80
Combined use of Paramagnetic and X-ray Absorption spectroscopies as a tool in the structural analysis of metallo-proteins VIII° Scuola di Nazionale di Luce di Sincrotrone Laboratori Nazionali Frascati, 10-21 ottobre 2005 Bubacco Luigi Department of Biology, University of Padova, Italy.

Presentazione di PowerPointwebusers.fis.uniroma3.it/sils/scuole/frascati2005/lezioni/bubacco.pdf · Bubacco Luigi Department of Biology, University of Padova, Italy. In the biological

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Combined use of Paramagnetic and X-ray Absorption spectroscopiesas a tool in the structural analysis of metallo-proteins

    VIII° Scuola di Nazionale di Luce di SincrotroneLaboratori Nazionali Frascati,10-21 ottobre 2005

    Bubacco Luigi Department of Biology, University of Padova, Italy.

  • In the biological prospective what are the relevant questionsto be addressed by a structural techniquein studing a the metal site of a protein?

    a) Type o f proteins ligands (patterns recognition in the sequence?)

    Genome wide search

    Several complete genomes are available

  • Easy case: the ligandsof the metal ions define aregions of the protein beckbone

    A HNXXH patter can beidentified in the sequences

  • Difficult case : the ligandsof the metal ion camefrom different regionsof the protein beckbone

  • In the biological prospective what are the relevant questionsto be addressed by a structural techniquein studing a the metal site of a protein?

    a) Type o f proteins ligands (patterns recognition in the sequence?)

    b) Type o f exogenous ligands (exchangeble coordination positionfor catalitically active enzyme)

    c) Number of ligands

  • Pattern ID Ligand Pattern Count

    0 his,his,his 54

    1 cys,his,his 13

    2 his,his,H2O 10

    3 his,his,OH 6

    4 his,his,mto 5

    5 cys,his,met 4

    6 cys,cys,cys 3

    Pattern ID Ligand Pattern

    Count

    0 cys,his,his,met 129

    1 his,his,his,his 38

    2 his,his,his, H2O 32

    3 cys,glu,his,his 10

    4 c2o,his,his,his 9

    5 cys,his,his,his 6

    6 his,his,his,tpq 6

    7 cuz,his,his, H2O 6http://metallo.scripps.edu/analysis/

  • In the biological prospective what are the relevant questionsto be addressed by a structural techniquein studing a metal site?

    a) Type o f proteins ligands

    b) Type o f exogenous ligands (exchangeble coordination position)

    c) Number of ligands

    d) Bond lenghts (distances)

  • Statistics for histogram: Cu-His N = 771Min = 1.6000 Max = 2.6000

    Avg = 2.0918

    Sites with four ligands

  • Statistics for histogram: Cu-His N = 700 Min = 1.6000 Max = 2.6000Avg = 2.0872

    Sites with five ligands

  • In the biological prospective what are the relevant questionsto be addressed by a structural techniquein studing a metal site?

    a) Type o f proteins ligands

    b) Type o f exogenous ligands (exchangeble coordination position)

    c) Number of ligands

    d)Bond lenghts (distances)

    f) Coordination geomentry (MXAN)

    g) Ligand’s orientation

  • When can electron paramagnetic resonance be applied ?

    a) Presence of a paramgnetic center copper … [Cu(I) Cu(II)]iron…manganese…nickel…..cobalt…

    Biologically relevant forms that can not be studied:

    Cu(I) d10 diamagneticZn(II)

  • Cw EPR on copper centers

    NN

    OO

    N

    2400 2600 2800 3000 3200 3400

    Magnetic field (G)

    A||

    g||

  • 2,14 2,16 2,18 2,20 2,22 2,24 2,26 2,28 2,30 2,32 2,34 2,36100

    120

    140

    160

    180

    200

    220

    240

    SODCarbpep

    Hclp

    saTymonoHcA

    ToluicTy

    NitroTy

    HccmNiRaf

    Hcov

    hmTyhmTyhmTy

    MimoTy

    ncTy

    AII

    10-4 c

    m-1

    gII

    Peisach Blumberg plot for Cu(II) center

  • Cw EPR on copper centers

    NN

    OO

    N

    2600 2800 3000 3200 3400 3600

    Magnetic Field (G)

  • EPR line of a paramagnetic center in a solidinhomogeneously broadened.

