196
QUANTITATIVE METHODS FOR FINANCE [email protected] Room 221, 2nd oor, Via Necchi 9 Phone: +39-02-72342345 Oce hours: 14:30-16:30 on Tuesday Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 1

QMF Lectures 2013-14

  • Upload
    xiaoou

  • View
    237

  • Download
    1

Embed Size (px)

DESCRIPTION

QMF lectures 2013-14.

Citation preview

Page 1: QMF Lectures 2013-14

QUANTITATIVE METHODS FOR FINANCE

[email protected]

Room 221, 2nd oor, Via Necchi 9

Phone: +39-02-72342345

O�ce hours: 14:30-16:30 on Tuesday

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 1

Page 2: QMF Lectures 2013-14

TEXTBOOK

I Lecture notes.

I A. BATTAUZ - F. ORTU, Arbitrage Theory in Discrete and Continuous

Time (Cod. 8444), Edizioni EGEA, last edition (available at Libreria EGEA, Via

Bocconi, 8).

I K. SYDSAETER - P. J. HAMMOND, Mathematics for economic analysis,

Prentice-Hall, 1995.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 2

Page 3: QMF Lectures 2013-14

THE COURSE MATERIAL IS ON BLACKBOARD (BB)

I Enroll in a BB course by entering your I-Catt URL (www.i-catt.it).

I At http://www.unicatt.it/faq/faq.asp?id=146 you'll �nd detailed inform-

ation on how to enroll in BB courses.

I You enter BB via http://blackboard.unicatt.it.

I Your BB username is: surname.IDnumber. Your BB password is: utente.

I For any problem, contact [email protected].

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 3

Page 4: QMF Lectures 2013-14

COURSE OUTLINE

I No-arbitrage pricing of assets replicated by existing traded securities.

I No-arbitrage pricing of unreplicable assets.

I Constrained optimization with applications to �nance/economics.

I Equilibrium valuation of assets.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 4

Page 5: QMF Lectures 2013-14

LINEAR ALGEBRA (REVIEW)

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 5

Page 6: QMF Lectures 2013-14

I IS THE NEUTRAL ELEMENT OF THE MULTIPLICATION

I The n�n identity matrix I has 1s down the main diagonal and 0s elsewhere.The 2� 2 identity matrix, for example, is

I =

"1 00 1

#.

"1 00 1

# "3 4 05 2 2

#=

"3 4 05 2 2

#.

264 5 18 31 0

375 "1 00 1

#=

264 5 18 31 0

375 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 6

Page 7: QMF Lectures 2013-14

TRANSPOSITION AND MULTIPLICATION

I If you transpose a matrix product you multiply the transposed matrices inreverse order:

0BBBBBBBB@

Az }| {"1 2 01 1 1

#bz }| {264 581

375

1CCCCCCCCA

T

=

"2114

#T

m

bTz }| {h5 8 1

iATz }| {264 1 12 10 1

375 =h21 14

i

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 7

Page 8: QMF Lectures 2013-14

INVERSE AND INVERTIBLE MATRICES

I If it exists, the inverse of an n�n matrix C is an n�n matrix C�1 satisfying

CC�1 = I and C�1C = I :

I For example,

Cz }| {"1 21 3

#C�1z }| {"3 �2�1 1

#=

"1 00 1

#

and

C�1z }| {"3 �2�1 1

#Cz }| {"1 21 3

#=

"1 00 1

#:

I An n� n matrix C is invertible if its inverse matrix C�1 exists.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 8

Page 9: QMF Lectures 2013-14

DETERMINANTS OF SQUARE MATRICES 1

I C is invertible if and only if (i�) it is non-singular, that is, its determinant

is non-zero.

det

"1 21 3

#!= 1 � (�1)1+1 � det (3)| {z }

the 1-1 cofactor

+

1 � (�1)2+1 � det (2)| {z }the 2-1 cofactor

= 1 � 3 + 1 � (�2) = 1 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 9

Page 10: QMF Lectures 2013-14

DETERMINANTS OF SQUARE MATRICES 2

det

0B@264 1 2 32 3 23 3 2

3751CA = 1 � (�1)1+1 � det

"3 23 2

#!| {z }

the 1-1 cofactor

+

2 � (�1)2+1 � det "

2 33 2

#!| {z }

the 2-1 cofactor

+

3 � (�1)3+1 � det "

2 33 2

#!| {z }

the 3-1 cofactor

= 1 � (0) + 2 � 5 + 3 � (�5) = �5

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 10

Page 11: QMF Lectures 2013-14

CONSTRUCTING THE INVERSE MATRIX 1

"1 21 3

#�1=

1

det

"1 21 3

#!| {z }

=1

matrix of cofactors of

"1 21 3

# !T

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 11

Page 12: QMF Lectures 2013-14

CONSTRUCTING THE INVERSE MATRIX 2

matrix of cofactors of

"1 21 3

#=

266666666664

(�1)1+1 � det (3)| {z }the 1-1 cofactor

(�1)1+2 � det (1)| {z }the 1-2 cofactor

(�1)2+1 � det (2)| {z }the 2-1 cofactor

(�1)2+2 � det (1)| {z }the 2-2 cofactor

377777777775

=

264 3 �1

�2 1

375

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 12

Page 13: QMF Lectures 2013-14

CONSTRUCTING THE INVERSE MATRIX 3

"1 21 3

#�1=

1

1

"3 �1�2 1

#T

=

"3 �2�1 1

#

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 13

Page 14: QMF Lectures 2013-14

A FORMULA FOR INVERTING 2� 2 MATRICES

I Given ad� cb 6= 0, consider the square matrix

"a bc d

#.

I Its inverse is

1

ad� cb

"d �b�c a

#.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 14

Page 15: QMF Lectures 2013-14

INVERTING A 3� 3 MATRIX

I Show that

266666641 2 3

2 3 2

3 3 2

37777775

�1

=1

�5

266666640 5 �5

2 �7 4

�3 3 �1

37777775 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 15

Page 16: QMF Lectures 2013-14

SYSTEMS OF LINEAR EQUATIONS (REVIEW)

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 16

Page 17: QMF Lectures 2013-14

A FIRST EXAMPLE 1

I Consider the following linear system in the unknowns x1, x2, and x3 :

8>>>>>><>>>>>>:

x1 + 2x2 + 3x3

2x1 + 3x2 + 2x3

3x1 + 3x2 + 2x3

=

=

=

6

�1

0

I We can rewrite it as follows:

264 1 2 32 3 23 3 2

375264 x1x2x3

375 =

264 6�10

375

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 17

Page 18: QMF Lectures 2013-14

A FIRST EXAMPLE 2

I We can also rewrite the system as a `constrained' linear combination:

x1

264 123

375+ x2264 233

375+ x3264 322

375 =

264 6�10

375

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 18

Page 19: QMF Lectures 2013-14

A FIRST EXAMPLE 3

I The system admits a solution i� the vector

264 6�10

375can be seen as a linear combination of the vectors

264 123

375 ,

264 233

375 , and

264 322

375

with proper weights x�1, x�2, and x

�3.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 19

Page 20: QMF Lectures 2013-14

A FIRST EXAMPLE 4

I This can happen i� (Rouch�e-Capelli Theorem)

the number of independent columns of

264 1 2 32 3 23 3 2

375

equals

the number of independent columns of

264 1 2 3 62 3 2 �13 3 2 0

375| {z }complete matrix

.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 20

Page 21: QMF Lectures 2013-14

A FIRST EXAMPLE 5

I The rank of a matrix measures how many indipendent columns the matrix

has.

I The rank of a matrix is the highest order of non-singular square submatrices.

264 1 2 32 3 23 3 2

375 is non-singular so that

264 1 2 3 62 3 2 �13 3 2 0

375| {z }complete matrix

has maximum rank (3) .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 21

Page 22: QMF Lectures 2013-14

A FIRST EXAMPLE 6

I We can work out the solution x�1, x�2, and x

�3 by means of the Cramer's

Theorem:

x�1 = det

0B@264 6 2 3�1 3 20 3 2

3751CA = (�5) =

�5�5

= 1 ;

x�2 = det

0B@264 1 6 32 �1 23 0 2

3751CA = (�5) =

19

�5= �3:8 ;

x�3 = det

0B@264 1 2 62 3 �13 3 0

3751CA = (�5) =

�21�5

= 4:2 :

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 22

Page 23: QMF Lectures 2013-14

A FIRST EXAMPLE 7

I We can work out x�1, x�2, and x

�3 also by means of inversion (given non-

singularity):

264 1 2 32 3 23 3 2

375�1

264 1 2 32 3 23 3 2

375 �264 x�1x�2x�3

375 =

264 1 2 32 3 23 3 2

375�1

264 6�10

375

m

264 1 0 00 1 00 0 1

375 �264 x�1x�2x�3

375 =

264 1 2 32 3 23 3 2

375�1

264 6�10

375 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 23

Page 24: QMF Lectures 2013-14

A FIRST EXAMPLE 8

26666664x�1

x�2

x�3

37777775 =1

�5

266666640 5 �5

2 �7 4

�3 3 �1

37777775 �266666646

�1

0

37777775 =

266666641

�195215

37777775

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 24

Page 25: QMF Lectures 2013-14

A SECOND EXAMPLE 1

I Consider the following linear system in the unknowns x1, x2, x3 and x4 :

