29
Prof. Paolo Colantonio a.a. 201112

Prof. Paolo Colantonio a.a. 2011 12

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Prof. Paolo Colantonio a.a. 2011 12

Prof. Paolo Colantonioa.a. 2011‐12

Page 2: Prof. Paolo Colantonio a.a. 2011 12

Analogue ElectronicsProf. Paolo Colantonio 2 | 29

Conductors• e.g. copper or aluminum• have a cloud of free electrons (at all temperatures above absolute zero). If an 

electric field is applied electrons will flow causing an electric current

Insulators• e.g. polythene• electrons are tightly bound to atoms, so, only a few can break free to conduct 

electricity

Semiconductors• e.g. silicon or germanium• at very low temperatures these have the properties of insulators• as the material warms up some electrons break free and can move about, and it 

takes on the properties of a conductor – albeit a poor one• however, semiconductors have several properties that make them distinct from 

conductors and insulators

Page 3: Prof. Paolo Colantonio a.a. 2011 12

Analogue ElectronicsProf. Paolo Colantonio 3 | 29

• The Silicon is one of the most adopted semiconductor to realize electronic devices, both discrete or integrated

• It is constituted by a tetrahedral cell, with an atom in each vertexes, linked to the other by covalent bounds between the 4 electrons of each atom

• At 0 Kelvin, each electron is linked to its atom and the conductivity is null

• Increasing material temperature, thermal vibration results in some bonds being broken, generating free electrons which move about

• These leave behind holes (positive charge carries) which accept electrons (negative charge carriers) from adjacent atoms and therefore, also move about

• At room temperatures there are few charge carriers, thus pure semiconductors are poor conductors (this is intrinsic conduction)

The atomic structure of 

silicon

Temperature 

Page 4: Prof. Paolo Colantonio a.a. 2011 12

Analogue ElectronicsProf. Paolo Colantonio 4 | 29

• The addition of small amounts of impurities drastically affects the properties of a semiconductor.

• This process is known as doping.

• Adding Phosphorus P (e.g. pentavalent material) into the crystal lattice of Silicon Si (e.g. tetravalent material), four of P’s valence electrons are tightly bound by the covalent bonding.

• The fifth electron is only weakly bound and is therefore almost free to move within the lattice and contribute to an electric current.

SiSi Si

SiSi Si

SiSi Si

freeelectron

SiSi Si

PSi Si

SiSi Si

Page 5: Prof. Paolo Colantonio a.a. 2011 12

Analogue ElectronicsProf. Paolo Colantonio 5 | 29

• When  the added materials form an excess of electrons, they are called donor impurities and produce a n‐type semiconductor

• When the added materials form an excess of holes, they are called acceptor impurities and produce a p‐type semiconductor 

• Both n‐type and p‐type materials have much greater conductivity than pure semiconductors: extrinsic conduction

• The dominant charge carriers in a doped semiconductor (e.g. electrons in n‐type material) are called majority charge carriers. The other type are minority charge carriers

• The overall doped material is electrically neutral

Page 6: Prof. Paolo Colantonio a.a. 2011 12

Analogue ElectronicsProf. Paolo Colantonio 6 | 29

• Excepting bulk devices, which exploit basic properties of semiconductors, the large amount of electronic devices are based on the junction of different semiconductor materials with different doping profile, i.e. with different concentration of impurity (e.g., p‐n junction), or by metal and semiconductors (e.g. Schottky junction).

• The modern electronic technology employ a variety of semiconductor• Pure

• e.g. constituted by a single atomic specie, • Composed

• e.g. constituted by different atomic elements like Gallium Arsenide (GaAs), Indium Phosphorus (InP), Gallium Nitride (GaN), Silicon Carbide (SiC), Silicon‐Germanium (SiGe).