    Each spin packet can be considered independently from the other having its own Larmor frequency

  • Evolution of the magnetisation in a pulsed experiment.

    Free induction decay and corresponding Fourier transform

  • Relaxation processes

    The z-component of the magnetisation reverts to its equilibrium value Mo with a time constant called:Longitudinal relaxation time, T1 , this relaxation process is giving up energy to the surrounding and it is also called spin-lattice relaxation.

    The randomisation of the spin direction on the xy-plane due to the fanning-out

    occurs exponentially with a time constant that is called

    Transverse relaxation time, T2. The relaxation involves the relative

    orientation of the spins , T2 is also called spin-spin relaxation time.

  • Two pulses experiment

  • Electron Spin Echo detected EPR

    W band (95 GHz) spectrum of Azurin (van Gastel)

  • τ τT

    Hahn echo

    Three pulses experiment

    a b e f g

  • The nuclear modulation

    The modulation that arises from the magnetic interactionsof the electron spin with the nuclear spins of the nearby atoms, such anisotropic hyperfine interactions are in the order of magnitude of the nuclear Zeeman energy consequentially the nuclear spin transitions frequencies contributes to the modulation on the ESE

  • Modulation function

    VMOD = 1-k/2+ k/2[cos (ωβ τ) - cos (ωα τ) – 1/2 cos ((ωα + ωβ) τ) - 1/2 cos((ωα - ωβ) τ)]

    k = 4 Pa Pf = [(ωI B)/(ωα ωβ)]2

    ωα = [(A/2-ωI)2 + ( B/2)2]

    ωβ = [(A/2-ωI)2 - ( B/2)2]

    A = A|| cos2 θ + A⊥ sin2 θ

    B = (A|| + A⊥) sin θ cos θ

    A⊥ = Ad⊥ + aiso

    A|| = Ad|| + aiso

  • Electron spin energy diagram for the remote nitrogen of a Cu(II) coordinated imidazole

    Ms = ½

    Ms = - ½

    NQI lines

    Broad line

    Zeeman Shf NQI

    (a)

    Zeeman Shf NQI

    Doublequantum line

    NQI lines

    0 1 2 3 4 5Frequency (MHz )

    NQI lines Double

    quantum line

  • Nuclear quadrupolar interaction

    e2qQ = quadrupole coupling constant

    η = qzz

    qxx qyy ν ± = ¾ e2qQ (1 ± η/3)

    ν o = ½ e2qQ η

    Cu(II) N N

    gz qz

    qxqy

  • 0 1 2 3 4 5Frequency (MHz )

    NQI lines Double

    quantum lineφ is the angle between the plane

    defined by the His’ atoms and theperpendicular equatorial planeof the Cu(II)

    Cu(II) N N

    φ ≠ 0

    Cu(II) N N

    φ ≅ 0

  • Electron spin energy diagram for the remote nitrogen of a Cu(II) coordinated imidazole

    Ms = ½

    Ms = - ½

    NQI lines

    Broad line

    Zeeman Shf NQI

    (a)

    Zeeman Shf NQI

    Doublequantum line

    NQI lines

    0 1 2 3 4 5Frequency (MHz )

    NQI lines Double

    quantum line

  • 0 1 2 3 4 5Frequency (MHz )

    NQI lines Double

    quantum line

    ν d = double quantum transition frequency

    ν d = 2 [ (ν i+ aiso/2 )2 + (e2qQ /4)2 (3 + η2)]1/2

    aiso = isotropic electron nuclear coupling

    ν i = nitrogen frequency

  • τ = 120 ns

    Inte

    nsity

    [a.u

    ]

    τ = 120 ns

    b. Half-met tyrosinase + nitrophenolB=332.5 mT

    c. Half-met tyrosinase + mimosineB=337.5 mT

    a. Half-met tyrosinase B=336.0 mT

    τ = 144 ns τ = 144 nsτ = 144 ns

    τ = 168 ns τ = 168 nsτ = 168 ns

    τ = 208 ns τ = 192 ns

    frequency [MHz]

