52
Alice Quillen University of Rochester semimajor axes +offset Origin Scenarios for Multiple Planet Systems May, June 2013

Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

Alice Quillen University of Rochester

semi-­‐m

ajor  axes  +o

ffset  

Origin Scenarios for Multiple

Planet Systems

May,  June  2013  

Page 2: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

In collaboration with •  Alex Moore •  Imran Hasan •  Eva Bodman •  Richard Edgar

Page 3: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

Kepler  Observatory  Search  for  Planetary  Transits    

in  Light-­‐curves  (Carter  et  al.  2012)  

Kepler  36b   Kepler  36c  

Page 4: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***
Page 5: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***
Page 6: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

MulLple  planet  systems    

Page 7: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

The  Kepler  MulLple  planet  systems  •  Lower  planet  masses  than  Doppler  (radial  velocity  discovered)  planets  

•  closely  packed,  short  periods,  compact  systems  •  nearly  circular  orbits  •  low  inclinaLons    •  StaLsLcally  significant  number  of  planet  pairs  near  or  in  resonance    

Kepler  planet  candidate  pairs    (Fabrycky  et  al.  astroph  2012)  

period  raLo  

numbe

r  of  pairs  

Page 8: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

Orbital  resonance  

The  raLo  of  orbital  periods  of  two  bodies  are  nearly  equal  to  a  raLo  of  small  integers      

jPa ⇡ kPb

kna ⇡ jnb

k�a � j�b ⇡ constant

using  mean  moLons  (angular  rotaLon  rates)      

integraLng  to  give  a  resonant  angle  

Page 9: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

Three  unique  and  very  different  mulLple  planet  systems  

•  Kepler  36    –  two  transiLng  super-­‐Earth  planets  in  nearby  orbits,  near  the  7:6  resonance  and  with  extreme  density  contrast  around  a  solar  mass  subgiant  

•  HR  8799    (discovered  via  opLcal  imaging)  –  4  massive  super-­‐Jovian  planets,  with  a  debris  disk  in  a  young  system  around  an  A  star,  3  planets  in  a  chain  of  mean  moLon  resonances  4:2:1  

•  KOI  730    (Kepler  candidate  system)  –  4  transiLng  super-­‐Earth  planets  in  a  chain  of  mean  moLon  resonances  around  a  Solar  type  star,  8:6:4:3  commensurability  

Page 10: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

What  do  the  new  systems  tell  us  about  planetary  system  formaLon  and  

evoluLon?  

•  Resonant  systems  can  be  delicate    constraints  on  asteroid/planetesimal  belts  that  can  nudge  planets  out  of  resonance  

•  Resonances  are  narrow.    MigraLon  of  planets  allows  capture  into  resonance    constraints  on  migraLon  processes    –  Pioneering  work  on  this  connecLon  by  Man-­‐Hoi  Lee  in  2002  

Page 11: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

Transit  Timing  VariaLons  Figure:  Agol  et  al.  2004    

•  Length  of  a  transit  gives  a  measurement  for  the  radius  of  a  planet,  not  its  mass.      •  Transit  Lming  variaLons  allow  measurement  of  planet  masses!    •  Compact  or/and  resonant  transiLng  systems  give  measurable  transit  Lming  

variaLons.    Planetary  masses  can  be  confirmed.  •  Both  planetary  masses  and  radii  are  measured  in  the  Kepler  36  system  

Shid  in  locaLon  of  center  of  mass  of  internal  system  causes  a  change  in  the  Lme  of  the  transit  of  outer  planet  

star  +  two  planets  

Page 12: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

Transit  Lming  variaLons    in  the  Kepler  36  system  

Fits  to  the  transit  Lming  make  it  possible  to  measure  the  masses  of  both  planets  

Carter  et  al.  2012  

Kep  36b  transits   Kep  36c  transits  

TRANSIT  N

UMBER      

Page 13: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

Mass  Radius  relaLon  of  Kepler  planets  

Other  exoplanets  blue,  Kepler-­‐11    pink,  Kepler-­‐18b    gray,  Kepler-­‐20  b  and  c    brown,  GJ  1214b  violet,  CoRoT-­‐7b    green,  Kepler-­‐10b      orange,  55  Cnc  e  

Carter  et  al.  2012  

Kepler 36c outer planet fluffball

Kepler 36b inner planet solid rock+iron!

