBASEDCAPTUREMECHANISMFORA) … · 13/22/13 Hisham)Sayed);)Higgs)factory)UCLA) 9. MOREC OOLING?! 0 2000 4000 6000 8000 10000 12000 0 50 100 150 200 250 300 350 Muon+/proton

PHASE  SPACE  DISTRIBUTIONS  (SHORT  VERSUS  LONG  TAPER)  

0

0.2

0.4

0.6

0.8

1

160 180 200 220 240 260 280 300

Pz [GeV/c]

T [nsec]

Bz=20-1.5 z=50 m

Ltaper=4.00 GoodLtaper=40.00 Good

Short  T

aper  

Long  Taper  

Short  Taper  

Long  Taper  

T-­‐Pz  CorrelaNons  at  end  of  decay  channel  

Good  ParNcles  

Long  Solenoid  taper:    Ø  More  parNcles  Ø  More  dispersed  (misses  the  buncher  

acceptance  windows)    Short  Solenoid  taper:  more  condensed  distribuNons  that  fits  more  parNcles  within  the  acceptance  window)    

Hisham  Sayed  -­‐  Higgs  factory  UCLA  13/22/13  

8  

Page 9: OPTIMIZEDSOLENOIDBASEDCAPTUREMECHANISMFORA) … · 13/22/13 Hisham)Sayed);)Higgs)factory)UCLA) 9. MOREC OOLING?! 0 2000 4000 6000 8000 10000 12000 0 50 100 150 200 250 300 350 Muon+/proton

PERFORMANCE  DEPENDENCE  ON  TIME  OF  ARRIVAL  

0

0.02

0.04

0.06

0.08

0.1

0.12

0 50 100 150 200 250 300

Muon+/proton

Z [m]

Bz=15-1.5T Ltaper= 5.000

DTOA=2.044e-09 DTOA=4.044e-09 DTOA=6.544e-09

DTOA=1.1544e-08

0

0.02

0.04

0.06

0.08

0.1

0.12

0 50 100 150 200 250 300

Muon+/proton

Z [m]

Bz=20-1.5T Ltaper= 5.000

DTOA=2.044e-09 DTOA=4.044e-09 DTOA=6.544e-09

DTOA=1.1544e-08

0

200

400

600

800

1000

1200

1400

1600

1800

0 2 4 6 8 10

Meson/Proton

Time [nsec]

t=2.044e-09 sect=2.544e-09 sect=3.044e-09 sect=3.544e-09 sect=4.044e-09 sec

t=4.544e-09 sec -BSLINEt=5.044e-09 sect=5.544e-09 sect=6.044e-09 sect=6.544e-09 sec

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-5 0 5 10 15

MARS1015 2012OLDOLD

TOA  Proton

s  at  z=-­‐200  cm

 

TOA  Proton

s  at  z=-­‐75  cm  

Hisham  Sayed  -­‐  Higgs  factory  UCLA  13/22/13  

9  

Page 10: OPTIMIZEDSOLENOIDBASEDCAPTUREMECHANISMFORA) … · 13/22/13 Hisham)Sayed);)Higgs)factory)UCLA) 9. MOREC OOLING?! 0 2000 4000 6000 8000 10000 12000 0 50 100 150 200 250 300 350 Muon+/proton

MORE  COOLING  ?!  

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250 300 350

Muon+/proton

z [m]

Ltaper vs. n1 B=20-1.5T

TOA=8.80321e-10 Ltaper=2.00TOA=3.80343e-10 Ltaper=4.00TOA=8.80321e-10 Ltaper=6.00TOA=8.80321e-10 Ltaper=8.00

TOA=8.80321e-10 Ltaper=12.00TOA=8.80321e-10 Ltaper=20.00

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250 300 350Muon+/proton

z [m]

TOA vs. End n1 Ltaper=8 m B=20-1.5T

TOA=5.38012e-09TOA=4.88014e-09TOA=3.88019e-09TOA=2.88023e-09TOA=1.88028e-09TOA=1.3803e-09

TOA=8.80321e-10TOA=3.80343e-10

TOA=-6.19613e-10TOA=-1.61957e-09TOA=-2.11955e-09TOA=-3.1195e-09

TOA=-4.11946e-09

Baseline  cooling  end  140  cell  (z=265  m)  

For  every  taper  length  opNmized  TOA   For  8  m  taper  length  TOA  scan  

Hisham  Sayed  -­‐  Higgs  factory  UCLA  13/22/13  

10  

Page 11: OPTIMIZEDSOLENOIDBASEDCAPTUREMECHANISMFORA) … · 13/22/13 Hisham)Sayed);)Higgs)factory)UCLA) 9. MOREC OOLING?! 0 2000 4000 6000 8000 10000 12000 0 50 100 150 200 250 300 350 Muon+/proton

TIME  &  TAPER  LENGTH  SCAN  

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0 5 10 15 20 25 30 35 40

Muon+/proton

Taper Length [m]

Max n1 voer z

Bz=20->1.5TBz=15->1.5TBz=15->2.0TBz=15->2.5T

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0 5 10 15 20 25 30 35 40

Muon+/proton

z [m]

Ltaper vs. n1

B=20-1.5TB=15-1.5TB=15-2.0TB=15-2.5T

Using  baseline  cooling  secNon    (140  cooling  cell)  

Using  longer  cooling  secNon    (200  Cooling  cell)  

Hisham  Sayed  -­‐  Higgs  factory  UCLA  13/22/13  

11  

Page 12: OPTIMIZEDSOLENOIDBASEDCAPTUREMECHANISMFORA) … · 13/22/13 Hisham)Sayed);)Higgs)factory)UCLA) 9. MOREC OOLING?! 0 2000 4000 6000 8000 10000 12000 0 50 100 150 200 250 300 350 Muon+/proton