Page 7: Prof. Paolo Colantonio a.a. 2011 12

Analogue ElectronicsProf. Paolo Colantonio 7 | 29

• When p‐type and n‐type materials are joined, this forms a pn junction

• The majority charge carriers on each side diffuse across the junction where they combine with (and remove) the charge carriers of the opposite polarity

• Hence, around the junction there are few free charge carriers and we have a depletion layer (also called a space‐charge layer)

• The diffusion of positive charge in one direction and negative charge in the other produces a charge imbalance, resulting in a potential barrier across the junction

Page 8: Prof. Paolo Colantonio a.a. 2011 12

Analogue ElectronicsProf. Paolo Colantonio 8 | 29

• The barrier opposes the flow of majority charge carriers and only a small number have enough energy to surmount it

• This generates a small diffusion current• The barrier encourages the flow of minority carriers and any that come close to it 

will be swept over• This generates a small drift current

• For an isolated junction these two currents must balance each other and the net current is zero

Vh

Potential

DistanceIsolated junction

p-type n-type

Page 9: Prof. Paolo Colantonio a.a. 2011 12

Analogue ElectronicsProf. Paolo Colantonio 9 | 29

Forward bias• If the p‐type side is made positive with respect to the n‐type

side the height of the barrier is reduced, thus more majoritycharge carriers have sufficient energy to surmount it

• the diffusion current therefore increases while the driftcurrent remains the same

• there is thus a net current flow across the junction whichincreases with the applied voltage

Reverse bias• if the p‐type side is made negative with respect to the n‐type

side the height of the barrier is increased, thus the number ofmajority charge carriers that have sufficient energy tosurmount it rapidly decreases

• the diffusion current therefore vanishes while the driftcurrent remains the same

• thus the only current is a small leakage current caused by the(approximately constant) drift current

• the leakage current is usually negligible (a few nA)

Vh

Potential

DistanceForward bias

V

p-type n-type

+ -V

Vh

Potential

DistanceReverse bias

V

p-type n-type

- +V

Page 10: Prof. Paolo Colantonio a.a. 2011 12

Analogue ElectronicsProf. Paolo Colantonio 10 | 29

• The current flowing through a pn junction can be approximately related to theapplied voltage by the expression

• I is the current through the junction• IS is a constant called the reverse saturation current• q is the electronic charge• V is the applied voltage• k is Boltzmann’s constant,• T is the absolute temperature• is a constant in the range 1 to 2 determined by the junction material (e.g.

approximately 1 for Ge and 1.3 for Si). For most purposes we can assume =1

1kTη

qV

s eIIp-type n-type

+ -V

I

Page 11: Prof. Paolo Colantonio a.a. 2011 12

Analogue ElectronicsProf. Paolo Colantonio 11 | 29

• Thus

1TV

V

s eII

• If V > + 0.1 V, Vs eII 40

• If V < + 0.1 V, sII

• At room temperature (T=300K)• VT26mV 1/VT 40 V−1

11600TVT

Page 12: Prof. Paolo Colantonio a.a. 2011 12

Analogue ElectronicsProf. Paolo Colantonio 12 | 29

• A pn junction is not an ideal diode, but itdoes have a characteristic thatapproximates to such a device(semiconductor diode)

• An ideal diode passes electricity in one direction but not in the other

Page 13: Prof. Paolo Colantonio a.a. 2011 12

Analogue ElectronicsProf. Paolo Colantonio 13 | 29

• Generally have a turn‐on voltage of about 0.5 V• Generally have a conduction voltage of about 0.7 V• Have a breakdown voltage that depends on their construction

• perhaps 75 V for a small‐signal diode• perhaps 400 V for a power device

• have amaximum current that depends on their construction• perhaps 100 mA for a small‐signal diode• perhaps many amps for a power device

AK

Page 14: Prof. Paolo Colantonio a.a. 2011 12

Analogue ElectronicsProf. Paolo Colantonio 14 | 29

• One application of diodes is in rectification

Example: half‐wave rectifier

• In practice, no real diode has ideal characteristics but semiconductor pn junctionsmake good diodes

Page 15: Prof. Paolo Colantonio a.a. 2011 12

Analogue ElectronicsProf. Paolo Colantonio 15 | 29

• Sometimes we represent a diode by an equivalent circuit.• Models have different levels of sophistication

Idealdiode

Idealdiode

VONIdealdiode

VON rON

Idealdiode

VON rON

rOFF

I

V

I

V

I

V

I

VVON

VON VON

Slope=1/rON

Slope=1/rOFF

Slope=1/rON

Page 16: Prof. Paolo Colantonio a.a. 2011 12

Analogue ElectronicsProf. Paolo Colantonio 16 | 29

Conduction Voltage• In a real diode I‐V characteristic it can be noted the

existence of a voltage VON, below of which the currentis negligible (less 1% of diode maximum current).