8>>>>>><>>>>>>:

x1 � x2 + 2x3 � x4

2x1 � x2 � x3 + 2x4

�x1 + 2x2 + 2x3 + x4

=

=

=

1

0

1

I Let's express it as follows:

x1

264 12�1

375+ x2264 �1�12

375+ x3264 2�12

375+ x4264 �121

375 =

264 101

375 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 25

Page 26: QMF Lectures 2013-14

A SECOND EXAMPLE 2

I The �rst three vectors are independent:

det

0B@264 1 �1 22 �1 �1�1 2 2

3751CA = 9

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 26

Page 27: QMF Lectures 2013-14

A SECOND EXAMPLE 3

I If the fourth vector is brought on the right-hand side,

x1

264 12�1

375+ x2264 �1�12

375+ x3264 2�12

375 =

264 101

375� x4264 �121

375 ,

the solution (with one degree of freedom) can be written as

26666664x�1

x�2

x�3

37777775 =266666641 �1 2

2 �1 �1

�1 2 2

37777775

�10BBBBBB@

266666641

0

1

37777775� x426666664�1

2

1

37777775

1CCCCCCA =

26666664

13 �

53x4

29 �

169 x4

49x4 +

49

37777775 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 27

Page 28: QMF Lectures 2013-14

A THIRD EXAMPLE 1

I Consider the following linear system in the unknowns x1, x2, and x3 :

8>>>>>>>>>><>>>>>>>>>>:

2x1 + 7x2 + x3

5x1 + 6x2 + 8x3

9x2

7x1 + 6x2 + 7x3

=

=

=

=

15

3

27

�3

I Let's state it as follows:

x1

266642507

37775+ x2266647696

37775+ x3266641807

37775 =

2666415327�3

37775 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 28

Page 29: QMF Lectures 2013-14

A THIRD EXAMPLE 2

I The �rst three vectors are independent because

det

0B@264 2 7 15 6 80 9 0

3751CA = �99 .

I The last vector linearly depends on the �rst three vectors as

det

0BBB@266642 7 1 155 6 8 30 9 0 277 6 7 �3

377751CCCA = 0 .

I Hence, the system admits solution.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 29

Page 30: QMF Lectures 2013-14

A THIRD EXAMPLE 3

I We can work out x�1, x�2, and x

�3 by focusing on the �rst three equations

(given non-singularity):

x�1

264 250

375+ x�2264 769

375+ x�3264 180

375 =

264 15327

375m

264 x�1x�2x�3

375 =

264 2 7 15 6 80 9 0

375�1 264 153

27

375 =

264 �330

375 .

I The last equation is met by construction:

x�1 � 7 + x�2 � 6 + x�3 � 7 = �21 + 18 + 0 = � 3 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 30

Page 31: QMF Lectures 2013-14

ONE-PERIOD FINANCIAL MARKETS

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 31

Page 32: QMF Lectures 2013-14

TIMING

I Investors face two trading dates only, namely t = 0 and t = 1.

I At time t = 0, investors choose their investment strategy.

I At time t = 1 they receive the liquidation value of their strategy.

I At time 0, investors can choose among N + 1 securities, for which we use

the index j, with j = 0; : : : ; N .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 32

Page 33: QMF Lectures 2013-14

THE RISKLESS SECURITY

I The security with j = 0 represents a riskless security.

I B(0) � 1 denotes the time-0 price of the riskless security.

I B(1) � 1 + r denotes its time-1 price.

I The quantity r is the risk-free rate, with r > 0.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 33

Page 34: QMF Lectures 2013-14

THE RISKY SECURITIES

I For the N securities with j > 0, Sj(0) denotes their time-0 price.

I eSj(1) is a random variable that denotes their time-1 price, with j = 1; : : : ; N .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 34

Page 35: QMF Lectures 2013-14

UNCERTAINTY

I By time 1, the market uncertainty will resolve in one of K possible states

of the world.

I !k indicates the generic k-th state of the world at time 1.

I The !k's are relevant economic/�nancial scenarios.

I indicates the set of all states of the world, i.e. = f!1; : : : ; !Kg.

I Sj(1)(!k) indicates the time-1 price of the j-th security in scenario !k.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 35

Page 36: QMF Lectures 2013-14

THE PAYOFF MATRIX M

I The payo� matrix M has K + 1 rows and N + 1 columns.

I Each column j of M represents the out ows/in ows from buying 1 unit of

the j-th security (j = 0; 1; :::; N):

M �

26666666666666664

�1 �S1(0) �S2(0) � � � �SN(0)

1 + r S1(1)(!1) S2(1)(!1) � � � SN(1)(!1)

1 + r S1(1)(!2) S2(1)(!2) � � � SN(1)(!2)

... ... ... ...

1 + r S1(1)(!K) S2(1)(!K) � � � SN(1)(!K)

37777777777777775

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 36

Page 37: QMF Lectures 2013-14

EXEMPLIFYING A MARKET WITH 3 SECURITIES AND 3 STATES 1

I Consider a one-period market with N = 2 and K = 3.

I Assume that B(1) = 1:05, so that r = 5%.

I The time-0 prices of the risky securities are S1(0) = 0:5 and S2(0) = 2:5.

I The time-1 prices of the risky securities are

S1(1)(!1) = 0

S1(1)(!2) = 2

S1(1)(!3) = 0

S2(1)(!1) = 0

S2(1)(!2) = 0

S2(1)(!3) = 5

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 37

Page 38: QMF Lectures 2013-14

EXEMPLIFYING A MARKET WITH 3 SECURITIES AND 3 STATES 2

I The payo� matrix is then the following 4� 3 matrix:

M =

266666666664

�1 �0:5 �2:5

1:05 0 0

1:05 2 0

1:05 0 5

377777777775

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 38

Page 39: QMF Lectures 2013-14

INVESTMENT STRATEGIES 1

I #0 is the position in the risk-free security.

I #1; #2 are the positions in the two risky securities.

I The positions represent the units of each security bought, or sold short, at

time 0.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 39

Page 40: QMF Lectures 2013-14

INVESTMENT STRATEGIES 2

#1 = 3 (buying 3 units of security 1)

initial out ow: 3 (�0:5) = �1:5

�nal in ows: 3

266666640

2

0

37777775 =

266666640

6

0

37777775

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 40

Page 41: QMF Lectures 2013-14

INVESTMENT STRATEGIES 3 (LENDING)

#0 = 10 (buying 10 units of the riskless security)

initial out ow: 10 (�1) = �10

�nal in ows: 10

266666641:05

1:05

1:05

37777775 =

2666666410:5

10:5

10:5

37777775

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 41

Page 42: QMF Lectures 2013-14

INVESTMENT STRATEGIES 4

#2 = �2 (selling short 2 units of security 2)

initial in ow: �2 (�2:5) = 5

�nal out ows: �2

266666640

0

5

37777775 =

266666640

0

�10

37777775

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 42

Page 43: QMF Lectures 2013-14

INVESTMENT STRATEGIES 5 (BORROWING)

#0 = �7 (selling short 7 units of the riskless security)

initial in ow: �7 (�1) = 7

�nal out ows: �7

266666641:05

1:05

1:05

37777775 =

26666664�7: 35

�7: 35

�7: 35

37777775

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 43

Page 44: QMF Lectures 2013-14

INVESTMENT STRATEGIES 6

I The generic investment strategy is a (column) vector # 2 R3:

# =

0B@ #0#1#2

1CA :

I Let's look at the following strategy #�:

#� =

0BBBBBB@4

5

2

1CCCCCCA =0BBBBBB@buying 4 units of the riskless security

buying 5 units of security 1

buying 2 units of security 2

1CCCCCCA :

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 44

Page 45: QMF Lectures 2013-14

INVESTMENT STRATEGIES 7

I The market is competitive: no one has price impact.

I The market is frictionless:

B no indivisibilities (#is are not only integers);

B no short-selling constraint (#is can be negative);

B no trading limits (#is are unbounded);

B no margin requirements;

B no bid-ask spreads;

B no taxation on capital gains.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 45

Page 46: QMF Lectures 2013-14

THE INITIAL COST OF AN INVESTMENT STRATEGY

I At time 0, the quantity V# (0) is the cost an investor must face to set up

the investment strategy #.

I Let's assess the initial cost V#� (0) for the strategy #�:

#� =

0BBBBBB@4

5

2

1CCCCCCA :

I The corresponding initial out ow is �V#� (0) :

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 46

Page 47: QMF Lectures 2013-14

THE FINAL PROCEEDS OF AN INVESTMENT STRATEGY

I The �nal proceed V# (1) (!k) is the time-1 cash ow in the state !k from

liquidating the investment strategy #.

I Let's assess the �nal proceeds of the strategy #�.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 47

Page 48: QMF Lectures 2013-14

THE STRATEGY FOR GIVEN FINAL PROCEEDS

I Let's �nd the strategy # whose �nal proceeds are:

26666664V# (1) (!1)

V# (1) (!2)

V# (1) (!3)

37777775 =

266666640:5

0:5

0:5

37777775 :

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 48

Page 49: QMF Lectures 2013-14

BACK-ENGINEERING STRATEGIES

I Find the strategy # whose initial cost and �nal proceeds are:

V# (0) = 0;

V# (1) (!2) = 4;

V# (1) (!3) = 2.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 49

Page 50: QMF Lectures 2013-14

`FREE LUNCHES'?