TIME  &  TAPER  LENGTH  SCAN  

-5

-4

-3

-2

-1

0

1

2

0 5 10 15 20 25 30 35 40

Time of Arrival [nsec]

Target Solenoid Taper Length [m]

B=20-1.5TB=15-1.5TB=15-2.0TB=15-2.5T

TOA  for  opNmum  throughput  at  end  of  cooling  for  each  capture  solenoid    case  

Hisham  Sayed  -­‐  Higgs  factory  UCLA  13/22/13  

12  

Page 13: OPTIMIZEDSOLENOIDBASEDCAPTUREMECHANISMFORA) … · 13/22/13 Hisham)Sayed);)Higgs)factory)UCLA) 9. MOREC OOLING?! 0 2000 4000 6000 8000 10000 12000 0 50 100 150 200 250 300 350 Muon+/proton

OPTIMIZED  MUON  PRODUCTION  AT  END  OF  FRONTEND  (BPEAK=20-­‐15  T)  

0.04

0.06

0.08

0.1

0.12

0.14

0 2 4 6 8 10

Nmoun/Nproton

Taper Length [m]

Pancake Proton Beam Bzi=20 T

Bz=20-1.5TBz=20-2.0TBz=20-2.5TBz=20-3.5T

Baseline  

Hisham  Sayed  -­‐  Higgs  factory  UCLA  13/22/13  

13  

>%20  

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 2 4 6 8 10

Nmoun/Nproton

Taper Length [m]

Pancake Proton Beam Bzi=15 T

Bz=15-1.5TBz=15-2.0TBz=15-2.5TBz=15-3.5T

Page 14: OPTIMIZEDSOLENOIDBASEDCAPTUREMECHANISMFORA) … · 13/22/13 Hisham)Sayed);)Higgs)factory)UCLA) 9. MOREC OOLING?! 0 2000 4000 6000 8000 10000 12000 0 50 100 150 200 250 300 350 Muon+/proton

MUON  YIELD  VERSUS  END  FIELD  &  BUNCH  LENGTH      

0.11

0.115

0.12

0.125

0.13

0.135

0.14

0 0.5 1 1.5 2 2.5 3 3.5 4

Nmoun/Nproton

Bunch Length [nsec]

Production - Proton Bunch Length

Bi=15  T  

Bi=20  T  

Bunch  length=0  nsec  

0.11

0.115

0.12

0.125

0.13

0.135

0.14

1 1.5 2 2.5 3 3.5 4

Nmoun/Nproton

B end [T]

Production -Final Solenoid Field

Bi=15TBi=20T

Muon  yield  versus  end  field     Muon  yield  versus  Proton  Bunch  Length  

Losses  at  B=3.5T  might  be  due  to  match  to  the  cooling  secNon  

2.5%  loss  per  1  nsec  increase  in  bunch  length  

Baseline   Baseline  

20%  increase  

5%  10%  

Hisham  Sayed  -­‐  Higgs  factory  UCLA  13/22/13  

14  

Page 15: OPTIMIZEDSOLENOIDBASEDCAPTUREMECHANISMFORA) … · 13/22/13 Hisham)Sayed);)Higgs)factory)UCLA) 9. MOREC OOLING?! 0 2000 4000 6000 8000 10000 12000 0 50 100 150 200 250 300 350 Muon+/proton

1-­‐  Target  Solenoid  parameters  that  affect  the  parNcle  Capture  &  Transmission  at  target  or  aTer  cooling  IniNal  peak  Field  –  Taper  length  –  End  Field  2-­‐  Can  Capture  Solenoid  change  the  quanNty  &  quality  of  captured  parNcles  ?!  yes  &  yes                                a-­‐  QuanNty:  More  muons  captured  with  adiabaNc  long  taper  than  short  taper.                                b-­‐  Quality:  Produce  be�er  quality  muons  that  can  be  captured  efficiently  in  the  buncher-­‐phase  rotaNon  secNons.  3-­‐  How  the  capture  solenoid  field  parameters  influence  the  muon  yield                      a-­‐  Peak  field  (changes  quanNty)                      b-­‐  Taper  length  (quality)                      c-­‐  Final  constant  end  field  (quanNty)    4-­‐  Does  the  Nme  of  arrival  affect  the  efficiency  of  the  capturing  mechanism?                      Yes.  Needs  to  be  included  in  the  opNmizaNn  of  the  FE  5-­‐  Does  the  proton  bunch  length  influence  the  muon/proton  yield  at  the  end  of  the  cooling  channel  ?  How?                      Yes,  %2.5  reducNon  per  1  nsec  increase  in  bunch  length.      

CONCLUSION  &  SUMMARY  

Hisham  Sayed  -­‐  Higgs  factory  UCLA  13/22/13  

15  

Page 16: OPTIMIZEDSOLENOIDBASEDCAPTUREMECHANISMFORA) … · 13/22/13 Hisham)Sayed);)Higgs)factory)UCLA) 9. MOREC OOLING?! 0 2000 4000 6000 8000 10000 12000 0 50 100 150 200 250 300 350 Muon+/proton

CONCLUSION  &  SUMMARY  

Ø  The  maximum  yield  requires  taper  length  of  4-­‐5  m  for  all  cases  (20-­‐15T)  

(1.5-­‐3.5T)    for  any  bunch  length.  

Ø  Longer  cooling  channel  is  required  to  reach  maximum  cooling.  

Ø  Higher  end  field  à  more  muon  yield  

Ø  Longer  bunch  à  Less  yield  we  loos  about  2.5%  per  1  nsec  increase  in  bunch  

length.  

Hisham  Sayed  -­‐  Higgs  factory  UCLA  13/22/13  

16