V

I[mA]

0 0.2 0.6 1.0

500

10

idealcharacteristic

150 °

C

25°C

-55°

C

Logarithmic scale behavior• Increasing the forward voltage V, the voltage drop

across the semiconductor becomes significant andthe device behaves like a resistor

Saturation current• For negative voltage (reverse bias) the current is IS

(generally negligible)

• VON 0.2V for Ge• VON 0.7V for Si

• mA for Si• nA for Ge

Page 17: Prof. Paolo Colantonio a.a. 2011 12

Analogue ElectronicsProf. Paolo Colantonio 17 | 29

Effects of temperature• There is an intrinsic relationship with the operating

temperature T 1qVk

sI I e

T

• For a given current I, the voltage V is inversely proportional to T

• For a silicon diode (similar for germanium), V decreases by about 2 mV per °C

• The diode current is also affected by the reverse saturation current, which

increases with temperature

• IS increases by about 7% per °C

2V mVT C

IS twined for T=10°C

Page 18: Prof. Paolo Colantonio a.a. 2011 12

Analogue ElectronicsProf. Paolo Colantonio 18 | 29

• A reversed‐biased diode has two conducting regions separated by an insulatingdepletion region

• This structure resembles a capacitor• Variations in the reverse‐bias voltage change the width of the depletion layer and

hence the capacitance, namely Transient Capacitance CT

----

----

----

----

----

----

----

++++

++++

++++

++++

++++

++++

++++

++++

p-type n-type

depletion layer

W

A TACW

• A forward‐biased diode shows a capacitive behavior due to the injection of minoritycharges across the junction

• The resulting Diffusion Capacitance CD is greater than CT

Page 19: Prof. Paolo Colantonio a.a. 2011 12

Analogue ElectronicsProf. Paolo Colantonio 19 | 29

• When a varying signal is applied to a diode,the electrical response od diode shows atransient behavior.

• Considering the following situation

RL

iDv(t)i

vD

VF

-VR

0t

t

t

t

IS

p -pn n0

v(t)i

iD

vD

VF/RL

-VR/RL

Forwardbias

Storage ofminority charges

Transitiontime

0VON

-VR

Page 20: Prof. Paolo Colantonio a.a. 2011 12

Analogue ElectronicsProf. Paolo Colantonio 20 | 29

• If a large reverse voltage is applied across a pn junction, a breakdown phenomenoncan be observed, that can be caused by two mechanisms

Zener breakdown• In devices with heavily doped p‐ and n‐type regions the transition from one to the

other is very abrupt and the depletion region is few nanometers thick• This produces a very high field strength across the junction that can pull electrons

from their covalent bonds, resulting in a large reverse current• The current produced by Zener breakdown must be limited by external circuitry to

prevent damage to the diode• The breakdown voltage is largely constant and the Zener breakdown normally occurs

below 5V• The breakdown voltage decreases very slightly with increasing temperature (the

energy required to break the covalent bonds is reduced being increased the energyacquired by each electrons)

0dtdVZ

Page 21: Prof. Paolo Colantonio a.a. 2011 12

Analogue ElectronicsProf. Paolo Colantonio 21 | 29

Avalanche breakdown• Occurs in diodes with more lightly doped materials, where the field strength across

junction is insufficient to pull electrons from their atoms, but is sufficient toaccelerate the electrons within the depletion layer

• The electrons loose energy by colliding with atoms• If they have sufficient energy they can liberate other electrons, leading to an

avalanche effect• Usually occurs at voltages above 5V• The voltage at which avalanche breakdown occurs increase with junction

temperature (the increased temperature increase the thermal vibration, thusincreasing the collision before the electrons reach the sufficient velocity to break thecovalent bonds)

0ZdVdt

Page 22: Prof. Paolo Colantonio a.a. 2011 12

Analogue ElectronicsProf. Paolo Colantonio 22 | 29

Varactor• A reversed‐biased diode has two conducting regions separated by an insulating

depletion region• This structure resembles a capacitor• Variations in the reverse‐bias voltage change the width of the depletion layer and

hence the capacitance• This produces a voltage‐dependent capacitor• The Varactor are diodes constructed to emphasize such capacitive behaviour• They are used in applications such as automatic tuning circuits