I They are possible if there are:

I violations of the law of one price;

I arbitrage opportunities of the �rst type;

I arbitrage opportunities of the second type.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 50

Page 51: QMF Lectures 2013-14

VIOLATIONS OF THE LAW OF ONE PRICE

Two strategies have di�erent costs at time 0

despite

providing the same �nal proceeds in any state at time 1.

I In our market M there are no such violations.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 51

Page 52: QMF Lectures 2013-14

ARBITRAGE OPPORTUNITIES OF THE FIRST TYPE

There is a strategy with non-positive initial costthat

never yields negative �nal proceeds

while

granting strictly-positive �nal proceedsin

at least one of the states at time 1:

I In our market M there are no such opportunities.

I For example, let's work out the initial cost of a strategy that pays o� nothing

but 1 cent in the state !3:

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 52

Page 53: QMF Lectures 2013-14

ARBITRAGE OPPORTUNITIES OF THE SECOND TYPE

There is a strategy with strictly-negative initial cost

that

never yields negative �nal proceeds.

I In our market M there are no such opportunities.

I For example, let's calculate the �nal proceed prevailing in the state !3 of a

strategy that costs �10 cents and pays o� nothing in the states !1 and !2.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 53

Page 54: QMF Lectures 2013-14

`FREE LUNCHES' ARE IMPLAUSIBLE

I Any non-satiated investor (in the sense that she always prefers more wealth

to less) would exploit these situations.

I There would be no equilibrium.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 54

Page 55: QMF Lectures 2013-14

THE NO-ARBITRAGE ASSUMPTION

I A market satis�es the no-arbitrage condition if it does not permit

I violations of the law of one price;

I arbitrage opportunities of the �rst type;

I arbitrage opportunities of the second type.

I Our market

M =

26664�1 �0:5 �2:51:05 0 01:05 2 01:05 0 5

37775is arbitrage-free.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 55

Page 56: QMF Lectures 2013-14

THE RISK-NEUTRAL PROBABILITY MEASURE Q 1

I A risk-neutral probability measure Q is made ofK probability masses Q (!k)

such that:

Q (!k) > 0 for any k = 1; ::::;K .

1 The masses are strictly-positive .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 56

Page 57: QMF Lectures 2013-14

THE RISK-NEUTRAL PROBABILITY MEASURE Q 2A

Q (!1) + :::+Q (!K) = 1 .

2 The masses sum to 1 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 57

Page 58: QMF Lectures 2013-14

THE RISK-NEUTRAL PROBABILITY MEASURE Q 2B

B (0) =1

1 + rEQ [B (1)]

=1

1 + r[Q (!1)B (1) + :::+Q (!K)B (1)]

= 1 .

2 The masses sum to 1 .

I For the riskless security, the price is the discounted Q-expectation of the

payo�.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 58

Page 59: QMF Lectures 2013-14

THE RISK-NEUTRAL PROBABILITY MEASURE Q 3

Sj (0) =1

1 + rEQ

h eSj (1)i

=1

1 + r

hQ (!1)Sj (1) (!1) + :::+Q (!K)Sj (1) (!K)

i, j = 1; :::; N .

3 Prices are discounted Q-expectations of payo�s.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 59

Page 60: QMF Lectures 2013-14

WHY RISK-NEUTRAL? 1

I The statement

Sj (0) =1

1 + rEQ

h eSj (1)i , j = 1; :::; N ,

is equivalent to the statement

EQ" eSj (1)� Sj (0)

Sj (0)

#= r, j = 1; :::; N .

I Q-expected returns equal the risk-free rate.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 60

Page 61: QMF Lectures 2013-14

WHY RISK-NEUTRAL? 2

I UnderQ, the initial cost of a strategy # equals the discountedQ-expectationof its �nal proceed:

V# (0) =1

1 + rEQ

h eV# (1)i .

I The Q-expected return from # equals the risk-free rate.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 61

Page 62: QMF Lectures 2013-14

THE FIRST FUNDAMENTAL THEOREM OF ASSET PRICING

I The following statements are equivalent:

I the no-arbitrage condition holds;

I a risk-neutral probability measure Q exists.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 62

Page 63: QMF Lectures 2013-14

OUR ARBITRAGE-FREE MARKET ADMITS A Q

I The risk-neutral probability masses are:

26666664Q (!1)

Q (!2)

Q (!3)

37777775 =

266666640:212 5

0:262 5

0:525

37777775 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 63

Page 64: QMF Lectures 2013-14

A LONG FORWARD CONTRACT ON SECURITY 2

I A long forward contract is an agreement to buy the risky security at date 1

at a pre-speci�ed price (the delivery price E = 1).

I The payo� of the contract is

26666664f (1) (!1)

f (1) (!2)

f (1) (!3)

37777775 =

26666664S2 (1) (!1)� E

S2 (1) (!2)� E

S2 (1) (!3)� E

37777775 =

26666664�1

�1

4

37777775 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 64

Page 65: QMF Lectures 2013-14

NO-ARBITRAGE PRICING OF THE LONG FORWARD 1

I The unique strategy that replicates the long forward payo� ef (1) is

#f =

264 �0:952 380 9501

375 .

I The no-arbitrage price of the long forward equals the initial cost of the

replicating strategy #f :

V#f (0) = 1:547 619 1 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 65

Page 66: QMF Lectures 2013-14

NO-ARBITRAGE PRICING OF THE LONG FORWARD 2

I The no-arbitrage price of the long forward is

f (0) =1

1 + rEQ

h ef (1)i

=1

1 + rEQ

h eS2 (1)� Ei

= 1:547 619 1 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 66

Page 67: QMF Lectures 2013-14

NO-ARBITRAGE PRICING OF A EUROPEAN CALL

I A European call option on the risky security 2 with strike price E = 1 is the

right to buy the risky security at date 1 at the pre-speci�ed strike price.

I Find its no-arbitrage price c (0).

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 67

Page 68: QMF Lectures 2013-14

NO-ARBITRAGE PRICING OF A EUROPEAN PUT

I A European put option on the risky security 2 with strike price E = 1 is the

right to sell the risky security at date 1 at the pre-speci�ed strike price.

I Find its no-arbitrage price p (0).

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 68

Page 69: QMF Lectures 2013-14

THE PUT-CALL PARITY

c (0) � p (0) = f (0)

= S2 (0)�E

1 + r.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 69

Page 70: QMF Lectures 2013-14

MARKET COMPLETENESS

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 70

Page 71: QMF Lectures 2013-14

COMPLETE MARKETS 1

I A payo� fX (1) is

replicable

if there exists a strategy # such that

V# (1) (!k) = X (1) (!k) for all k = 1; : : : ;K:

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 71

Page 72: QMF Lectures 2013-14

COMPLETE MARKETS 2

I Our market M is

complete

if every possible payo� is replicable, that is, if there is a # such that

266666641:05 0 0

1:05 2 0

1:05 0 5

37777775

26666664#0

#1

#2

37777775 =

26666664X (1) (!1)

X (1) (!2)

X (1) (!3)

37777775

for any X (1) (!1), X (1) (!2), and X (1) (!3):

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 72

Page 73: QMF Lectures 2013-14

COMPLETE MARKETS 3

I M is complete:

26666664#0

#1

#2

37777775 =

266666641:05 0 0

1:05 2 0

1:05 0 5

37777775

�1 26666664X (1) (!1)

X (1) (!2)

X (1) (!3)

37777775 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 73

Page 74: QMF Lectures 2013-14

THE SECOND FUNDAMENTAL THEOREM OF ASSET PRICING

I The following statements are equivalent:

I Both no-arbitrage and market completeness hold;

I There exists one, and only one, risk-neutral probability Q.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 74

Page 75: QMF Lectures 2013-14

A UNIQUE Q FOR OUR COMPLETE M 1

I There is a unique triplet of strictly-positive masses Q (!1), Q (!2), andQ (!3) that meets the following constraints:

discounted Q�expected �nal pricesz }| {

11+0:05

266666641:05 0 0

1:05 2 0

1:05 0 5

37777775

T 26666664Q (!1)

Q (!2)

Q (!3)

37777775=

initial pricesz }| {266666641

0:5

2: 5

37777775.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 75

Page 76: QMF Lectures 2013-14

A UNIQUE Q FOR OUR COMPLETE M 2

I The unique triplet is

26666664Q (!1)

Q (!2)

Q (!3)

37777775 = 1:05

0BBBBBBB@

266666641:05 0 0

1:05 2 0

1:05 0 5

37777775

T1CCCCCCCA

�1 266666641

0:5

2: 5

37777775

=

266666640:212 5

0:262 5

0:525

37777775 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 76

Page 77: QMF Lectures 2013-14

AN INCOMPLETE MARKET 1

I The market

M 0 =

266666666664

�1 �0:5

1:02 0

1:02 2

1:02 0:10

377777777775, N + 1 = 2, K = 3,

is incomplete.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 77

Page 78: QMF Lectures 2013-14

AN INCOMPLETE MARKET 2

I Indeed, the payo�

26666664X (1) (!1)

X (1) (!2)

X (1) (!3)

37777775 =

266666641

1:5

2

37777775

cannot be replicated:

det

0BBBBBB@

266666641:02 0 1

1:02 2 1:5

1:02 0:10 2

37777775

1CCCCCCA = 1: 989 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 78

Page 79: QMF Lectures 2013-14

OUR INCOMPLETE M 0 IS ARBITRAGE-FREE 1

I M 0 supports many risk-neutral probability measures:

discounted Q-expected �nal pricesz }| {

11+0:02

264 1: 02 1: 02 1: 02

0 2 0:1

37526666664Q (!1)

