12
Research Article Ultrasonic Investigations of Molecular Interaction in Binary Mixtures of Cyclohexanone with Isomers of Butanol Sk. Md Nayeem, 1 M. Kondaiah, 2 K. Sreekanth, 3 and D. Krishna Rao 4 1 Department of Physics, KRK Government Degree College, Addanki 523 201, India 2 Department of Physics, NM Government Degree College, Jogipet, Medak District, Telangana, India 3 Department of Physics, PBN College, Nidubrolu, Guntur District, India 4 Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522 510, India Correspondence should be addressed to D. Krishna Rao; [email protected] Received 11 August 2014; Revised 21 October 2014; Accepted 3 November 2014; Published 18 December 2014 Academic Editor: Parsotam H. Parsania Copyright © 2014 Sk. Md Nayeem et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Ultrasonic speed, , and density, , have been measured in binary liquid mixtures of cyclohexanone with the isomers of butanol (-butanol, sec-butanol, and tert-butanol) at 308.15 K over the entire range of composition. Molar volume ( ), adiabatic compressibility ( ), intermolecular free length ( ), acoustic impedance (), and their excess/deviation along with Δ have been calculated from the experimental data. ese values have been fitted to Redlich-Kister type polynomial equation. Positive values of , Δ , and negative values of , Δ have been observed for all the liquid mixtures indicating the existence of weak interactions between components. Rupture of H-bond or reduction in H-bond strength of isomers of butanol or breaking of the structure of one or both of the components in a solution causes the existence of dispersions in the present investigated binary mixtures. e data obtained from ,1 , ,2 , and excess partial molar volumes ,1 , ,2 , reflects the inferences drawn from . Furthermore, FTIR spectra support the conclusions drawn from excess/deviation properties. e measured values of ultrasonic speed for all the investigated mixtures have been compared with the theoretically estimated values using empirical relations such as, Nomoto, Van Dael and Vangeels, Impedance and Rao specific sound speed. 1. Introduction Ultrasonic measurements are very useful in chemical and food processing, pharmaceuticals, material testing, and underwater ranging and cleaning and are also commonly employed in mechanical machinery of materials [1], prepa- ration of colloids or emulsions, the pregermination of seeds, imaging of biological tissues [2], activation energy of meta- bolic process [3], formation and destruction of azeotropes in petrochemical industries [4], and nondestructive testing (NDT). Alcohols are self-associated organic liquids, used for the synthesis of other organic compounds. ey are also widely used as coupling and dispersing agents in the chemical, pharmaceutical, and household industries and as carrier and extraction solvents for natural products. Cyclohexanone and its derivatives are used for the synthesis of pharmaceuticals, dyes, herbicides, pesticides, plasticizers, and rubber chemi- cals. Ketones are a class of an organic compound that contains a carbonyl group and two aliphatic or aromatic substituents containing the chemical formula RCOR 1 (general chemical formula of Ketones). e chemical reactivity of the carbonyl group plays vital role in chemical reactions and is influenced considerably by steric effects. e greater electronegativity of O and high dipole moment value make Cyclohexanone polar. Scheme 1 illustrates this polarity. Further the presence of oxygen with its nonbonding electron pairs makes cyclo- hexanone H-bond acceptors. us a study on thermophysical properties data of binary liquid mixtures containing ketones has attracted considerable interest in the literature [59]. Literature survey reveals that Tsierkezos et al. [10] studied molecular interactions in cyclohexanone with methanol, ethanol, 1-propanol, 1-butanol, and 1-pentanol at 293.15 K and Sri Lakshmi et al. [11] studied molecular interactions in Hindawi Publishing Corporation Journal of Applied Chemistry Volume 2014, Article ID 741795, 11 pages http://dx.doi.org/10.1155/2014/741795

Research Article Ultrasonic Investigations of Molecular ...downloads.hindawi.com/journals/jac/2014/741795.pdf · Research Article Ultrasonic Investigations of Molecular Interaction

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Research Article Ultrasonic Investigations of Molecular ...downloads.hindawi.com/journals/jac/2014/741795.pdf · Research Article Ultrasonic Investigations of Molecular Interaction

Research ArticleUltrasonic Investigations of Molecular Interaction inBinary Mixtures of Cyclohexanone with Isomers of Butanol