Page 14: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

Kepler  36  system  

 Two  planets,  near  the  7:6  resonance  

 Large  density  contrast  

Carter  et  al.  (2012)  

measured  via    astro-­‐seismology  

inner  planet  

outer  planet  

Page 15: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

QuanLLes  in  the  Kepler  36  system  

•  RaLo  of  orbital  periods  is  1.1733    (7/6=1.1667)    •  Distance  between  planets  at  conjuncLon  is  only      4.8  Hill  radii!    (ChaoLc  dynamics:    Deck  et  al.  2012)  

•  Planet  sizes  are  large  compared  to  volume:  Integra(ons  must  check  for  collisions  

•  Circular  velocity  is  ~90  km/s  

Planet  b   Planet  c  

Planet  mass/Stellar  mass   1.15x10-­‐5   2.09x10-­‐5  

Orbital  velocity/  Escape  velocity   4.8   5.3  

Semi-­‐major  axis  /Hill  radius   63.9   52.3  

Hill  radius/Planet  radius   29.0   16.0  

Semi-­‐major  axis/Planet  radius   1852   838  

Page 16: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

Planetary  MigraLon  Scenarios  

•  A  planet  embedded  in  a  gas  disk  drives  spiral  density  waves  

•  Damps  the  planet’s  eccentricity  

•  The  planet  usually  moves  inwards  

•  facilitates  convergent  migraLon  and  resonance  capture  

Phil  Armitage  

planet  

Page 17: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

MigraLon  via  Scanering  Planetesimals    

•  A  planet  can  migrate  as  it    ejects  and  scaners  planetesimals  

•  Facilitates  divergent  migraLon      Pulling  planets  out  of  resonance  or  resonance  crossing    

Kirsh  et  al.  2009  

semi-­‐major  axis  in  AU  

eccentricity/eH  

Page 18: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

StochasLc  migraLon  

•  Planet  receives  linle  random  kicks    

•  Due  to  density  variaLons  from  turbulence  in  the  gas  disk  (e.g.,  Ketchum  et  al.  2011)  

•  Due  to  scanering  with  planetesimals  (e.g.,  previously  explored  for  Neptune  by  R.  Murray-­‐Clay  and  J.  Hahn)  

Jake  Simon  

Page 19: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

Mean  moLon  Resonances  Can  be  modeled  with  a  pendulum  Hamiltonian  θ  Resonant  angle.      Two  types  of  moLon,  libraLng/oscillaLng    in  or  out  of  resonance      

expand  Kepler  Hamiltonian  

due  to  two-­‐planet  interacLons    

Level  curves  showing  orbits  

This  model  gives:  resonant  width,  strength,  libraLon  frequency,  adiabaLc  limit,  eccentricity  variaLon  in  resonance,  probability  of  capture    

Page 20: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

Can  the  Kepler  36  system  be  formed  with  convergent  migraLon?  

•  Two  planet  +  central  star  N-­‐body  integraLons    

•  Outer  planet  migrates    damping  is  forced  by  adding  a  drag  term  in  the  integraLon    

•  Eccentricity  damping    forced  circularizaLon  using  a  drag  term  that  depends  on  the  difference  in  velocity  from  a  circular  orbit  

4:3  resonance  

apsidal  angle  =  0  in  resonance    (see  Zhou  &  Sun  2003,  Beauge  &  Michtchenko,  many  papers)  

semi-­‐major  axes    with  peri  and  apoapses  

Lme      

period

 raLo

         sem

i-­‐major  axes  

apsidal  angle    

Page 21: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

Drid  rates  and  Resonant  strengths  

•  If  migraLon  is  too  fast,  resonance  capture  does  not  occur  

•  Closer  resonances  are  stronger.    Only  adiabaLc  (slow)  drids  allow  resonance  capture.  