Q (!2)

Q (!3)

37777775=

intial pricesz }| {264 1

0:5

375

m

264 1: 020

375Q (!1) +264 1: 02

2

375Q (!2) +264 1: 020:10

375Q (!3) = 1:02

264 1

0:5

375

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 79

Page 80: QMF Lectures 2013-14

OUR INCOMPLETE M 0 IS ARBITRAGE-FREE 2

264 1: 020

375Q (!1) +264 1: 02

2

375Q (!2) = 1:02

264 1

0:5

375 �

264 1: 020:10

375 qz }| {Q (!3)

m

264 1: 02 1: 02

0 2

375264 Q (!1)Q (!2)

375 =

264 1: 02� 1:02q0:51� 0:10q

375m

264 Q (!1)Q (!2)

375 =

264 1: 02 1: 02

0 2

375�1 264 1: 02� 1:02q

0:51� 0:10q

375 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 80

Page 81: QMF Lectures 2013-14

OUR INCOMPLETE M 0 IS ARBITRAGE-FREE 3

I We have

264 Q (!1)Q (!2)

375 =

266411:02 �12

0 12

3775264 1: 02� 1:02q0:51� 0:10q

375 =

264 0:745 � 0:95q0:255 � 0:05q

375

with the strict-positivity constraints

8>>>>>><>>>>>>:

Q (!1) = 0:745 � 0:95q > 0

Q (!2) = 0:255 � 0:05q > 0

Q (!3) = q > 0

() q 2 (0; 0:784 210 53) .

.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 81

Page 82: QMF Lectures 2013-14

NO-ARBITRAGE PRICING OF AN UNREPLICABLE PAYOFF 1

I The no-arbitrage prices of the unreplicable payo�

26666664X (1) (!1)

X (1) (!2)

X (1) (!3)

37777775 =

266666641

1:5

2

37777775are

1

1 + rEQ

hfX (1)i=

1

1:02

266666641 � (0:745 � 0:95q) +

1:5 � (0:255 � 0:05q) +

2 � q

37777775= 0:95588235q + 1:1053922 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 82

Page 83: QMF Lectures 2013-14

NO-ARBITRAGE PRICING OF AN UNREPLICABLE PAYOFF 2

I The no-arbitrage prices range from

infQ

1

1 + rEQ

hfX (1)i= inf

q2(0;0:784 210 53)[0:955 882 35q + 1:1053922] = 1:1053922

to

supQ

1

1 + rEQ

hfX (1)i= sup

q2(0;0:784 210 53)[0:955 882 35q + 1:1053922] = 1:8550052 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 83

Page 84: QMF Lectures 2013-14

WHERE DOES THE UPPER BOUND COME FROM?

1: 855 005 2 = supQ

1

1 + rEQ

hfX (1)i

= V#u (0)

where

#u = argmin#

V# (0) subject to V# (1) (!k) � X (1) (!k) in each state k:

I #u denotes a minimum-cost super-replicating strategy.

I V#u (0) is the minimum cost of super-replicating fX (1) .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 84

Page 85: QMF Lectures 2013-14

MINIMUM-COST SUPER-REPLICATION OF fX (1) 1

I The candidate super-replicating strategies # = [#0; #1]T solve the system

8>>>>>><>>>>>>:

1:02 � #0 + 0 � #1 � 1

1:02 � #0 + 2 � #1 � 1:5

1:02 � #0 + 0:10 � #1 � 2

;

the solution of which can be found graphically.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 85

Page 86: QMF Lectures 2013-14

MINIMUM-COST SUPER-REPLICATION OF fX (1) 2

8>>>>>><>>>>>>:

r1 : 1:02 � #0 + 0 � #1 = 1

r2 : 1:02 � #0 + 2 � #1 = 1:5

r3 : 1:02 � #0 + 0:10 � #1 = 2

;

­5 ­4 ­3 ­2 ­1 1 2 3 4 5 6 7 8 9 10

­4

­2

2

4

6

8

10

12

14

theta_0

theta_1

r_1 r_3

r_2

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 86

Page 87: QMF Lectures 2013-14

MINIMUM-COST SUPER-REPLICATION OF fX (1) 3

­5 ­4 ­3 ­2 ­1 1 2 3 4 5 6 7 8 9 10

­4

­2

2

4

6

8

10

12

14

theta_0

theta_1

r_1 r_3

(1.5 , 8)

r_2sup

er­rep

licati

ng  X

(1)

I The strategy [#0; #1]T = [1:5; 8]T super-replicates fX (1) .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 87

Page 88: QMF Lectures 2013-14

MINIMUM-COST SUPER-REPLICATION OF fX (1) 4

I The initial-cost function of any strategy # is

V#(0) = #0 + #1 � 0:5 .

I Its level curve c is the straight line #1 =c0:5 �

#00:5 :

­5 ­4 ­3 ­2 ­1 1 2 3 4 5 6

­5

­4

­3

­2

­1

1

2

3

4

5

6

7

8

theta_0

theta_1

r_1 r_3

r_2

super­

replic

ating

  X(1)

c = 1.855

c = 0

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 88

Page 89: QMF Lectures 2013-14

MINIMUM-COST SUPER-REPLICATION OF fX (1) 5

I The minimum-cost super-replicating strategy [#u0 ; #u1 ]T is the point of in-

tersection between r2 and r3:

I Hence, we must solve the system

8><>:1:02 � #u0 + 2 � #u1 = 1:5

1:02 � #u0 + 0:10 � #u1 = 2

to obtain

264 #u0#u1

375 =

264 1: 986 58

�0:263 158

375 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 89

Page 90: QMF Lectures 2013-14

WHERE DOES THE LOWER BOUND COME FROM?

1: 105 392 2 = infQ

1

1 + rEQ

hfX (1)i

= � V#l(0)

where

#l = argmax#

� V# (0) subject to V# (1) (!k) � �X (1) (!k) in each state k:

I #l denotes a maximum-in ow strategy that generates a liability lighter than�fX (1).

I �V#l(0) is the maximum in ow from super-replicating �fX (1) .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 90

Page 91: QMF Lectures 2013-14

MAXIMUM-INFLOW SUPER-REPLICATION OF �fX (1) 18>>>>>><>>>>>>:

h1 : 1:02 � #0 + 0 � #1 = �1

h2 : 1:02 � #0 + 2 � #1 = �1:5

h3 : 1:02 � #0 + 0:10 � #1 = �2

.

­3.0 ­2.5 ­2.0 ­1.5 ­1.0 ­0.5 0.5 1.0 1.5 2.0 2.5 3.0

­5

­4

­3

­2

­1

1

2

3

4

5

theta_0

theta_1

h_1

h_2

h_3

super­

replic

ating

  ­ X(1)

I The strategy [#0; #1]T = [�0:25;�0:5]T super-replicates �fX (1) .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 91

Page 92: QMF Lectures 2013-14

MAXIMUM-INFLOW SUPER-REPLICATION OF �fX (1) 2

I The initial-in ow function of any strategy # is

f#(0) = �#0 � #1 � 0:5 ( = � V#(0) ) .

I Its level curve f is the straight line #1 = � f0:5 �

#00:5 :

­3.0 ­2.5 ­2.0 ­1.5 ­1.0 ­0.5 0.5 1.0 1.5 2.0 2.5 3.0

­5

­4

­3

­2

­1

1

2

3

4

5

theta_0

theta_1

h_1

h_2

h_3

super­

replic

ating

  ­ X(1)

f = 1.10539

f = 0

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 92

Page 93: QMF Lectures 2013-14

MAXIMUM-INFLOW SUPER-REPLICATION OF �fX (1) 3

I The liability-type strategy [#l0; #l1]T is the point of intersection between h1

and h2:

I Hence, we must solve the system

8><>:1:02 � #l0 + 0 � #l1 = �1

1:02 � #l0 + 2 � #l1 = �1:5

to obtain

264 #l0#l1

375 =

264 �0:980 392�0:25

375 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 93

Page 94: QMF Lectures 2013-14

REPLICABLE PAYOFFS ADMIT A UNIQUE NO-ARBITRAGE PRICE

I Consider the following replicable payo�:26666664X (1) (!1)

X (1) (!2)

X (1) (!3)

37777775 =

266666642: 04

4: 04

2: 14

37777775 .

I Its no-arbitrage price does not depend on q :

1

1 + rEQ

hfX (1)i

=1

1:02

266666640:745 � 0:95q

0:255 � 0:05q

q

37777775

T 266666642: 04

4: 04

2: 14

37777775 = 2: 5 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 94

Page 95: QMF Lectures 2013-14

OPTIMIZATION: AN INTRODUCTION

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 95

Page 96: QMF Lectures 2013-14

WEALTH ALLOCATION AND FINAL WEALTH

I An investor allocates her initial wealth of 100 between a riskless security

( its net return is r ) and a risky security ( its net return is er ).

I The proportion of initial wealth allocated to the risky security is w .

I The �nal wealth achieved with the allocation w is

fW = 100 ( 1� w ) (1 + r) + 100 w (1 + er)

= 100 ( (1 + r) + w (er � r) ) .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 96

Page 97: QMF Lectures 2013-14

PORTFOLIO RETURNS AND BORROWING

I The portfolio based on the allocation w yields a net return of

fW � 100100

= r + w (er � r) .