Sk Md Nayeem1 M Kondaiah2 K Sreekanth3 and D Krishna Rao4

1Department of Physics KRK Government Degree College Addanki 523 201 India2Department of Physics NM Government Degree College Jogipet Medak District Telangana India3Department of Physics PBN College Nidubrolu Guntur District India4Department of Physics Acharya Nagarjuna University Nagarjuna Nagar 522 510 India

Correspondence should be addressed to D Krishna Rao krdhanekulayahoocoin

Received 11 August 2014 Revised 21 October 2014 Accepted 3 November 2014 Published 18 December 2014

Academic Editor Parsotam H Parsania

Copyright copy 2014 Sk Md Nayeem et alThis is an open access article distributed under the Creative CommonsAttribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

Ultrasonic speed 119906 and density 120588 have been measured in binary liquid mixtures of cyclohexanone with the isomers ofbutanol (119899-butanol sec-butanol and tert-butanol) at 30815 K over the entire range of composition Molar volume (119881

119898) adiabatic

compressibility (119896119904) intermolecular free length (119871

119891) acoustic impedance (119911) and their excessdeviation along with Δ119906 have been

calculated from the experimental dataThese values have been fitted to Redlich-Kister type polynomial equation Positive values of119881119864

119898Δ119896119904 119871119864119891and negative values of 119911119864Δ119906 have been observed for all the liquidmixtures indicating the existence of weak interactions

between components Rupture of H-bond or reduction in H-bond strength of isomers of butanol or breaking of the structure ofone or both of the components in a solution causes the existence of dispersions in the present investigated binary mixtures Thedata obtained from 119881

1198981 1198811198982

and excess partial molar volumes 1198811198641198981

1198811198641198982

reflects the inferences drawn from 119881119864119898 Furthermore

FTIR spectra support the conclusions drawn from excessdeviation properties The measured values of ultrasonic speed for all theinvestigated mixtures have been compared with the theoretically estimated values using empirical relations such as Nomoto VanDael and Vangeels Impedance and Rao specific sound speed

1 Introduction

Ultrasonic measurements are very useful in chemical andfood processing pharmaceuticals material testing andunderwater ranging and cleaning and are also commonlyemployed in mechanical machinery of materials [1] prepa-ration of colloids or emulsions the pregermination of seedsimaging of biological tissues [2] activation energy of meta-bolic process [3] formation and destruction of azeotropesin petrochemical industries [4] and nondestructive testing(NDT)

Alcohols are self-associated organic liquids used for thesynthesis of other organic compounds They are also widelyused as coupling and dispersing agents in the chemicalpharmaceutical and household industries and as carrier andextraction solvents for natural products Cyclohexanone andits derivatives are used for the synthesis of pharmaceuticals

dyes herbicides pesticides plasticizers and rubber chemi-cals Ketones are a class of an organic compound that containsa carbonyl group and two aliphatic or aromatic substituentscontaining the chemical formula RCOR1 (general chemicalformula of Ketones) The chemical reactivity of the carbonylgroup plays vital role in chemical reactions and is influencedconsiderably by steric effects The greater electronegativityof Ominus and high dipole moment value make Cyclohexanonepolar Scheme 1 illustrates this polarity Further the presenceof oxygen with its nonbonding electron pairs makes cyclo-hexanoneH-bond acceptorsThus a study on thermophysicalproperties data of binary liquid mixtures containing ketoneshas attracted considerable interest in the literature [5ndash9]

Literature survey reveals that Tsierkezos et al [10] studiedmolecular interactions in cyclohexanone with methanolethanol 1-propanol 1-butanol and 1-pentanol at 29315 Kand Sri Lakshmi et al [11] studied molecular interactions in

Hindawi Publishing CorporationJournal of Applied ChemistryVolume 2014 Article ID 741795 11 pageshttpdxdoiorg1011552014741795

2 Journal of Applied Chemistry

RR

RR

C CO O+ minus

Resonance structure

hArr∙∙

∙∙

∙∙

∙∙

∙∙

Scheme 1

cyclohexanone with 119899-heptanol 119899-octanol and isooctanolat temperatures 30315 30815 31315 and 31815 K overthe entire range of composition Keeping these importantaspects in mind the present study deals with ultrasonic andthermodynamic study of cyclohexanone (CH) with the iso-mers of butanol (119899-butanol sec-butanol and tert-butanol) at30815 K The liquids under investigation have been chosenon the basis of their multifold applications