•  Can  we  adjust  the  drid  rate  so  that  4:3,  5:4,  6:5  resonances  are  bypassed  but  capture  into  the  7:6  is  allowed?  

•  Yes:  but  it  is  a  fine  tuning  problem.    The  difference  between  criLcal  drid  rates  is  only  about  20%  

Page 22: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

EccentriciLes  and  Capture  •  High  eccentricity  systems  

are  less  likely  to  capture      

•  Can  we  adjust  the  eccentriciLes  so  that  resonance  capture  in  4:3,  5:4,  6:5  resonances  is  unlikely  but  7:6  possible?  

•  No.    CriLcal  eccentriciLes  differ  by  only  a  few  percent.      

capture  into  3:2  prevented  by  eccentriciLes  

Secular  oscillaLons  and  resonance  crossings  make  it  impossible  to  adjust  eccentriciLes  well  enough  

resonances  are  bypassed  because  of  eccentriciLes  

period

 raLo

         sem

i-­‐major  axes  

Lme      

secular  oscillaLons  

eccentricity  jump  due  to  7:5  resonance  crossing  

Page 23: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

StochasLc  migraLon  

•  Does  stochasLc  migraLon  allow  4:3,  5:4,  and  6:5  resonances  to  be  bypassed,  allowing  capture  into  7:6  resonance?  

•  Yes,  someLmes  (also  see  work  by  Pardekooper  and  Rein  2013)  

•  Random  variaLons  in  semi-­‐major  axes  can  someLmes  prevent  resonance  capture  in  4:3,  5:4,  6:5  resonances    

resonances    bypassed  

capture  into  7:6!  

period

 raLo

         sem

i-­‐major  axes  

Lme      

Rein(2013)  accounts  for  distribuLon  of  period  raLos  of  planet  pairs  using  a  stochasLc  migraLon  model  

Page 24: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

Problems  with  StochasLc  migraLon  •  StochasLc  perturbaLons  conLnue  ader  resonance  capture      

•  System  escapes  resonance  causing  a  collision  between  the  planets  

planets  collide!  

Lme      

period

 raLo

         sem

i-­‐major  axes  

Page 25: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

Problems  with  StochasLc  migraLon  

•  If  a  gas  disk  causes  both  migraLon  and  stochasLc  forcing,  then  planets  will  not  remain  in  resonance  

•  Timescale  for  migraLon  is  similar  to  Lmescale  for  resonance  escape  

   Disk  must  be  depleted  soon  ader  resonance  capture  to  account  for  a  system  in  the  7:6  resonance  -­‐-­‐-­‐  yet  another  fine  tuning  problem  

•  Density  difference  in  planets  not  explained  

Page 26: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

Collisions  are  inevitable  Kepler  Planets  are  close  to  their  star  Consider  Planet  Mercury,  closest  planet  to  the  Sun  •   Mercury  has  a  high  

mean  density  of  5.43  g  cm-­‐3  

–  FracLonaLon  at  formaLon  (heavy  condensates)    

–  or  aderwards  slowly,  (evaporaLon)    

–  or  quickly  (collision)  •  See  review  by  Benz  2007  

 MESSENGER  image  

Page 27: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

Giant Impact Origin of Mercury

 Grazing  collision  stripped  the  mantle,  leaving  behind  a  dense  core  that  is  now  the  planet  Mercury      (Benz  et  al.  2008)        

Page 28: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

Figures  by  Asphaug  (2010)  

direct  collision   grazing  collision  

Geometry  of  collisions  

hit  and  run,  mantle  stripping  

Page 29: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

Asphaug(2010)  

mantle  stripping  

impact  angle  

slow  collisions   fast  collisions  

Page 30: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

Planetary  embryos  in  a  disk  edge  

•  ``Planet  trap’’    +  transiLon  disk  setng  (e.g.,  Moeckel  &  Armitage  2012,  Morbidelli  et  al.  2008,  Liu  et  al.  2011)  

•  We  run  integraLons  with  two  planets  +  7  embryos  (twice  the  mass  of  Mars)    

•  no  applied  stochasLc  forcing  onto  planets,  instead  embryos  cause  perturbaLons  

•  The  outermost  planet  and  embryos  external  to  the  disk  edge  are  allowed  to  migrate  

Embryos  can  lie  in  the  disk  here!  