I If the investor invests more than her initial wealth in the risky security

(w > 1), she needs to borrow:

1� w| {z }proportion allocated to the riskless security

< 0 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 97

Page 98: QMF Lectures 2013-14

THE RETURN ON THE RISKLESS SECURITY

I Assume for now that

r = 0% .

I Hence, a purely riskless allocation (w = 0) implies

fW = 100 with probability 1 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 98

Page 99: QMF Lectures 2013-14

THE RETURN ON THE RISKY SECURITY

er =

8><>:g = 30% with probability mass p

b = �10% with probability mass 1� p

I If p = 0:25 , the expectation is

E [ er ] = 0% .

I Hence, a purely risky allocation (w = 1) implies

Eh fW i

= 100 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 99

Page 100: QMF Lectures 2013-14

THE INVESTOR IS RISK AVERSE 1

I If the investor were to pursue a purely riskless allocation (w = 0), she would

get the following utility out of the �nal wealth fW = 100 (with probability 1)

U ( 100 ) = log ( 100 ) .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 100

Page 101: QMF Lectures 2013-14

THE INVESTOR IS RISK AVERSE 2

I If the investor were to pursue a purely risky allocation (w = 1), she would

get the following expected utility out of the �nal wealth fW = 100 ( 1 + er ):

E [ log ( 100 (1 + er) ) ] = 0:25 � log ( 130 ) + 0:75 � log ( 90 )

< log ( 0:25 � 130 + 0:75 � 90 )

= log ( 100 ) .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 101

Page 102: QMF Lectures 2013-14

THE INVESTOR IS RISK AVERSE 3

70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 1504.50

4.52

4.54

4.56

4.58

4.60

4.62

4.64

4.66

4.68

4.70

4.72

4.74

4.76

4.78

4.80

4.82

4.84

4.86

wealth W

(expected) utility

log ( W

 )E [ l

og ( W

 ) ]

log ( 100 )

p = 0

p = 1

p = 0.25

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 102

Page 103: QMF Lectures 2013-14

THE RETURN ON THE RISKLESS SECURITY

I Assume

r = 2% .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 103

Page 104: QMF Lectures 2013-14

A POSITIVE RISK PREMIUM ON THE RISKY SECURITY

I Consider

p = 0:5

so that the risk premium is

E [ er ] � r = 10% � 2% = 8% .

I The standard deviation of the risky return is

std [ er ] = 20% .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 104

Page 105: QMF Lectures 2013-14

OPTIMAL ALLOCATION WITHOUT PORTFOLIO CONSTRAINTS 1

I Recall that the �nal wealth is

fW = 100 ( ( 1 + r ) + w ( er � r ) ) .

I The optimal allocation is w� = argmaxw

Ehlog

� fW � i.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 105

Page 106: QMF Lectures 2013-14

OPTIMAL ALLOCATION WITHOUT PORTFOLIO CONSTRAINTS 2

w� = 242:86% ()

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

ddw E

hlog

� fW � i> 0 for w < w�

ddw E

hlog

� fW � i���w = w�

= 0 (stationarity)

ddw E

hlog

� fW � i< 0 for w > w�

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 106

Page 107: QMF Lectures 2013-14

OPTIMAL ALLOCATION WITHOUT PORTFOLIO CONSTRAINTS 3

I Recall that log x is a real number only if x > 0 .

I w must be such that the �nal wealth fW is always strictly positive:

8>>><>>>:100 ( (1 + r) + w (g � r) ) = 102 + w28 > 0

100 ( (1 + r) + w (b� r) ) = 102� w12 > 0

() w 2�� 5114;17

2

�.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 107

Page 108: QMF Lectures 2013-14

OPTIMAL ALLOCATION WITHOUT PORTFOLIO CONSTRAINTS 4

d

dwEhlog

� fW � i� 0

m

1

2� 1

102 + w28� 28 +

1

2� 1

102� w12� ( � 12 ) � 0

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 108

Page 109: QMF Lectures 2013-14

OPTIMAL ALLOCATION WITHOUT PORTFOLIO CONSTRAINTS 5

1

2� 1

102 + w28� 28 +

1

2� 1

102� w12� ( � 12 ) � 0

m

14 ( 102 � w 12 ) � 6 ( 102 + w 28)

( 102 + w 28) ( 102 � w 12 )� 0

m

816 � 336 w

( 102 + w 28) ( 102 � w 12 )� 0

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 109

Page 110: QMF Lectures 2013-14

OPTIMAL ALLOCATION WITHOUT PORTFOLIO CONSTRAINTS 6

816 � 336w

( 102 + w28 ) ( 102� w12 )� 0

I The denominator is striclty positive for w 2�� 5114;

172

�.

I The numerator is non-negative for w 2 ( �1; 177 ] with

17

7= 242:86% :

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 110

Page 111: QMF Lectures 2013-14

OPTIMAL ALLOCATION WITHOUT PORTFOLIO CONSTRAINTS 7

­5 ­4 ­3 ­2 ­1 1 2 3 4 5 6 7 8 9 10

­1.0

­0.5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

allocation w

expected utility

w *

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 111

Page 112: QMF Lectures 2013-14

w� WITH A PORTFOLIO CONSTRAINT ( w � 1 ) 1

I The investor cannot borrow to allocate more than 100 into the risky security:

w� = 1

­5 ­4 ­3 ­2 ­1 1 2 3 4 5 6 7 8 9 10

­1

1

2

3

4

5

allocation w

expected utility

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 112

Page 113: QMF Lectures 2013-14

w� WITH A PORTFOLIO CONSTRAINT ( w � 1 ) 2

I The portfolio constraint is binding at the optimum:

8>>>>>>><>>>>>>>:

ddw E

hlog

� fW � i���w = w�

> 0

w� � 1 = 0

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 113

Page 114: QMF Lectures 2013-14

w� WITH A PORTFOLIO CONSTRAINT ( w � 1 ) 3

I Let's introduce the Lagrangian function

L (w; l) = Ehlog

� fW � i� l ( w � 1 ) .

I l is the Lagrange multiplier with

l � 0 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 114

Page 115: QMF Lectures 2013-14

w� WITH A PORTFOLIO CONSTRAINT ( w � 1 ) 4

I Let's use the Lagrangian function to re-express the optimality conditions:

8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

@@w L

���w = w�; l = l�

= 0

l� � 0

@@l L

���w = w�

� 0

l� � @@l L

���w = w�

= 0

=)

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:

ddw E

hlog

�fW�i���w = w�

� l� = 0

l� = 0:041026 > 0

� ( w� � 1 ) = 0

l� � ( � ( w� � 1 ) ) = 0

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 115

Page 116: QMF Lectures 2013-14

w� WITH A PORTFOLIO CONSTRAINT ( w � 1 ) 5

I If the constraint is relaxed ( say to w � 1:01 ), the optimized expected

utility goes up by

d

dwEhlog

� fW � i����w = w�

� 0:01 = l� � 0:01 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 116

Page 117: QMF Lectures 2013-14

w� WITH A PORTFOLIO CONSTRAINT ( w � 1 ) 6

0.960 0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000 1.005 1.010 1.015 1.020 1.025 1.030 1.035 1.0404.6820

4.6825

4.6830

4.6835

4.6840

4.6845

4.6850

allocation w

expected utility

about 0.00041

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 117

Page 118: QMF Lectures 2013-14

w� WITH A PORTFOLIO CONSTRAINT ( w � 1 ) 7

I The Lagrange multiplier l� is a shadow price :

l� = 0:041026 .

( optimized-expected-utility gain per unit of constraint relaxation )

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 118

Page 119: QMF Lectures 2013-14

UNCONSTRAINED OPTIMIZATION

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 119

Page 120: QMF Lectures 2013-14

A PROFIT FUNCTION

I A �rm produces two outputs x and y (they can be sold at the �xed prices

20 and 30, respectively).

I The production costs are quadratic:

C (x; y) = x2 + 2y2 � 2xy + 20 .

I The pro�t function remains quadratic:

P (x; y) = 20x+ 30y ��x2 + 2y2 � 2xy + 20

�.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 120

Page 121: QMF Lectures 2013-14

P 'S LEVEL CURVES 1

I The level curve p = 300 is the set of output pairs (x; y) such that the

pro�t P (x; y) equals 300.

0 10 20 30 40 50 60 700

10

20

30

40

50

60

70

x

y

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 121

Page 122: QMF Lectures 2013-14

P 'S LEVEL CURVES 2

I The level curve p = 600 is in black

0 10 20 30 40 50 60 700

10

20

30

40

50

60

70

x

y

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 122

Page 123: QMF Lectures 2013-14

P 'S LEVEL CURVES 3

I The level curve p = 705 is the singleton (x� = 35; y� = 25), which isthe maximum-pro�t production in the absence of constrains.