2 Experimental Section

High purity analytical reagent (AR) grade compounds ofcyclohexanone (mass fraction purity gt 99) and 119899-butanolsec-butanol and tert-butanol (mass fraction purity gt 995)obtained from S D Fine Chemicals are used in the presentstudy The chemicals are further purified by standard meth-ods mentioned in [12 13]The weighing of solutions has beenmade usingMETTLER TOLEDO (Switzerlandmake) ABB5-SFACT digital balance with an accuracy of plusmn001mg Theuncertainty in themole fraction is 10minus4The ultrasonic speedsof pure liquids and liquid mixtures have been measuredusing an ultrasonic interferometer (Mittal type Model F-82)working at 2MHz fixed frequencywith an accuracy ofplusmn02The temperature of liquid sample in the interferometer cellis maintained constant by circulating water pumped fromconstant temperature water bath In the present study theconstant temperature water bath (digital electronic) suppliedby Concord Instruments Co Ltd Chennai (RAAGA type)has been used The instrument can maintain temperature toplusmn001 K as per its specifications

Densities of pure liquids and their mixtures have beendetermined by using a 5 cm3 two-stem double-walled Parkeramp Parker type pycnometer [15]This pycnometer is calibratedwith triply distilled water The pycnometer filled with airbubble free experimental liquids was kept in a transparentwalled constant temperature bath for 20 to 30min to attainthermal equilibrium The positions of the liquid levels in thetwo arms are recorded with the help of traveling microscopeAt least three to four measurements are performed fromwhich an average value of density of the experimental liquid isdetermined The estimated accuracy in the density measure-ment is 3 in 105 parts The ultrasonic speeds 119906 and densities120588 measured at 30815 K for the pure liquids used in this inves-tigation are compiled in Table 1 together with the literaturedata [11 14] available These results are in good agreementwith the reported data

3 Theory

Thermodynamic and acoustical parameters such as molarvolume (119881

119898) adiabatic compressibility (119896

119904) intermolecular

Table 1 Comparison of experimental values of density 120588 andultrasonic speed 119906 of pure liquids with the corresponding literaturevalues at 30815 K

Liquid 120588(kgmminus3) 119906(m sminus1)Presentwork Literature Present

work Literature

Cyclohexanone 93960 9396 [11] 136200 13620 [11]119899-Butanol 79650 7965 [14] 120930 12093 [14]119904119890119888-Butanol 79320 7932 [14] 117480 11748 [14]119905119890119903119905-Butanol 76840 7683 [14] 108600 10860 [14]

free length (119871119891) and acoustic impedance (119911) are evaluated

using the relations given below

119881119898=

119872eff120588

(1)

where119872eff is given by119872eff = (11990911198721 + 11990921198722) where1198721 and1198722are the molar masses of pure components and 120588 is the

density of the liquid mixtureThe speed of sound (119906) and the density of themedium (120588)

are related by using Newton and Laplace equation as

119896119904=

1

1205881199062

119871119891= 11987011989612

119904

(2)

Here119870 is the temperature dependent constant which is equalto119870 = (93875 + 0375119879) times 10minus8 where 119879 is absolute temper-ature Consider

119911 = 119906120588 (3)

In order to understand the nature of the molecular interac-tions between the components of the liquid mixtures it isof interest to discuss the same in terms of excess parametersrather than actual values Nonideal liquidmixtures show con-siderable deviation from linearity in their concentrations andthis has been interpreted to arise from the presence of strongorweak interactionsThedifference between the properties ofthe realmixtures (119884real) and those corresponding to idealmix-ture (119884ideal = sum119909119894119884119894) values namely excess properties (119884119864)such as excess molar volume (119881119864

119898) free length (119871119864

119891) acoustic

impedance (119911119864) and deviations in ultrasonic speed (Δ119906) iscomputed by the relation

119884119864

= 119884real minussum119909119894119884119894 (4)

where 119884119864 = 119881119864119898 119871119864

119891 119911119864 and Δ119906 119909

119894is the mole fraction and 119884

119894

is the value of the property of the 119894th component liquid ofmixture

The deviation in adiabatic compressibility (Δ119896119904) has been

calculated from the equation

Δ119896119904= 119896119904minus (Φ11198961199041+ Φ21198961199042) (5)

Journal of Applied Chemistry 3

where Φ1 Φ2 and 119896

1199041 1198961199042are the volume fractions and adi-

abatic compressibilities of components 1 and 2 respectivelySince 119896

119904is not additive on mole fraction but is additive on

volume fraction such values are calculated using volumefraction (Φ)