    τ = 208 ns

    0 1 2 3 4 5 6

    τ = 280 ns

    0 1 2 3 4 5 6

    τ = 280 ns

    0 1 2 3 4 5 6

    τ = 280 ns

    τ dependance analysis of the ESEEM

    spectra of Halfmet Ty

    and its complexes with inhibitors

    2400 2600 2800 3000 3200 3400

    Magnetic field (G)

    τ τT

    Hahn echo

  • 345 mTIn

    tens

    ity [a

    .u]

    344 mT342 mT

    b. Half-met tyrosinase + nitrophenol c. Half-met tyrosinase + mimosinea. Half-met tyrosinase

    336 mT 337.5 mT332.5 mT

    325 mT 327.5 mT322 mT

    315 mT 315 mT312 mT

    300 mT 300 mT300 mT

    0 1 2 3 4 5 6

    286 mT

    0 1 2 3 4 5 6

    285 mT

    0 1 2 3 4 5 6

    287 mT

    frequency [MHz]

    Field dependence analysis

    of the ESEEM

    spectra of Halfmet Ty

    and its complexes with inhibitors

    2400 2600 2800 3000 3200 3400

    Magnetic field (G)

  • How do we single out the individual contributions of the remote nitrogens for more then one His ligand ?

  • HYSCORE (hyperfine sublevel correlation spectroscopy)

    π/2 π/2 π/2

    π

    τ τt1 t2 Preparation Evolution

    Mixing

    Detection

  • 0 2 4 6 8-8

    -6

    -4

    -2

    0

    2

    4

    6

    8

    02

    46

    8 0

    2

    4

    6

    8

    frequenc

    y (MHz)

    frequency (MHz)

    HYSCORE spectroscopy on Octopus vulgarisHalf-metHc

    0 1 2 3 4 5Frequency (MHz)

    NQI lines Double

    quantum line

    Frequency (MHz)

    Freq

    uenc

    y(M

    Hz)

  • How does the magnitude of the coupling affects the experiment ?

  • Coordination mode for histidine ligandsMay be hard to get by X-ray absorption

    Cuε

    δ

    b

    ac Cu

    δε

    c

    ba

  • Effects on the NQI parameters upon chemical substitutionon the imidazole ring

    Cu

  • δ

    ε

    V.DUCROS et al., TYPE-2 CU-DEPLETED LACCASE FROM Coprinus Cinereous (PDB 1A65)

  • The hydrogen bond to the non coordinatingNitrogen of the ligand His

  • The hydrogen bond and NQI parameters

  • One more resason why the hydrogen bond is so relevant?

    Cu(I) → Cu(II)… that is protein function

  • Pattern ID Ligand Pattern Count

    0 his,his,his 54

    1 cys,his,his 13

    2 his,his,H2O 10

    3 his,his,OH 6

    4 his,his,mto 5

    5 cys,his,met 4

    6 cys,cys,cys 3

    Pattern ID Ligand Pattern

    Count

    0 cys,his,his,met 129

    1 his,his,his,his 38

    2 his,his,his, H2O 32

    3 cys,glu,his,his 10

    4 c2o,his,his,his 9

    5 cys,his,his,his 6

    6 his,his,his,tpq 6

    7 cuz,his,his, H2O 6http://metallo.scripps.edu/analysis/

  • Complexation of Copper(II) with Carbonate ligand in Aqueous Solution:A CW and Pulsed EPR Study

    P.M. Schosseler, B. Wehrli, and A. SchweigerInorg. Chem. 1997, 36, 4490-4499.

    CuOH2

    OH2

    2 OHH O

    2OCO H 2

    2HO CO pH 5.5

    2OH

    OH2

    CuO

    OC=OO=C

    O

    OpH 8.0

  • Detection by HYSCORE of a directly coordinated water moleculein copper proteins active sites

    half-met tyrosinase

    1 0 1 2 1 4 1 6 1 8 2 01 0

    1 1

    1 2

    1 3

    1 4

    1 5

    1 6

    1 7

    1 8

    1 9

    2 0

    a

    frequ

    ency

    ν2

    f r e q u e n c y ν 1

    1 0 1 2 1 4 1 6 1 8 2 0

    b

    H2O D2O

    • Cu(II) coordinated H2O molecule with a dipolar coupling constant

    of about 5 MHz

  • Structural model for the active site of Halfmet Ty

    His324

    His364

  • binuclear metal center

    Arthropods oxy hemocyanin (Hazes et al.)