0 10 20 30 40 50 60 700

10

20

30

40

50

60

70

x

y

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 123

Page 124: QMF Lectures 2013-14

FIRST PARTIAL DERIVATIVE WITH RESPECT TO x 1

Px (35; 25) = limh!0

P (35 + h; 25)� P (35; 25)h

= 0

I It is the slope of P 's graph in (x = 35; y = 25) along the direction (x; y = 25)

423040

3836

output  x26

3424

output  y

32

28

302228

20

550

600

700

650

profit level  z

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 124

Page 125: QMF Lectures 2013-14

FIRST PARTIAL DERIVATIVE WITH RESPECT TO x 2

Px (35; 25) =@

@x

�20x+ 30y � x2 � 2y2 + 2xy � 20

�����( x=35; y=25 )

= (20� 2x+ 2y)j ( x=35; y=25 )

= 0

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 125

Page 126: QMF Lectures 2013-14

FIRST PARTIAL DERIVATIVE WITH RESPECT TO y 1

Py (35; 25) = limk!0

P (35; 25 + k)� P (35; 25)k

= 0

I It is the slope of P 's graph in (x = 35; y = 25) along the direction (x = 35; y)

423040

26 363828

output x

3424

output y

323022

2820

550

600

profit level z

650

700

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 126

Page 127: QMF Lectures 2013-14

FIRST PARTIAL DERIVATIVE WITH RESPECT TO y 2

Py (35; 25) =@

@y

�20x+ 30y � x2 � 2y2 + 2xy � 20

������( x=35; y=25 )

= (30� 4y + 2x)j ( x=35; y=25 )

= 0

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 127

Page 128: QMF Lectures 2013-14

THE (NECESSARY) FIRST-ORDER CONDITIONS FOR OPTIMALITY

I P : X � R2 �! R admits �rst partial derivatives at the interior point

(x�; y�) 2 X.

I If P has a local/global maximum at the interior point (x�; y�), then (x�; y�)is a stationary point for P :

Px ( x�; y� ) = Py ( x

�; y� ) = 0 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 128

Page 129: QMF Lectures 2013-14

THE HESSIAN MATRIX

I If P : X � R2 �! R admits second partial derivatives at the interior

point (x0; y0) 2 X, then P 's Hessian matrix at (x0; y0) is

264 Pxx (x0; y0) Pxy (x0; y0)

Pyx (x0; y0) Pyy (x0; y0)

375 .

I Schwartz's Theorem: Pxy (x0; y0) = Pyx (x0; y0) .

I In our case, the Hessian is264 �2 2

2 �4

375 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 129

Page 130: QMF Lectures 2013-14

TAYLOR'S FORMULA STOPPED AT THE SECOND ORDER

I Given any point (x0; y0), our quadratic pro�t function can be re-expressed

as follows:

P (x; y) = P (x0; y0) +

Px (x0; y0) (x� x0) + Py (x0; y0) (y � y0) +

1

2

264 x� x0y � y0

375T 264 Pxx (x0; y0) Pxy (x0; y0)

Pyx (x0; y0) Pyy (x0; y0)

375264 x� x0y � y0

375 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 130

Page 131: QMF Lectures 2013-14

P 'S HESSIAN AT THE MAX. POINT (x� = 35; y� = 25) 1

P (x; y) = 705 +

0 (x� 35) + 0 (y � 25) + ( stationarity )

1

2

264 x� 35y � 25

375T 264 �2 2

2 �4

375264 x� 35y � 25

375| {z }

< 0 for any x 6= 35 or y 6= 25 (negative de�nite)

.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 131

Page 132: QMF Lectures 2013-14

P 'S HESSIAN AT THE MAX. POINT (x� = 35; y� = 25) 2

Pxx (x�; y�) = � 2 < 0

det

0B@264 Pxx (x�; y�) Pxy (x�; y�)

Pyx (x�; y�) Pyy (x�; y�)

3751CA = det

0B@264 �2 2

2 �4

3751CA = 4 > 0

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 132

Page 133: QMF Lectures 2013-14

THE (SUFFICIENT) SECOND-ORDER CONDITIONS FOR A LOCAL

MAXIMUM

I P : X � R2 �! R admits continuous �rst and second partial derivatives

in an open ball of the interior point (x�; y�) 2 X.

I If (x�; y�) is a stationary point for P and if

I P 's Hessian matrix at (x�; y�) is negative de�nite,

I equivalently, Pxx (x�; y�) < 0 and

det

0B@264 Pxx (x�; y�) Pxy (x�; y�)

Pyx (x�; y�) Pyy (x�; y�)

3751CA > 0

then (x�; y�) is a local maximum point for P .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 133

Page 134: QMF Lectures 2013-14

CONVEX SETS

I X � R2 is convex when the segment that connects two arbitrary points ofthe set does not lie outside the set.

I R2 is strictly convex (the connecting segment lies strictly inside R2).

In( x; y ) 2 R 2 : x � 0 ^ y � 0

ois convex:

­2 ­1 1 2 3 4

­2

­1

1

2

3

4

x

y

here

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 134

Page 135: QMF Lectures 2013-14

P 'S STRICT CONCAVITY 1

I P : X � R2 �! R is strictly concave in its strictly convex domain X when

the segment that connects two arbitrary points of P 's graph lies strictly below the

graph.

profit level z

600

400

200

00

10

output y

20

0

20

output x40

60

806050

4030

I 20x+ 30y ��x2 + 2y2 � 2xy + 20

�is strictly concave.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 135

Page 136: QMF Lectures 2013-14

P 'S STRICT CONCAVITY 2

I P : X � R2 �! R is strictly concave in its strictly convex domain X

if and only if the non-empty sets f (x; y) 2 X : P (x; y) � a g are strictly

convex .

0 10 20 30 40 50 60 700

10

20

30

40

50

x

ylevel 300

level 600

level 700

I 20x+ 30y ��x2 + 2y2 � 2xy + 20

�is strictly concave.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 136

Page 137: QMF Lectures 2013-14

P 'S STRICT CONCAVITY 3

I Assume that P : X � R2 �! R is twice derivable in all the points of its

open and strictly convex domain X.

I P is strictly concave in X if and only if the Hessian matrix is negative

de�nite in any point of X.

I 20x+ 30y ��x2 + 2y2 � 2xy + 20

�is strictly concave:

its Hessian

264 �2 2

2 �4

375 is always negative de�nite.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 137

Page 138: QMF Lectures 2013-14

STRICT CONCAVITY AND THE UNIQUE GLOBAL MAXIMUM

I P : X � R2 �! R is strictly concave in its strictly convex domain X.

I If a local maximum point exists for P , it is also of global maximum andunique.

profit level z

600

400

200

00

10

output y

20

0

20

output x40

60

806050

4030

I (35; 25) is the unique global maximum point.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 138

Page 139: QMF Lectures 2013-14

C'S STRICT CONVEXITY 1

I C : X � R2 �! R is strictly convex in its strictly convex domain X whenthe segment that connects two arbitrary points of C's graph lies strictly above thegraph.

0

2

0

54

output x

6

output y

10

158

20

010

40cost level z60

80

100

I The cost function C (x; y) = x2+2y2�2xy+20 is strictly convex.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 139

Page 140: QMF Lectures 2013-14

C'S STRICT CONVEXITY 1

I C : X � R2 �! R is strictly convex in its strictly convex domain X if

and only if �C is strictly concave there.

106

25y x

4

0 0

810

­100

­80

­60z­40

­20

15

0

I ��x2 + 2y2 � 2xy + 20

�is strictly concave.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 140

Page 141: QMF Lectures 2013-14

C'S STRICT CONVEXITY 3

I C : X � R2 �! R is strictly convex in its strictly convex domain X if and

only if the non-empty sets f (x; y) 2 X : C (x; y) � a g are strictly convex .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

1

2

3

4

5

6

7

8

9

10

x

y

level 40

level 80

level 120

I x2 + 2y2 � 2xy + 20 is strictly convex.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 141

Page 142: QMF Lectures 2013-14

MAXIMIZATION WITH EQUALITY CONSTRAINTS

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 142

Page 143: QMF Lectures 2013-14

RECALLING THE COST FUNCTION

I A �rm produces two outputs x and y (they can be sold at the �xed prices

20 and 30, respectively) and its cost function is:

C (x; y) = x2 + 2y2 � 2xy + 20 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 143

Page 144: QMF Lectures 2013-14

A COST CONSTRAINT THAT DEFINES AN IMPLICIT FUNCTION 1

I The output pair (x = 10; y = 10) commands a cost of 120. In a neighbor-hood of x = 10, the cost constraint

C (x; y) = 120

implies the existence of a unique function

y = � (x)

such that

10 = � (10) and ddx� (x) = �

C x ( x; �(x) )

C y ( x; �(x) ).