Φ119894=

119909119894119881119894

sum119909119894119881119894

(6)

The experimentally measured values of ultrasonic speed (119906)and density (120588) and calculated properties of molar vol-ume (119881

119898) adiabatic compressibility (119896

119904) intermolecular free

length (119871119891) and acoustic impedance (119911) and excessdeviation

thermodynamic properties 119881119864119898 119871119864119891 119911119864 Δ119906 and Δ119896

119904are

presented in Table 2 for all binary systems over the entirecomposition range of CH

The excessdeviation properties have been fitted to aRedlich-Kister type polynomial equation [16]

119884119864

= 11990911199092

119899

sum

119894=0

119860119894(1199092minus 1199091)119894

(7)

where119884119864 = 119881119864119898 119871119864

119891 119911119864

Δ119906 andΔ119896119904 1199091is the mole fraction of

the soluteThe values of Δ119896

119904have been fitted to Redlich-Kister type

polynomial with volume fraction instead of mole fraction inthe above polynomial and 119860

119894are the adjustable parameters

of the function and are determined using the least squaremethod In the present investigation ldquo119894rdquo values are taken from0 to 4 The corresponding standard deviation 120590(119884119864) wascalculated using the expression

120590 (119884119864

) =[

[

sum(119884119864

exp minus 119884119864

cal)2

(119898 minus 119899)

]

]

12

(8)

where ldquo119898rdquo is the total number of experimental points and ldquo119899rdquois the number of coefficients in (7) The calculated values ofthe coefficients119860

119894alongwith the standard deviations (120590) have

been presented in Table 3

4 Results and Discussion

Figure 1 represents the variation of excess molar volume (119881119864119898)

with mole fraction of CH The sign of 119881119864119898

depends uponthe contraction and expansion of volume of the liquids dueto mixing The factors that are mainly responsible for theexpansion of molar volume that is positive values of 119881119864

119898 are

the following (i) breaking of the structure of one or bothof the components in a solution that is the loss of dipolarassociation between themolecules (dispersion forces) (ii) H-bond rupture and stretching of self-associatedmolecules (likealcohols) (iii) the geometry of molecular structures whichdoes not favour the fitting of molecules of one componentinto void space of another molecule (iv) steric hindrance ofthe molecules The negative values of 119881119864

119898are due to the (i)

association of molecules through the formation of hydrogenbond that is strong specific interactions and (ii) accom-modation of molecules because of large differences in their

0

01

02

03

04

05

0 02 04 06 08 1

minus02

minus01

minus5

m3

mol

minus1)

VE m

(10

x1

Figure 1 Variation of excess molar volume 119881119864119898 with mole fraction

1199091 of cyclohexanone in (X) 119899-butanol(◼) sec-butanol(998771) and

tert-butanol at 30815 K and Tsierkezos et al [10] for cyclohex-anone + 1-butanol (dotted lines) at 29315 K

molar volumes In other words 119881119864119898arises due to the result

of physical chemical and structural contributions Physicalinteractions involving mainly nonspecific interactions suchas dispersion or weak forces (breaking of the liquid orderon mixing ie loss of dipolar association between themolecules) contribute to positive 119881119864

119898 The chemical or spe-

cific interactions such as complex formation and hydrogenbond formation between constituent molecules contributeto negative 119881119864

119898 The structural effects arise from interstitial

accommodation due to the difference in the molar volumesand free volumes between the liquid components on mixingcontributing to negative119881119864

119898[17]The variation of119881119864

119898is found

to be positive over the entire composition range in the presentinvestigation which indicates that weak forces exist Sri Lak-shmi et al [11] reported similar results in CHwith 119899-heptanol119899-octanol and iso-octanol at temperatures of 30315 3081531315 and 31815 KThe119881119864

119898data obtained by Tsierkezos et al

[10] for CH + 1-butanol binary system are negative at 29315 Kwhereas in our investigations they are found to be positivewhen performed at 30815 K Such behaviour may arise dueto the fact that as temperature increases the effective collisionbetween the component molecules increases Thus largernumber of free dipoles of component molecules may beavailable due to declusttering of molecules in the pure state