  • binuclear metal center

    Mollusc oxy hemocyanin (Cuff et al.)

  • binuclear metal center

    plant met phenol oxidase (Krebs et al.)

  • CuB

    Copper site B 183 187 214 Oda AHNPIHY14YTSYDPLFFLHHSNVERLFTIWQ Odb THNAIHA14YTSFDPLFWLHHSQVDRLWAVWQ Odc AHNHIHA14TTTFDPIFILHHSNVDRIWAIWQ Odd LHNTIHS14FAAYDPIFFLHHSNIDRIWATWQ Ode AHNAIHS14YAAYDPIFYLHHSNVDRLWVIWQ Hpd LHNALHS14YTAFDPVFFLHHANTDRLWAIWQ Odf VHNSIHY14YSSFDPIFYVHHSNVDRLWAIWQ Hpg SHNAIHS14YTAYDPLFLLHHSNVDROWAIWQ Odg GHNAIHS14YTSYDPLFYLHHSNTDRIWSVWQ Soh GHNAIHS14YTSYDPLFYLHHSNTDRIWSVWQ Ysg LHNRVHV 9MSPNDPLFWLHHAYVDRLWAEWQ YNc VHNEIHD 9VSAFDPLFWLHHVNVDRLWSIWQ YHs MHNALHI 9GSANDPIFLLHHAFVDSIFEQWL YMm MHNALHI10GSANDPIFLLHHAFVDSIFDQWL Ece LHNWGHV21TSLRDPIFYRYHRFIDNIFQKYA Ecd LHNWGHV20TSLRDPIFYRYHRFIDNIFQKYA Lp2 LHNWGHV21TSLRDPIFYDWHRFIDNIFHEYK Pia LHNTAHV21TATKDPSFFRLHKYMDNIFKKHT

    deletion

    The perpendicular orientation of the aromatic planes ofthe HISs is conserved in all type 3 sites studied.

  • Cu

    Second shell structural featuresCys-His bond

    TYRO_HUMAN/111-456 FAHEAPAFLPWHRLFLLRWEQEIQKLTGTYR2_HUMAN/117-462 FSHQGPAFVTWHRYHLLCLERDLQRLIGTYR1_HUMAN/121-471 FSHEGPAFLTWHRYHLLRLEKDMQEMLQTYRO_NEUCR/1-373 CTHSSILFI…TWHRPYLALYEQALYASVQHCYA_OCTDO/388-696 CLHGMPVFPHWHRVYLLHFEDSMRRHGHCYB_HELPO/1-274 CVHGMPTFPSWHRLYVEQVEEALLDHGPPO_VITVI/122-440 QVHASWLFLPFH RYYLYFNERILAKLIDPPO_VICFA/112-431 QVHGSWLFFPFH RWYLYFYERILGSLINPPO_MALDO/108-425 Q I HNSWLFFPFH RYYLYFFEKILGKLINPPOD_LYCES/102-430 QVHNSWLFFPF H RWYLYFYESNAGKLIDPPOB_SOLTU/107-428 QVHFSWLFFPF H RWYLYFYERILGSLINPPOB_LYCES/106-435 QVHNSWLFFPF H RWYLYFYERILGKLIDPPOA_LYCES/106-434 QVHNSWLFFPF H RWYLYFYERILGSLIDPPO_SPIOL/120-455 EVHASWLFPSF H RWYLYFYERILGKLIN

