Click here to load reader
View
3
Download
0
Embed Size (px)
MFS CSO 90714
Dr. Mark F. Smith Cold Spray Workshop
Albuquerque, NM July 14-15, 1999
Overview of Cold Spray
Particle Velocity (m/s)
> 325
> 350
> 375
> 400
> 450
> 475
> 500
> 425
2000 100 300 400 500
G as
P re
ss u
re (
p si
g )
200
250
300
350
400
Gas Temperature (ˆC)
Air, 22 µm Copper
100 µm
MFS CSO 90714
250 m/s Cu
A “Cold” Process Technology from Siberia
900 m/s Cu
Deposition Efficiency
Copper Coating Material
Iron Nickel Aluminum
After Alkimov, et al , 1990
400 500 600 700 800 900 1,000
0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0
Particle Velocity m/s
MFS CSO 90714
Sandia Cold Spray System
HEATED GAS Gas Inlets
Heater
TC
Gas Heater
Powder Feed
Robot Manipulator
MFS CSO 90714
Spray Ductile Metals, Cermets, Polymers
Active Braze Alloy Aluminum Aluminum Bronze Copper 304 Stainless Steel 420 Stainless Steel
Fe3Pt Molybdenum Monel 80Ni/20Cr NiCrAlY NiCr-Cr3C2
Polymer StelCar Tantalum Tin Titanium WC-Co (nanophase)
Examples of Materials Successfully Deposited at Sandia
MFS CSO 90714
Cold Spray vs. Air Plasma Spray
Plasma Sprayed Copper
Cold Sprayed Copper
100 µm
100 µm
• Superior Density • Less Oxide
MFS CSO 90714
Some Exciting New Possibilities
• Avoid melting & solidification - Avoid thermally induced stress - Avoid undesirable phases - Avoid oxidation (deposit metals in ambient air!) - Preserve desired phases & chemistry - Preserve original grain size (nanocrystalline mat’ls)
• Low Porosity (>99% dense, as deposited) • High thermal / electrical conductivity (>80% OFHC Cu)
• High Deposition Efficiencies (>98%)
• Recycle feedstock & process gas • Work with highly dissimilar materials combinations
MFS CSO 90714
New Possibilities, cont’d.
• Highly wrought material (high hardness / strength)
• Potential for high deposition rates • Relatively insensitive to standoff, work up close (
MFS CSO 90714
Cold Spray Direct Fabrication
• Additively build net / near-net shapes directly from a computer
• Key technical challenge is focussing the spray stream
~ 1 mm Focused Stream for
Subsonic Flow
Do you want a print or a part? Print Build OK
OK
Do you want a Print or a Part? Print Build
MFS CSO 90714
Example Applications
• Anti-corrosion (superior density, less oxide)
• Wear resistance (superior hardness & density)
• Metals on ceramics / glass
• High-alloy / specialty metals (preserve composition & phases)
• Plastic coatings without volatile organics
• Defect repair (minimal masking / heating, machinable)
• Direct fabrication
• Satellite structures (high conductivity, low residual stress)
MFS CSO 90714
Reclaiming Parts & $$$
Unusable $150k GPS satellite part reclaimed
with Cold Spray
• Low heat input • Low stress • Dense, machinable • High conductivity,
MFS CSO 90714
State of the Art
• Technology ~ 10 years old • Success with many metals, some cermets & polymers • New materials / processing / manufacturing possibilities • Considerable industrial interest • Patented, but licenses available • No commercial use yet
MFS CSO 90714
Barriers to Commercial Use
Technical Issues:
• Process fundamentals poorly understood • Cannot predict materials / parameters • Reduce / eliminate expensive helium • Nozzle fouling / optimization
Build-up in nozzle
MFS CSO 90714
Barriers to Commercial Use
Manufacturing Issues:
• No commercial equipment / coating suppliers • Need articulated robot compatible spray gun • Lack of property data / field experience • Need better fine powder feeders
Uneven deposition due to uneven powder feed
MFS CSO 90714
Understanding Critical Velocity
Raw Particle Velocity Distributions
0
20
40
60
80
100
200 400 600 800 1000 1200
0 % 53 % 95 %
N o
rm al
iz ed
C o
u n
ts
Particle Velocity (m/s)
Deposition Efficiency
1 2 3
19 µm Copper powder onto Aluminum
0
20
40
60
80
100
450 500 550 600 650 700 750 800
D ep
o si
ti o
n E
ff ic
ie n
cy (
% )
Mean Particle Velocity (m/s)
3
2
11
2
3Experiment Prediction
MFS CSO 90714
Process Maps Guide Optimization
Particle Velocity (m/s)
> 325
> 350
> 375
> 400
> 450
> 475
> 500
> 425
2000 100 300 400 500
G as
P re
ss u
re (
p si
g )
200
250
300
350
400
*DV�7HPSHUDWXUH��Û&�
Air, 22 µm Copper
MFS CSO 90714
Models Guide Nozzle Design
dD dP
= CD Ap M 2
2 − 1
dVp dt
= D m
Vp = particle Velocity D = Drag force m = particle Mass P = Pr essure
CD = Drag coefficient Ap = Area of particle M = Mach number
max @ M = 2 = 1.4
(air)
(helium)
A*/A = Choke Point/Nozzle Exit Area Ratio (Axial Position measured from choke point)
MFS CSO 90714
“Estimator” ver. 1.0 for Spray Parameters
Air Helium
MFS CSO 90714
Understanding Particle Impact
1 km Asteroid Impacting Ocean 300 Gigatons TNT Equivalent (10x Peak of All Cold War Nuke’s)
Sandia Teraflops computer running CTH code 100 million computational cells 18 hr @ 91% capacity (8,192 of 9,000 processors)
MFS CSO 90714
Computational Impact Model & Experimental Comparison
Predicted peak temp. of 1280 K is below the
melting point of Cu (1357 k)
Cu
Stainless Steel 25 µm
4
3
2
1
0
- 1
- 2
- 3
- 4
Cu
Stainless Steel
t = 70 nst = 70 ns
X (microns) - 4 - 2 0 2 4
Y (
m ic
ro n
s)
Copper
Steel
Void
Temperature K
980
900
810
720
630
540
450
380
25 µm Cu Sphere into 304 Stainless at 600 m/s
MFS CSO 90714
Summary
• New materials / processing / manufacturing possibilities • Opportunity to be first to exploit market advantage • Several pre-competitive barriers need to be solved • Faster / cheaper / better to work together on pre-comp. • Partners will gain access to best technology & new IP