Zhang  &  Zhou  2010  

Page 31: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

IntegraLon  ends  with  two  planets  in  the  7:6  resonance  and  in  a  stable  configuraLon  

Collisions  with  inner  planet.      PotenLally  stripping  the  planet  in  place  

period

 raLo

   semi-­‐m

ajor  axes  

inclinaL

ons  

Lme    

encounter  with  embryos  nudge  system  out  of  3:2  resonance  

embryos  migrate  inwards  

two  planets  

IntegraLons  of  two  planets  and  Mars  mass  embryos  

Page 32: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

encounters  with  embryos  nudge  system  out  of  3:2,  5:4  resonances  

period

 raLo

   semi-­‐m

ajor  axes  

inclinaL

ons  

Lme  

another  integraLon   Inner  and  outer  planet  swap  locaLons  Outer  planet  that  had  experienced  more  collisions  becomes  innermost  planet  

IntegraLon  ends  with  two  planets  in  the  6:5  resonance  and  in  a  stable  configuraLon  

Page 33: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

IntegraLon  ends  with  two  planets  in  the  4:3  resonance  and  an  embryo  in  a  3:2  with  the  outer  planet    

period

 raLo

   semi-­‐m

ajor  axes  

inclinaL

ons  

Lme  

Final  state  can  be  a  resonant  chain  like  KOI  730  

another  integraLon  

If  a  misaligned  planet  existed  in  the  Kepler  36  system  it  would  not  have  been  seen  in  transit  

Page 34: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

Diversity  of  SimulaLon  Outcomes  

•  Pairs  of  planets  in  high  j  resonances  such  as  6:5  and  7:6.      Appear  stable  at  end  

•  Pairs  of  planets  in  lower  j  resonances  such  as  4:3  •  Resonant  chains  •  Collisions  between  planets  Comments  •  Collisions  affect  planetary  inclinaLons  -­‐-­‐  transiLng  objects  are  sensiLve  to  this  

•  A  different  kind  of  fine  tuning:  Numbers  and  masses  of  embryos.    Outcome  sensiLve  to  collisions!  

Page 35: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

ProperLes  of  collisions  between  embryos  and  planets  

vimpact/vcircular  

Num

ber  of  collisions  

impacts  on  inner  planet  especially  likely  to  cause  erosion  

AccreLon  may  sLll  occur  

Page 36: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

Collision  angles  Num

ber  of  collisions  

Impact  angle  (degrees)  

Impacts  are  grazing  Impacts  are  normal  

High  velocity,  grazing  impacts  are  present  in  the  simulaLon  suggesLng  that  collisions  could  strip  the    mantle  of  a  planet    

Page 37: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

Resonant  Chains  •  Prior  to  the  discovery  of  GL876  and  HR8799,  the  only  

known  mulLple  object  system  in  a  chain  of  mean  moLon  resonances  was  Io/Europa/Ganymede  

•  Each  pair  of  bodies  is  in  a  two  body  mean  moLon  resonance  

•  Integer  raLos  between  mean  moLons  of  each  pair  of  bodies  

•  Convergent  migraLon  model  via  Ldal  forces  for  Galilean  satellites    resonance  capture  

Page 38: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

Resonant  Chains  

•  Systems  in  chains  of  resonances  drided  there  by  convergent  migraLon  through  interacLon  with  a  gaseous  disk  (e.g.  Wang  et  al.  2012)  

•  Scanering  with  planetesimals  usually  causes  planet  orbits  to  diverge  and  so  leave  resonance    

•  What  constraints  can  resonant  chain  systems  HR8799  and  KOI730  give  us  on  their  evoluLon?  