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 144

Page 145: QMF Lectures 2013-14

A COST CONSTRAINT THAT DEFINES AN IMPLICIT FUNCTION 2

­5 ­4 ­3 ­2 ­1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

­4

­2

2

4

6

8

10

12

14

output x

output y

( level curve )  cost = 120

( 10 , 10 )

10 = � (10) and ddx� (x)

���x = 10

= �C x ( 10; 10 )

C y ( 10; 10 )= 0

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 145

Page 146: QMF Lectures 2013-14

PROFIT MAXIMIZATION WITH A COST CONSTRAINT 1

I The �rm's pro�t is

P (x; y) = 20x + 30y � C (x; y)

I The optimization problem is

maxx; y

P (x; y) subject to C (x; y) = a

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 146

Page 147: QMF Lectures 2013-14

PROFIT MAXIMIZATION WITH A COST CONSTRAINT 2

I From the constraint equation

C (x; y) = a

we can work out y from x via the implicit function

y = � (x) :

I By plugging y = � (x) into P , the problem becomes:

maxx

P ( x; � (x) ) .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 147

Page 148: QMF Lectures 2013-14

PROFIT MAXIMIZATION WITH A COST CONSTRAINT 3

I If P ( x; � (x) ) exhibits an interior extremum point, then such a point

must be stationary:

dP

dx= Px + Py �

d

dx� = 0

m

Px

Py= � d

dx�

m

Px

Py= �

�CxCy

!.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 148

Page 149: QMF Lectures 2013-14

PROFIT MAXIMIZATION WITH A COST CONSTRAINT 4

I The necessary condition for optimality

Px = Py = Cx = Cy

holds if and only if there exists a real number l (the Lagrange multiplier )

such that

Px = l Cx ;

Py = l Cy :

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 149

Page 150: QMF Lectures 2013-14

PROFIT MAXIMIZATION WITH A COST CONSTRAINT 5

I By introducing the Lagrangian function

L (x; y; l; a) = P (x; y) � l (C (x; y)� a) ;

the necessary condition for optimality and the constraint can be expressed as

follows (stationarity for L):

8>>>>>><>>>>>>:

Lx = Px � lCx = 0

Ly = Py � lCy = 0

Ll = � (C � a) = 0 (constraint)

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 150

Page 151: QMF Lectures 2013-14

PROFIT MAXIMIZATION WITH A COST CONSTRAINT 6

8>>><>>>:Lx = 0 , 20� 2x+ 2y � l (2x� 2y) = 0

Ly = 0 , 30� 4y + 2x� l (4y � 2x) = 0

,

8>>>><>>>>:x� = 35

l+1

y� = 25l+1

��x�2 + 2y�2 � 2x�y� + 20 � a

�= 0| {z }

Ll = 0

,

8>>>>>><>>>>>>:

l = +�725a�20

�12 � 1 (select)

l = ��725a�20

�12 � 1 (discard)

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 151

Page 152: QMF Lectures 2013-14

PROFIT MAXIMIZATION WITH A COST CONSTRAINT 7

l� =�725

a� 20

�12 � 1

x� =35

l� + 1= 35

�a� 20725

�12

y� =25

l� + 1= 25

�a� 20725

�12

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 152

Page 153: QMF Lectures 2013-14

PROFIT MAXIMIZATION WITH A COST CONSTRAINT 8

L (x�; y�; l�; a) = P (x�; y�) � l� (C (x�; y�)� a)| {z }= 0

= P (x�; y�)

= 2 (725)12 (a� 20)

12 � a .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 153

Page 154: QMF Lectures 2013-14

THE LAGRANGE MULTIPLIER l� IS A SHADOW PRICE 1

dda P ( x

�; y� ) =d

da

�2 (725)

12 (a� 20)

12 � a

=�725

a� 20

�12 � 1 = l�

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 154

Page 155: QMF Lectures 2013-14

THE LAGRANGE MULTIPLIER l� IS A SHADOW PRICE 2

I If we �x the cost constraint at a = 120 , then the shadow price is

l� = 1:6926 .

I The �rm is willing to surrender up to 1:6926 cents of pro�ts to obtain a

1-cent relaxation of the cost constraint ( da = 0:01 ):

d

daP ( x�; y� ) � 0:01 = l� � 0:01 ' 1:6926 cents .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 155

Page 156: QMF Lectures 2013-14

GRAPHICAL ANALYSIS WITH a = 120 1

I The optimal production is x� = 12:9987 and y� = 9:2848. The constrained-maximum pro�t is P (x�; y�) = 418: 5165:

­5 ­4 ­3 ­2 ­1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

­4

­2

2

4

6

8

10

12

14

output x

output y

( constraint ) cost = 120

( level curve ) profit = 418.52

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 156

Page 157: QMF Lectures 2013-14

GRAPHICAL ANALYSIS WITH a = 120 2

I At the point (x�; y�) there is tangency between the constrained-cost

level curve and the maximum-pro�t level curve:

� P x (x�; y�) = P y (x�; y�) = � C x (x�; y�) = C y (x�; y�)

­5 ­4 ­3 ­2 ­1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

­4

­2

2

4

6

8

10

12

14

output x

output y

( constraint ) cost = 120

( level curve ) profit = 418.52

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 157

Page 158: QMF Lectures 2013-14

OPTIMIZATION WITH INEQUALITY CONSTRAINTS

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 158

Page 159: QMF Lectures 2013-14

THE PORTFOLIO RETURN

I The portfolio return is

erp = w1 er1 + w2 er2 + (1� w1 � w2) r .

wj = fraction of initial wealth in the risky asset j ( j = 1; 2 ) ,

erj = net return on the the risky asset j ( j = 1; 2 ) ,

r = net return on the riskless asset .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 159

Page 160: QMF Lectures 2013-14

THE EXPECTED RETURN ON A PORTFOLIO

I The expectation E [ erp ] is

T (w1; w2) = r + w1 ( r1 � r ) + w2 ( r2 � r ) ,

Eh erj i = rj ( j = 1; 2 ) .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 160

Page 161: QMF Lectures 2013-14

T 'S LEVEL CURVES 1

I The allocation pairs (w1; w2) such that T (w1; w2) = 8% are in black.

­1.4 ­1.2 ­1.0 ­0.8 ­0.6 ­0.4 ­0.2 0.2 0.4 0.6 0.8 1.0 1.2 1.4

­1.4

­1.2

­1.0

­0.8

­0.6

­0.4

­0.2

0.2

0.4

0.6

0.8

1.0

1.2

1.4

w_1

w_2

r1 = 12%; r2 = 8%; r = 2%:

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 161

Page 162: QMF Lectures 2013-14

T 'S LEVEL CURVES 2

I The allocation pairs (w1; w2) such that T (w1; w2) = 10% are in black.

­1.4 ­1.2 ­1.0 ­0.8 ­0.6 ­0.4 ­0.2 0.2 0.4 0.6 0.8 1.0 1.2 1.4

­1.4

­1.2

­1.0

­0.8

­0.6

­0.4

­0.2

0.2

0.4

0.6

0.8

1.0

1.2

1.4

w_1

w_2

r1 = 12%; r2 = 8%; r = 2%:

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 162

Page 163: QMF Lectures 2013-14

VARIANCES AND CORRELATION

V arh erj i = �2j ( j = 1; 2 )

Cov [ er1 , er2 ] = ( �1 �2 ) = �

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 163

Page 164: QMF Lectures 2013-14

THE VARIANCE OF A PORTFOLIO RETURN

I The variance V ar (erp) is

V (w1; w2) =

264 w1w2

375T 264 �21 �1�2�

�1�2� �22

375264 w1w2

375

= �21w21 + 2��1�2w1w2 + �22w

22

� 0 for any portfolio choice (w1; w2) .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 164

Page 165: QMF Lectures 2013-14

V 'S LEVEL CURVES 1

I The allocation pairs (w1; w2) such that V (w1; w2) = (20%)2 are inblack.

­1 1

­1

1

w_1

w_2

�1 = 30%, �2 = 20%,

� = �0:5

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 165

Page 166: QMF Lectures 2013-14

V 'S LEVEL CURVES 2

I The allocation pairs (w1; w2) such that V (w1; w2) = (10%)2 are inblack.

­1 1

­1

1

w_1

w_2

�1 = 30%, �2 = 20%,

� = �0:5

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 166

Page 167: QMF Lectures 2013-14

V 'S LEVEL CURVES 3

I The allocation pair (w1; w2) such that V (w1; w2) = 0 is the point�w�1 = 0; w

�2 = 0

�.

­1 1

­1

1

w_1

w_2

�1 = 30%, �2 = 20%,

� = �0:5

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 167

Page 168: QMF Lectures 2013-14

MAXIMIZING THE RISK-ADJUSTED EXPECTED RETURN 1

I The investor's risk aversion is measured by the parameter A > 0 .

I The risk-adjusted expected return on the portfolio is

J (w1; w2) = T (w1; w2) � A

2V (w1; w2) .

I The problem is

maxw1; w2

J (w1; w2) sub

( total risk exposure must not exceed q )z }| {w1 + w2 � q � 0 .

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 168

Page 169: QMF Lectures 2013-14

MAXIMIZING THE RISK-ADJUSTED EXPECTED RETURN 2

I If q = 3 , the constraint is painless and not binding with w�1 = 107:4%and w�2 = 155:6% (the shadow price of the constraint is l� = 0).

­1.0 ­0.5 0.5 1.0 1.5 2.0 2.5 3.0

­1

1

2

3

w_1

w_2

h e r ew_1 + w_2 = 3

J's level curves

A = 2 ; �1 = 30%; �2 = 20%; � = �0:5; r1 = 12%; r2 = 8%; r = 2%:

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 169

Page 170: QMF Lectures 2013-14

MAXIMIZING THE RISK-ADJUSTED EXPECTED RETURN 3

I Given L (w1; w2; l) = J (w1; w2) � l (w1 + w2 � q) , the �rst-order

conditions for constrained optimality can be written �a la Kuhn-Tucker :8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

L w1

�w�1; w

�2; l

��= 0

L w2

�w�1; w

�2; l

��= 0

l� � 0

L l

�w�1; w

�2; l

��� 0

l� � L l

�w�1; w

�2; l

��= 0

q = 3

=)

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

J w1

�w�1; w

�2;�= l�

J w2

�w�1; w

�2;�= l�

l� = 0w�1 + w

�2 � 3 < 0

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 170

Page 171: QMF Lectures 2013-14

MAXIMIZING THE RISK-ADJUSTED EXPECTED RETURN 4

I The feasibility conditions are:

8>><>>:l� � 0

L l

�w�1; w

�2; l

��� 0 ( w�1 + w

�2 � q � 0 )

I The complementary slackness condition is:

l� � L l

�w�1; w

�2; l

��

= 0

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 171

Page 172: QMF Lectures 2013-14

MAXIMIZING THE RISK-ADJUSTED EXPECTED RETURN 5

I If q = 1 , the constraint is painful and binding with w�1 = 47:4% and

w�2 = 52:6% (the shadow price of the constraint is l� = 4:63%).

