23
A practical look at Regge calculus Dimitri Marinelli Physics Department - Universit` a degli Studi di Pavia and I.N.F.N. - Pavia in collaboration with Prof. G. Immirzi Karl Schwarzschild Meeting 2013, Frankfurt am Main

Regge Calculuss

Embed Size (px)

DESCRIPTION

A practical look at Regge calculus

Citation preview

Page 1: Regge Calculuss

A practical look at Regge calculus

Dimitri Marinelli

Physics Department -Universita degli Studi di Pavia

and I.N.F.N. - Pavia

in collaboration withProf. G. Immirzi

Karl Schwarzschild Meeting 2013,Frankfurt am Main

Page 2: Regge Calculuss

Many Quantum Gravity Theories need,either a discrete gravity in the classical limit

ora statistical mechanics of discrete space(-times).

this can be provided byRegge calculus

(Regge 1961)

Page 3: Regge Calculuss

Many Quantum Gravity Theories need,either a discrete gravity in the classical limit

ora statistical mechanics of discrete space(-times).

this can be provided byRegge calculus

(Regge 1961)

Page 4: Regge Calculuss

In this talk:

discretizedS3 × R - cylindrical model

Friedmann Robertson Walker space-time with closed universe

proposed by Wheeler - Les Houches Lectures 1963

...several attempts ...until 1994

John W. Barrett, Mark Galassi, Warner A. Miller, Rafael D.Sorkin, Philip A. Tuckey, Ruth M. Williams

gr-qc/9411008

Page 5: Regge Calculuss

What is Regge calculus?

General Relativity4-dimensional differential manifold M

ma metric tensor gµν with signature (−,+,+,+)

S [gµν ] = − c4

16πG

∫M

R [gµν ]√−g d4x +

∫LM [gµν ]

√−g d4x

Page 6: Regge Calculuss

What is Regge calculus?

Spacetime is replaced by a

4-dimensional simplicial complex:

• Each block is a 4-simplex (4d generalization of a tetrahedron).• Each 4-simplex shares its boundary tetrahedra.• The space bounded by tetrahedra is a flat Minkowski

spacetime (each block encloses a piece of flat spacetime)

Metric structure is replaced by

Edge lengths of 4-simplices dynamically fixed

Page 7: Regge Calculuss

Curvature in a 2-simplicial complex

Deficit angle ε

A deficit angle is introduced ε = 2π − 6θ

Page 8: Regge Calculuss

Curvature in a 2-simplicial complex

Deficit angle ε

A deficit angle is introduced ε = 2π − 6θ

Page 9: Regge Calculuss

Regge actionEinstein-Hilbert action for conic singularities Sorkin-1974

In Minkowski spacetime:t = tx = r · cos (k(ε) · φ)y = r · sin (k(ε) · φ)z = z

k (ε) ≡ 1− ε2π

φ ∈ [0, 2π[ ⇒ g′ =

−1 0 0 00 1 0 0

0 0(

1− θ2π

)2r2 0

0 0 0 1

Regularizing the cusp we can calculate the Ricci scalar

e2λ(r) ={

r2 if r → 0

r2(

1− ε2π

)2if r � 0

⇒ R = 2(λ′′ (r) + (λ′ (r))2

)

and the action:

S = − 116π

∫∫∫∫dφdr dz dt R

√−g = 1

8πε

∫∫dz dt = 1

8πεA

Page 10: Regge Calculuss

Regge actionEinstein-Hilbert action for conic singularities Sorkin-1974

In Minkowski spacetime:t = tx = r · cos (k(ε) · φ)y = r · sin (k(ε) · φ)z = z

k (ε) ≡ 1− ε2π

φ ∈ [0, 2π[ ⇒ g′ =

−1 0 0 00 1 0 0

0 0(

1− θ2π

)2r2 0

0 0 0 1

Regularizing the cusp we can calculate the Ricci scalar

e2λ(r) ={

r2 if r → 0

r2(

1− ε2π

)2if r � 0

⇒ R = 2(λ′′ (r) + (λ′ (r))2

)

and the action:

S = − 116π

∫∫∫∫dφdr dz dt R

√−g = 1

8πε

∫∫dz dt = 1

8πεA

Page 11: Regge Calculuss

Regge actionEinstein-Hilbert action for conic singularities Sorkin-1974

In Minkowski spacetime:t = tx = r · cos (k(ε) · φ)y = r · sin (k(ε) · φ)z = z

k (ε) ≡ 1− ε2π

φ ∈ [0, 2π[ ⇒ g′ =

−1 0 0 00 1 0 0

0 0(

1− θ2π

)2r2 0

0 0 0 1

Regularizing the cusp we can calculate the Ricci scalar

e2λ(r) ={

r2 if r → 0

r2(

1− ε2π

)2if r � 0

⇒ R = 2(λ′′ (r) + (λ′ (r))2

)

and the action:

S = − 116π

∫∫∫∫dφdr dz dt R

√−g = 1

8πε

∫∫dz dt = 1

8πεA

Page 12: Regge Calculuss

Regge actionEinstein-Hilbert action for conic singularities Sorkin-1974

In Minkowski spacetime:t = tx = r · cos (k(ε) · φ)y = r · sin (k(ε) · φ)z = z

k (ε) ≡ 1− ε2π

φ ∈ [0, 2π[ ⇒ g′ =

−1 0 0 00 1 0 0

0 0(

1− θ2π

)2r2 0

0 0 0 1

Regularizing the cusp we can calculate the Ricci scalar

e2λ(r) ={

r2 if r → 0

r2(

1− ε2π

)2if r � 0

⇒ R = 2(λ′′ (r) + (λ′ (r))2

)

and the action:

S = − 116π

∫∫∫∫dφdr dz dt R

√−g = 1

8πε

∫∫dz dt = 1

8πεA

Page 13: Regge Calculuss

Regge calculus

To study a gravitational system with Regge calculus one has to:• build a 4-dimensional triangulation (fix the topology),• find a solution of δSR[le ] = 0 where

SR = 18π

∑t

Atεt

with At the area of the triangle t and εt its associated deficitangle.

Einstein’s equations (non linear partial differential equations) nowbecome implicit equations.

Can be considered a finite difference method for general relativity.

Page 14: Regge Calculuss

From 3-d simplicial complex to 4-d

We are interested in a triangulation with topology S3 × R.

for S3:• 5-cell or Pentachoron• 16-cell• 600-cell

Page 15: Regge Calculuss

“Tent-like” evolutionspace-like triangles

Page 16: Regge Calculuss

Conditions for the simplicial complexDehn-Sommerville equations

For a simplicial complex Π with boundary ∂Π

Nv (Π)− Nv (∂Π) =

4∑i=0

(−1)i+4(

i + 11

)Ni (M) = Nv − 2Ne + 3Nt − 4Nτ + 5Nσ

Ne (Π)− Ne (∂Π) =

4∑i=1

(−1)i+4(

i + 12

)Ni (M) = −Ne + 3Nt − 6Nτ + 10Nσ

Nt (Π)− Nt (∂Π) =

4∑i=2

(−1)i+4(

i + 13

)Ni (M) = Nt − 4Nτ + 10Nσ

Nτ (Π)− Nτ (∂Π) =

4∑i=3

(−1)i+4(

i + 14

)Ni (M) = −Nτ + 5Nσ

Nσ (Π)− Nσ (∂Π) =

4∑i=4

(−1)i+4(

i + 15

)Ni (M) = Nσ

Page 17: Regge Calculuss

Combinatorial-symmetric schemepotentially all edges space-like

30× σs

Page 18: Regge Calculuss

Combinatorial-symmetric scheme

l

l

d

d

l l

l′

dd

interesting triangulation for quantum gravity.

Page 19: Regge Calculuss

Metric structure

• Topology is fixed (a foliated triangulation of dimension 3 + 1).

Initial value approach:• We choose the time symmetric condition.• In this case choosing initial data means choose edge lengths

for the initial 3-sphere.• We can choose “lapse” and “shift”.

Page 20: Regge Calculuss

Preliminary numeric analysistent-like model, 5-cell

where a(t) is the scale parameter.

Page 21: Regge Calculuss

Preliminary numeric analysistent-like model, 16 and 600-cell

where a(t) is the scale parameter.

Page 22: Regge Calculuss

Conclusions

Regge calculus can be an important tool both to understandclassical gravity and as a map in the labyrinth of the modernmodels of quantum gravity.

“One can finally hope that Regge’s truly geometric way offormulating general relativity will someday make the content of theEinstein field equation ... stand out sharp and clear...”

J. A. Wheeler

Thank you.

Page 23: Regge Calculuss

Conclusions

Regge calculus can be an important tool both to understandclassical gravity and as a map in the labyrinth of the modernmodels of quantum gravity.

“One can finally hope that Regge’s truly geometric way offormulating general relativity will someday make the content of theEinstein field equation ... stand out sharp and clear...”

J. A. Wheeler

Thank you.