Rr

Rs

CT

Rr= reverse bias resistanceRs= semiconductor bulk resistanceCT= reverse bias capacitance

0 5 10 15 20 25Reverse bias [V]

1N916

1N914

25°C

Cap

acita

nce

C [p

F]T

4.0

3.2

2.4

1.6

0.8

0

Symbol

Equivalent circuit

Page 23: Prof. Paolo Colantonio a.a. 2011 12

Analogue ElectronicsProf. Paolo Colantonio 23 | 29

Zener• Uses the relatively constant reverse breakdown voltage to produce a voltage

reference• Breakdown voltage is called the Zener voltage, VZ

iD

vD

VZ

L

L

RVR R

VR

RLV+

R

vDiD

Symbol

Page 24: Prof. Paolo Colantonio a.a. 2011 12

Analogue ElectronicsProf. Paolo Colantonio 24 | 29

Zener• It is used as a voltage stabilizer, since the voltage across the Zener is practically fixed

to VZ value

RLV+

R

vDiD RLV+

R

vDiD

iD

vD

VZ

L

L

RVR R

VR

IncreasingRL

iD

vD

VZ

L

L

RVR R

VR

IncreasingV

Page 25: Prof. Paolo Colantonio a.a. 2011 12

Analogue ElectronicsProf. Paolo Colantonio 25 | 29

Schottky• It is formed by the junction between a layer of metal (e.g. aluminum) and a

semiconductor• Action relies only on majority charge carriers• Much faster in operation than a pn junction diode• Has a low forward voltage drop of about 0.25 V• Used in the design of high‐speed logic gates

Page 26: Prof. Paolo Colantonio a.a. 2011 12

Analogue ElectronicsProf. Paolo Colantonio 26 | 29

Tunnel• High doping levels produce a very thin depletion layer which permits ‘tunnelling’ of

charge carriers• results in a characteristic with a negative resistance region• used in high‐frequency oscillators, where they can be used to ‘cancel out’ resistance

in passive components

Symbol

Page 27: Prof. Paolo Colantonio a.a. 2011 12

Analogue ElectronicsProf. Paolo Colantonio 27 | 29

LED• The Light‐Emitting‐Diode (LED) is a semiconductor diode constructed

in such a way that in the pn junction, when it is forward biased, thecharges injected in the region where they are minoritary (holes inregion n‐type and electrons in region p‐type) will recombine emittinglight.

• Such phenomenon happens in the depletion layer region• A range of semiconductor material can be used to produce infrared

or visible light of various colors• Typical devices use materials such as gallium arsenide (GaAs), gallium

phosphide (GaP) or gallium arsenide phosphide (GaAsP)

SymbolMaterial

Light length(nm)

Color

GaAs 910 Infrared

GaP 560 Green

GaAsP 650 Red

----

----

----

----

----

----

++++

++++

++++

++++

++++

++++

p-type n-type

depletionlayer

Forward biad

Light

Cathode

Anode

Page 28: Prof. Paolo Colantonio a.a. 2011 12

Analogue ElectronicsProf. Paolo Colantonio 28 | 29

Photodiode• They are devices able to transform light in electrical current• Without light the photodiode behaves like a normal diode,

with an I‐V chatacteristic crossing the origin axes• By lighting the pn junction reverse biased, with a proper

incident radiating length (i.e. the energy of the incidentphoton shall be larger than the energy gap), there is anincrease of reverse current due to the increase of freecharges

• The efficiency of the illumination is a function of the lightspot distance from the pn junction

Symbol

I

VIS

IphVph

VB

ndI GdV

Symbol

Page 29: Prof. Paolo Colantonio a.a. 2011 12

Analogue ElectronicsProf. Paolo Colantonio 29 | 29

• If the pn junction of a photodiode is used in the fourth quadrant, being IV negativethen electrical energy is produced

RL

Light I

V

Vph

Iph

RL

Pmax

0.5 0.6phV V With Siliconsilicon

1T

VV

ph SI I I e

Iph short circuit current proportional to the illumination intensity

Vph photovoltaic potential

, ln 1 phph Max T

S

IV V

I