Page 39: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

KOI  730  system  resonant  chain  

•  Planet  masses  esLmated  from  transit  depths  

•  Period  raLos  obey  a  commensurability    8:6:4:3  •  Outer  and  inner  pair  in  4:3  resonance  

•  Middle  pair  in  3:2  

Discovered  in  iniLal  tally  of  mulLple  planet  Kepler  candidates  (Lissauer  et  al.  2011)  

Page 40: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

KOI-­‐730  system  

•  Suppose  ader  formaLon  the  KOI730  system  hosts  a  debris  disks  of  planetesimals.    Could  planet-­‐orbit-­‐crossing  planetesimals  (comets)  pull  the  system  out  of  resonance?  

•  How  are  planetary  inclinaLons  affected?  To  see  4  planets  in  transit,  mutual  inclinaLons  must  lie  within  a  degree    –  Find  resonant  iniLal  condiLons  –  Run  N-­‐body  integraLons  (GPU  accelerated)  with  planetesimals  that  are  iniLally  located  in  a  disk  exterior  to  the  planets  

– We  ran  different  simulaLons  with  different  planetesimal  disk  masses    

Page 41: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

Finding  IniLal  CondiLons  Forced  migraLon  Capture  into  8:6:4:3  

Lots  of  eccentricity  damping  required  to  keep  this  system  stable  Fine  tuning  in  iniLal  condiLons  and  migraLon  rates  required  

Capture  of  one  pair  oden  caused  another  pair  to  jump  out  of  resonance  

An  integraLon  that  succeeded  in  giving  the  proper  period  raLos  

semi-­‐m

ajor  axes  

period

 raLo

s  

IniLal  condiLons  for  our    N-­‐body  integraLon  taken  here!  

Lme  

not  a  formaLon  scenario!  

Page 42: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

KOI  730  SimulaLons  

Simula(on   Mass  of  planetesimal  disk  

Orbit  crossing  Mass  in  Earth  Masses  

N   Neptune  Mass     16.6  

N5   1/5  Neptune  Mass   1.7  

E   Earth  Mass   0.46  

E3   1/3  Earth  Mass   0.12  

M   Mars  Mass   0.04  

Z   No  planetesimals   0  

Mass  in  planetesimals  that  crossed  the  planets’  orbits  was  measured    

Page 43: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

Changes  in  period  raLos  

massive  planetesimal  disk,  planets  out  of  resonance  

less  planetesimal  mass,  system  sLll  in  resonance  

period

 raLo

 differen

ce  from

 iniLal  

Lme   Moore  et  al.  (2013)  

Page 44: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

inclinaL

ons  

eccentriciLe

s  

Resonances  are  crossed,    causing  of  increases  in  eccentriciLes  and  inclinaLons  

inclinaLons  do  not  damp  to  zero  as  would  be  expected  from  dynamical  fricLon  

massive  planetesimal  disk  

less  planetesimal  mass  

Page 45: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

Trends  seen  in  the  simulaLons  

•  A  Mars  mass  or  orbit  crossing  planetesimals  pulls  the  system  out  of  resonance.    This  can  be  ruled  out  for  KOI-­‐730!    Less  than  a  Mars  mass  in  planetesimals  could  have  crossed  the  orbits  of  the  KOI-­‐730  planets  

•  An  Earth  mass  of  orbit  crossing  planetesimals,  puts  system  just  outside  resonance,  by  an  amount  similar  to  the  peak  seen  in  a  histogram  of  Kepler  system  period  raLos.      