Thenature of interaction in binary liquids can be analysedby knowing their chemical and physical properties (physic-ochemical properties) Generally butanols are associatedthrough the hydrogen bonding as shown below and in thepure state they exhibit equilibrium between the monomerand multimer species Also they can be associated withany other groups having some degree of polar attractionsAs discussed earlier butanol exhibits strong intermolecularinteractions (H-bond) Alcohol size chain length and phys-ical properties (boiling point density hydrophobic propertyviscosity insolubility and refractive index) are importantparameters that must be taken into account to explain thebehaviour of the interactions (Scheme 2)

CH is a polar molecule because of the presence ofcarbonyl group (C=O) this is due to the fact that oxygenis more electronegative (Ominus) than carbon (C+) Thus they

4 Journal of Applied Chemistry

Table2Ex

perim

entalvalueso

fdensities120588ultrason

icspeeds119906m

olarvolume119881119898adiabaticcompressib

ility119896119904intermolecularfre

elength119871119891acoustic

impedance119911and

excessdeviatio

nprop

ertie

s119881119864 119898119871119864 119891119911119864

Δ119906andΔ119896119904fora

llbinary

syste

msw

ithmolefraction1199091ofcyclohexano

neat30815K

1199091

120588(kg

mminus3

)119906(msminus1

)119881119898(1

0minus5

m3molminus1

)119896119904(1

0minus10

Paminus1

)119871119891(1

0minus10

m)119911(1

06kg

mminus2

sminus1

)119881119864 119898(1

0minus5

m3molminus1

)Δ119896119904(1

0minus10

Paminus1

)119871119864 119891(1

0minus10

m)119911119864

(106

kgmminus2

sminus1

)Δ119906(msminus1

)CH

+119899-butanol

1000

09396

0136200

72100

83164

060

4012

797

000

00000

00000

00000

00000

09121

91391

133102

72125

89952

06281

12164

00977

03231

00107

minus00355

minus1755

08854

9072

0132296

72111

91843

06347

12002

01252

040

0800133

minus00432

minus2154

07211

87362

128396

71186

10204

806690

11217

02105

06763

00226

minus00697

minus3545

066

8786485

127447

70775

104903

06783

11022

02261

07151

00239

minus00726

minus3694

05232

84320

125214

69241

112327

07019

10558

02302

07516

00254

minus00730

minus3705

04752

83665

1246

98

68566

114565

07089

10433

02147

07367

00251

minus00703

minus3488

03231

81759

123068

66549

1215

5807302

10062

01776

06877

00232

minus00593

minus2795

02112

80599

122087

64872

126087

07437

09840

01311

05914

00197

minus004

60minus2068

01313

7999

1121519

63611

12861

07511

09720

00915

04550

00150

minus00328

minus1415

000

0079650

120930

61275

130345

07561

09632

000

00000

00000

00000

00000

CH+119904119890119888-butanol

1000

09396

0136200

72100

83164

060

4012

797

000

00000

00000

00000

00000

09212

91229

132922

7244

990

394

06297

12126

01060

03836

00126

minus00397

minus1802

08867

90208

131633

72474

93357

06399

11874

01397

05194

00171

minus00529

minus2446

07121

86217

126303

72207

106512

06835

10889

02705

09784

00316

minus00907

minus4507

06786

85620

125483

7204

2108709

06905

10744

02843

10245

00331

minus00935

minus4700

05123

8315

6122177

70717

118365

07205

10160

03018

10967

00354

minus00941

minus4893

046

8882613

121526

70273

120569

07272

1004

002967

10794

00349

minus00909

minus4729

03121

8092

6119

619

68217

1276

5107483

09680

02325

09202

00299

minus00724

minus3703

02797

80631

119309

67723

128921

07520

09620

02124

08684

00282

minus00672

minus3406

01112

79503

118057

65053

134011

07667

09386

00974

046

0400149

minus00320

minus1504

000

0079320

117480

63075

1352

9207703

09319

000

00000

00000

00000

00000

CH+119905119890119903119905-butanol

1000

09396

0136200

72100

83164

060

4012

797

000

00000

00000

00000

00000

09221

90829

131268

73361

92340

06364

11923

01562

04969

00150

minus00527

minus2781

08895

89642

129440

73779

96141

06494

11603

02106

06834

00207

minus00702

minus3710

07012

84030

121044

75179

117001

07164

10171

04235

15137

00457

minus01296

minus6909

06814

83551

120337

75205