    http://www.sanger.ac.uk/cgi-bin/Pfam/swisspfamget.pl?name=TYRO_HUMANhttp://www.sanger.ac.uk/cgi-bin/Pfam/swisspfamget.pl?name=TYR2_HUMANhttp://www.sanger.ac.uk/cgi-bin/Pfam/swisspfamget.pl?name=TYR1_HUMANhttp://www.sanger.ac.uk/cgi-bin/Pfam/swisspfamget.pl?name=TYRO_NEUCRhttp://www.sanger.ac.uk/cgi-bin/Pfam/swisspfamget.pl?name=HCYA_OCTDOhttp://www.sanger.ac.uk/cgi-bin/Pfam/swisspfamget.pl?name=HCYB_HELPOhttp://www.sanger.ac.uk/cgi-bin/Pfam/swisspfamget.pl?name=PPO_VITVIhttp://www.sanger.ac.uk/cgi-bin/Pfam/swisspfamget.pl?name=PPO_VICFAhttp://www.sanger.ac.uk/cgi-bin/Pfam/swisspfamget.pl?name=PPO_MALDOhttp://www.sanger.ac.uk/cgi-bin/Pfam/swisspfamget.pl?name=PPOD_LYCEShttp://www.sanger.ac.uk/cgi-bin/Pfam/swisspfamget.pl?name=PPOB_SOLTUhttp://www.sanger.ac.uk/cgi-bin/Pfam/swisspfamget.pl?name=PPOB_LYCEShttp://www.sanger.ac.uk/cgi-bin/Pfam/swisspfamget.pl?name=PPOA_LYCEShttp://www.sanger.ac.uk/cgi-bin/Pfam/swisspfamget.pl?name=PPO_SPIOL

  • NN

    O O

    N

    cw Pulsed techniques

  • a) Half met Ty

    b) Half met Ty, D2O exchanged

    c) Sample a plus p-Nitrophenol

    d) Sample a plus L-mimosine

    10 12 14 16 18 2010

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    frequency ν1 [MHz]

    afre

    quen

    cy ν

    2 [M

    Hz]

    10 12 14 16 18 20

    c

    10 12 14 16 18 20

    b

    10 12 14 16 18 2010

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    d

  • Structural model for the active site of half-met Ty

    His324

    His364

  • Paramagnetic NMR on [Cu(II) Cu(II)] met Type 3 sites

    a b c

    d

    [Cu(II) Cu(II)]S =1/2 S =1/2

    S =1

    • The fast relaxation rate of the paramagnetic center allows for the selection of the contributions to the NMR signal.

    • First observed for binuclear copper complexes

    • Experiments at room temperature in solution

  • When can this technique be applied ?

    a) Presence of a fast relaxing paramgnetic center (Cu(II), Co(II), Fe(III))

    b) The protein size poses a limit around 30-40 KD

    c) Protein solubility, since high concentrations are requiered

  • binuclear metal center

    plant met phenol oxidase (Krebs et al.)

  • [Cu(I) Cu(I)]deoxy

    [Cu(II) Cu(II)]met

    Paramagnetic NMR

    H2O2

    [Cu(II) O22- Cu(II)]oxy

    ±O2

    [Cu(I) Cu(II)]half-met

    Cw and pulsed 1D and 2D EPR

    Reversible oxygenbinding Hcs

    Tyrosinase

  • Paramagnetic NMR

    Cuε

    δ

    • at room temperature a paramagneticexited state S = 1 is present

    • histidines have Nε co-ordinationto the metal ion

  • Paramagnetic NMRBinuclear copper proteins

    Cuε

    δ

    H2O

    D2O

    • at room temperature a paramagneticexited state S = 1 is present for themet-Tyrosinase

    • All six histidine residues are bound to the metal ions

  • Coordination mode for histidine ligands

    Cuε

    δ

    b

    ac Cu

    δε

    c

    ba

    Schematic representation of the T1 relaxation rates and NOE connectivities expectedfor the ring proton NMR signals of a histidine co-ordinated to a paramagnetic Cu(II) ion.

  • A) Streptomyces antibioticus met Tyrosinase

    B) S. antibioticus met Tyrosinase plus chloride

    C) S. antibioticus met Tyrosinase plus Kojic acid

    Cu2+ Cu2+

    NN N

    NN

    OH

    O

    OO

    OH

    N

  • Interaction between the Type-3 Copper Protein Tyrosinase and the Substrate Analogue p-Nitrophenol Studied by NMR

  • X-Ray spectroscopyAbsorption k-edge spectroscopy-coordination geometry- coordination number/bound length - metal metal distance

    EXAFS - Extended X-ray Absorption Fine Structure

    - coordination number/bound length- metal metal distance

  • 8950 9000 9050 9100 9150 9200 9250

    Energy (eV)

    Cu K-edge XANES spectra of the met-Ty of Streptomyces antibioticus, met-Ty complex with Kojic acid (B) and met-Ty-Chloride complex (C).