­1.0 ­0.5 0.5 1.0 1.5 2.0 2.5 3.0

­1

1

2

3

w_1

w_2

[   1.074  ,   1.556   ]

h e r e

w_1 + w_2 = 1

J's level curves

A = 2 ; �1 = 30%; �2 = 20%; � = �0:5; r1 = 12%; r2 = 8%; r = 2%:

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 172

Page 173: QMF Lectures 2013-14

MAXIMIZING THE RISK-ADJUSTED EXPECTED RETURN 6

I Given L (w1; w2; l) = J (w1; w2) � l (w1 + w2 � q) , the �rst-order

conditions for constrained optimality can be written �a la Kuhn-Tucker :8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

L w1

�w�1; w

�2; l

��= 0

L w2

�w�1; w

�2; l

��= 0

l� � 0

L l

�w�1; w

�2; l

��� 0

l� � L l

�w�1; w

�2; l

��= 0

q = 1

=)

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

J w1

�w�1; w

�2

�= l�

J w2

�w�1; w

�2

�= l�

l� > 0

w�1 + w�2 � 1 = 0

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 173

Page 174: QMF Lectures 2013-14

STOCK PRICING

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 174

Page 175: QMF Lectures 2013-14

THE DIVIDEND PROCESS

I The current date is t

I The stock pays out the dividend Xdt every `second' (a period of length dt)

I The dynamics of the dividend process is

dX = a (X; t) � dt| {z }expected change Et [dX]

+ b (X; t) � dz| {z }unexpected change

,

where dz is Gaussian with Et [dz] = 0 and Ethdz2

i= dt

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 175

Page 176: QMF Lectures 2013-14

A FUNCTION OF THE DIVIDEND X AND ITS DYNAMICS

I S (X) is a function of X

I Given the notation

SX =d

dXS and SXX =

d2

dX2S ,

we have

dS = SXdX +1

2SXXb

2dt

=�SXa+

1

2SXXb

2�� dt| {z }

expected change Et [dS]

+ SXb � dz| {z }unexpected change

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 176

Page 177: QMF Lectures 2013-14

EQUILIBRIUM STOCK PRICING 1

I The stock price is S (X)

I The per-annum expected total gain on the stock is

1

dtEt [dS] + X = expected capital gain + income gain

I In equilibrium, the following restriction holds true:

1dtEt [dS] + X = Sr + SX b � � � �

I Sr is the cost of borrowing expressed in Euro (r is the riskfree rate)

I SX b � � � � is the risk premium expressed in Euro

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 177

Page 178: QMF Lectures 2013-14

EQUILIBRIUM STOCK PRICING 2

I SX b is the equity risk expressed in Euro

I � is the premium per unit of systematic risk

I � is the fraction of equity risk that is systematic.

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 178

Page 179: QMF Lectures 2013-14

TRENDING DIVIDENDS

I X's dynamics is

dX = X� � dt+X� � dz

I X is expected to grow at the rate �

I X = 0 is an absorbing boundary

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 179

Page 180: QMF Lectures 2013-14

STOCK PRICING WITH TRENDING DIVIDENDS 1

I The equilibrium restriction is

SXX�+1

2SXXX

2�2| {z }= 1

dtEt [dS]

+X = Sr + SXX���

I If X = 0, the stock is worthless (it is unable to generate dividends):

S (0) = 0 (boundary condition)

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 180

Page 181: QMF Lectures 2013-14

STOCK PRICING WITH TRENDING DIVIDENDS 2

I The solution is

S (X) =X

r + ���� �(non-negative and meaningful i� r + ���� � > 0)

I Given the parabola

y ( ) =1

2�2 2 +

��� ���� 1

2�2� � r

we impose

y (1) = � (r + ���� �) < 0

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 181

Page 182: QMF Lectures 2013-14

STOCK PRICING WITH TRENDING DIVIDENDS 3

I The elasticity of S (X) with respect to X is

SXSX = 1

0@ =dSSdXX

1A

I A 1% change in the dividend implies a 1% change in the stock price

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 182

Page 183: QMF Lectures 2013-14

STOCK PRICING WITH TRENDING DIVIDENDS 4

I The total return on the stock is

dS + Xdt

S=

�r +

SXX

S���

�dt

| {z }expected total return

+SXX

S� dz| {z }

unexpected total return

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 183

Page 184: QMF Lectures 2013-14

STOCK PRICING WITH TRENDING DIVIDENDS 5

I The per-annum expected total return on the stock is

1

dt

1

SEt [dS] +

X

S|{z}per-annum dividend yield

= r +SXSX���

= r + ���

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 184

Page 185: QMF Lectures 2013-14

THE EXPECTED TOTAL RETURN ON A PORTFOLIO

I Our initial capital is H = 100 Euro. We invest 60 Euro in the stock and

40 Euro in the riskfree asset

I The per-annum expected total gain is

1

dtEt [dH] =

60

S

�1

dtEt [dS] +X

�+ 40r

= 60 (r + ���) + 40r

I The per-annum expected total return is

1

dt

1

HEt [dH] = r +

60

100���

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 185

Page 186: QMF Lectures 2013-14

RATIONAL BUBBLES 1

I Another solution to

SXX�+1

2SXXX

2�2 +X = Sr + SXX��� with S (0) = 0

is given by

S (X) =X

r + ���� �| {z }fundamental value

+ c �X 1| {z }bubble

c = positive constant

1 = ���� ����2

� 12

�+

"��� ����2

� 12

�2+ 2

r

�2

#12

> 1

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 186

Page 187: QMF Lectures 2013-14

RATIONAL BUBBLES 2

I The elasticity of S (X) with respect to X is `excessive':

SXSX =

S + ( 1 � 1) cX 1S

> 1

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 187

Page 188: QMF Lectures 2013-14

THE COEFFICIENT 1

I Given the parabola y ( ) = 12�2 2 +

��� ���� 1

2�2� � r we have

y (1) = � (r + ���� �) < 0 and y ( 1) = 0

gamma

y

gamm

a_1

­ ( r + sigma*lambda*rho ­ mu ) < 0

1

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 188

Page 189: QMF Lectures 2013-14

`POWER' STOCK PRICING 1

I The stock that pays out X2dt every `second' has the following equilibrium price:

P (X) =X2

r + 2�����2�+ �2

I Given the parabola

y ( ) =1

2�2 2 +

��� ���� 1

2�2� � r

we impose

y (2) = ��r + 2����

�2�+ �2

��< 0

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 189

Page 190: QMF Lectures 2013-14

`POWER' STOCK PRICING 2

I The total return on the stock is

dP + X2dt

P=

�r +

PXX

P���

�dt

| {z }expected total return

+PXX

P� dz| {z }

unexpected total return

= ( r + 2��� ) dt + 2� dz

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 190

Page 191: QMF Lectures 2013-14

MEAN-REVERTING DIVIDENDS

I X's dynamics is

dX = �k (X �m) � dt+X� � dz

I The long-run mean is E [X] = m > 0

I k > 0 is the speed of mean reversion

I If k �! +1, X remains �xed at the level m

I X = 0 is a re ecting boundary

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 191

Page 192: QMF Lectures 2013-14

STOCK PRICING WITH MEAN-REVERTING DIVIDENDS 1

I The per-annum expected capital gain is

1

dtEt [dS] = SX (�k (X �m)) + 1

2SXXX

2�2

I The equilibrium stock price solves

1

dtEt [dS] + X = Sr + SXX���

and is

S (X) =m

r� k

r + ���+ k+

X

r + ���+ k

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 192

Page 193: QMF Lectures 2013-14

STOCK PRICING WITH MEAN-REVERTING DIVIDENDS 2

I The absence of mean reversion brings us back to the trending-dividends case

(without growth):

limk!0

S (X) =X

r + ���

I A massive mean reversion brings us back to the riskless case (without growth):

limk!+1

S (X) =m

r

I Systematic risk and risk aversion (��� > 0) do have a long-run impact:

E [ S (X) ] =m

r� k + r

r + ���+ k<

m

r

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 193

Page 194: QMF Lectures 2013-14

APPENDIX

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 194

Page 195: QMF Lectures 2013-14

THE CAPITAL ASSET PRICING MODEL 1

I The stock market portfolio is worth M with dynamics

dM +XMdt = M ( r + �M � ) dt + M �M dzM

I The premium for systematic risk (expressed in Euro) is M�M � �

I The CAPM states

1

dtEt [dM ] +XM = Mr +

covt [dM; dM ]

vart [dM ]| {z }`beta' equal to 1

� M �M � �

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 195

Page 196: QMF Lectures 2013-14

THE CAPITAL ASSET PRICING MODEL 2

I For the single stock, the CAPM states

1

dtEt [dS] +X = Sr +

covt [dS; dM ]

vart [dM ]| {z }`beta' equal to SX b � �

M �M

� M �M � �

= Sr + SX b � � � �

Alessandro Sbuelz - SBFA, Catholic University of Milan - A.Y. 2013-14 196