•  CorrelaLon  between  orbit  crossing  mass  and  inclinaLons    possible  thing  to  look  for  with  Kepler  observaLons  

Page 46: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

HR8799  system  

6  —  1000  AU  

•  HR  8799,  A  star,  young!    •  Hosts  a  debris  disk  •  4  massive  planets  

•  Discovered  via  opLcal  imaging  

Marois  et  al.  2011  

evidence  of  debris  

Page 47: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

HR8799  simulaLons  

•  Using  orbital  elements  based  on  observed  posiLons  of  planets  

•  Different  mass  planetesimal  disks  •  Start  with  an  unstable  planetary  configuraLon.  Can  the  planetesimal  disk  can  stabilize  the  system  via  eccentricity  damping?  No:  Too  much  disk  mass  is  required  to  make  this  possible  

•  Start  with  a  stable  planetary  configuraLon.    Can      the  planetesimals  pull  it  out  of  resonance,  causing  instability?  

Page 48: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

InteracLon  between  the  HR8799  resonant  chain  and  an  external  debris  disk  

A  Neptune  mass  debris  disk  can  substanLally  reduce  the  lifeLme  of  the  system.  

LifeLme  with  a  Neptune  Mass  debris  disk  

Num

ber  of  sim

ulaL

ons  

lifeLme  without  a  debris  disk  

Moore  &  Quillen  2012  

Page 49: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

HR  8799  planetary  system  stability  

Gozdziewski  &    Migaszewski  (2009)    

 stable                                                                unstable     Maximally  stable  configuraLons  have  planets  c,d,e  in  a  1:2:4  resonant  configuraLon    (Gozdziewski  &    Migaszewski  2009,    Fabrycky  &  Murray-­‐Clay  2010,  Marois  et  al.  2011)  

•  LifeLme  of  resonant  configuraLon  is  short  (order  107  years)  •  Planets  likely  will  be  ejected  from  the  system  (perhaps  soon!)  •  Zone  of  stability  is  very  small  

Page 50: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

HR  8799  planetary  system    stability  causes  

Gozdziewski  &    Migaszewski  (2009)    

 stable                                                                unstable    

 The  system  is  currently  observed  to  be  at  the  boundary  of  stability.    It  might    be  at  this  boundary  because  planetesimal  mass  has  pulled  it  away  from  the  bonom  of  the  resonance  

Even  though  the  planets  are  massive,  the  stable  region  is  very  small  so  a  very  small  amount  of  debris  affect  stability  

Page 51: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

Summary:    Kepler  36  Origins  •  StochasLc  migraLon  scenarios  to  account  for  Kepler  36’s  

origin  require  fine  tuning  so  that  planets  can  bypass  4:3,  5:4,  6:5  resonances  and  capture  into  the  7:6  resonance.    StochasLc  forcing  would  pull  the  system  out  of  resonance  unless  the  gas  disk  is  depleted  soon  ader  capture  

•  Encounters  with  planetary  embryos  can  remove  two  planets  from  outer  resonances  allowing  them  to  end  up  in  adjacent  orbits  like  Kepler  36b,c.    Impacts  with  embryos  can  have  high  enough  velocity  and  impact  angles  that  the  mantle  of  a  planet  could  be  stripped,  leaving  behind  a  high  density  core.      This  scenario  can  account  for  both  the  proximity  of  the  Kepler  36  planets  and  their  high  density  contrast  

Page 52: Origin Scenarios for Multiple Planet Systemsastro.pas.rochester.edu/~aquillen/mytalks/hongkong...Orbital*resonance* The*rao*of*orbital*periods*of*two*bodies*are* nearly*equal*to*arao*of*small*integers***

Summary:  Constraints  on  planetesimal  disks  

•  KOI-­‐730:  Less  than  a  Mars  mass  of  planetesimals  could  have  crossed  the  orbits  of  planets,  otherwise  the  4  planet  system  would  be  pulled  out  of  resonance,  and  planet  inclinaLons  increased  past  those  observed        Compact  Kepler  systems  never  interacted  with  debris  (no  solar  system  shake  up)  

•  HR8799:  Is  near  instability,  a  1/10th  of  a  planet  mass  can  pull  the  system  out  of  resonance  causing  it  to  fall  apart        Its  debris  disk  (observed)  could  be  responsible  for  system’s  current  locaLon  at  the  edge  of  stability