  • Mxan simulation of met tyrosinase k-edge data

    9000 9040 9080 9120 91600,000

    0,004

    0,008

    0,012

    0,016

    Energy (eV)

    X-R

    ay A

    bsor

    banc

    e

    fitting met-ty

    5 Å

  • N

    N

    N

    N

    Cu NN

    N

    N

    N

    N

    Cu

    N

    N

    O

    O

    N

    N

    N

    N

    Cu NN

    N

    N

    N

    N

    Cu

    N

    N

    O

    O

    N

    N

    N

    N

    Cu NN

    N

    N

    N

    N

    Cu

    N

    N Cl

    R

    O

    Bubacco et al., Figure 6

    Plus Cl-

    Plus Kojic acid

    Met Ty

    Cu K-edge XANES spectra based structural modelsof the met-Ty of Streptomyces antibioticus, met-Ty complex with Kojic acid and met-Ty-Chloride complex

    Key information on the coordination number

  • Metal–metal distance as a key structural feature

    Krebs et al.

  • …… Reaction mechanism

    Paramagnetic NMR

    Pulsed EPR

    X-ray absorption

  • CuA of Cytochrome oxidase

    C.OSTERMEIER,et al., STRUCTURE AT 2.7 A RESOLUTION OF THE Paracoccus Denitrificans CYTOCHROME C OXIDASE

  • WEFT-NOESY spectra (600-MHz) of SdII-CuA in H2O recorded in a 6 mM protein sample at pH 5.6 and 288 K showing the connectivities between the histidine imidazole ring protons..

  • Pattern ID Ligand Pattern Count

    0 his,his,his 54

    1 cys,his,his 13

    2 his,his,H2O 10

    3 his,his,OH 6

    4 his,his,mto 5

    5 cys,his,met 4

    6 cys,cys,cys 3

    Pattern ID Ligand Pattern

    Count

    0 cys,his,his,met 129

    1 his,his,his,his 38

    2 his,his,his, H2O 32

    3 cys,glu,his,his 10

    4 c2o,his,his,his 9

    5 cys,his,his,his 6

    6 his,his,his,tpq 6

    7 cuz,his,his, H2O 6http://metallo.scripps.edu/analysis/

  • δ= contact shift

    δ = Ao (sin2 θ + a cos θ + b)

    NMR of paramagnetic proteinsIvano Bertini1 and Claudio Luchinat

  • [(A/h

    ) -c]

    /b

    φ (o)

    3b3u 3b2u

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 90 180 270 360 The electronic configuration is a keyaspect in electron transferfuncion of CuA in cytochrome oxidase

  • Molecular biology as a tool to test assigments and consequentiallystructural and functional models

  • H117

    H46

    Azurin• Contribution of two His• one His has a 50% stronger coupling

    AZURIN PDB file 1AZUSOURCE Pseudomona Aeruginosa

  • Azurin

    H117

    H46 Genetic engineering has allowed for the sequence assignment of the two histidines.(Canters et al)

    H117G mutant

    AZURIN PDB file 1AZUSOURCE Pseudomona Aeruginosa

  • Second shell structural featuresN190 mutant

  • Second shell structural featuresH- bonds

    SaWTTY SaTyT51A

    Km 8.1mM 6.32mM

    Kcat 5.4 *104 min-1 7.54*103 min-1

    Inhibitor SaWTTY SaTyT51A

    Kojic acid 6.7mM 4.8mM

    Mimosine 89.8mM 66.8mM

    p-toluic acid 228mM 780mM

    Benzoic acid 533mM 333mM

    Fluoride 12mM 11mM

    Chloride 140mM 112mM

  • In the biological prospective what are the relevant questionsthat can be answered by structural techniquesin studing a metal site?

    EXFAS XANES pulsedEPR pNMR

    EXFAS XANES pulsedEPR

    EXFAS XANES pulsedEPR pNMR

    EXFAS XANES

    XANES pulsedEPR pNMR

    pulsedEPR pNMR

    a) Type o f proteins ligands

    b) Type o f exogenous ligands

    c) Number of ligands

    d)Bond lenghts

    f) Coordination geomentry

    g) Ligand’s orientation/cord. mode

  • Biochem. J. (2003) 369, Crystal structure of nitrous oxide reductase from Paracoccus denitrificansat 1.6 Å resolution Tuomas HALTIA et al.

    binuclear metal center