119041

07226

10054

04337

15721

00475

minus01325

minus7069

05112

8017

9115277

74950

134939

07693

09243

04741

18707

00562

minus01378

minus7432

04777

79661

114465

74783

1376

6907771

09118

04703

18823

00566

minus01354

minus7319

03321

7791

2111524

73616

147714

08049

08689

040

9917

360

00519

minus01135

minus6241

02635

77360

110459

72878

1512

7508146

08545

03627

15506

004

63minus00973

minus5413

01323

7677

8109036

70894

155581

08261

08372

02150

09556

00285

minus00562

minus3215

000

0076840

108600

68232

155954

08271

08345

000

00000

00000

00000

00000

Journal of Applied Chemistry 5

Table 3 Coefficients 119860119894of Redlich-Kister type polynomial equation (7) and the corresponding standard deviations 120590 of all the systems at

30815 K

1198600

1198601

1198602

1198603

1198604

120590

CH + 119899-butanol119881119864

119898(10minus5m3 molminus1) 247625 minus57880 36945 minus31381 minus08351 00019

Δ119896119904(10minus10 Paminus1) 00183 minus00020 00075 00029 minus00004 00091

119871119864

119891(10minus10m) 08201 minus01460 02529 00638 01066 00009

119911119864(106 kgmminus2 sminus1) minus02875 00836 minus01081 00006 minus00202 00002Δ119906(msminus1) minus140 058 minus031 minus003 minus018 00024

CH + 119904119890119888-butanol119881119864

119898(10minus5m3 molminus1) 275896 minus9594 42809 minus22460 minus07780 00018

Δ119896119904(10minus10 Paminus1) 00267 minus0001 00001 00033 00034 00001

119871119864

119891(10minus10m) 11507 minus01810 00576 01082 00684 00011

119911119864(106 kgmminus2 sminus1) minus03733 01252 minus00791 00092 minus00110 00001Δ119906(msminus1) minus194 059 minus004 minus001 minus004 00006

CH + 119905119890119903119905-butanol119881119864

119898(10minus5m3 molminus1) 364535 minus123900 minus06780 01003 minus02750 00009

Δ119896119904(10minus10 Paminus1) 00428 00120 00024 00019 00011 00001

119871119864

119891(10minus10m) 18117 01253 01393 00862 minus00290 00006

119911119864(106 kgmminus2 sminus1) minus05484 01374 minus00850 00123 minus00032 00001Δ119906(msminus1) minus296 062 minus054 001 minus001 00001

R R R

Structure of alcoholOndashHmiddot middot middotOndashH middot middot middot middot middot middot OndashH

Scheme 2

Resonance structure

middot middot middot

R R

R

C OOminus H+

Scheme 3

cause strong dipole-dipole interactions in chemical reactionsMoreover CH lacks hydroxyl groups so it is incapable ofcreating intermolecular hydrogen bonds In CH + isomersof butanol binary systems the negatively charged oxygen(Ominus) in CH tries to drag the positively charged H+ whichwere bounded in very strong intermolecular interactions ofbutanol (Scheme 3) An equilibrium stage is reached whererupturing of hydrogen bond or reduction inH-bond strengthof butanol or breaking of the structure of one or both ofthe components in a solution that is the loss of dipolarassociation between the molecules (dispersion forces) [18]will be favourable leading to weak interactions This causesincrease in volume of binary liquid and explains the observedpositive values 119881119864

119898in the systems

Kiyohara and Benson [19] have suggested that Δ119896119904is

the resultant of several opposing effects Negative values ofΔ119896119904contribute to charge transfer dipole-induced dipole and

00

04

08

12

16

20

0 02 04 06 08 1

minus10

Paminus1)

x1

Δks

(10

Figure 2 Variation of deviation in adiabatic compressibility Δ119896119904

with mole fraction 1199091 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

dipole-dipole interactions interstitial accommodation andbreaking up of the alcohol structures leads to positive valuesof Δ119896119904 From Figure 2 the observed positive values of Δ119896

119904for

binary mixtures of CHwith 119899-butanol 119904119890119888-butanol and 119905119890119903119905-butanol are due to declustering of alcohols in the presence ofCH The positive deviation in Δ119896

119904for the binary systems fol-

lows the order CH+ 119905119890119903119905-butanolgt 119904119890119888-butanolgt 119899-butanolFigure 3 represents the variation of119871119864

119891withmole fraction (119909

1)

of CH The observed values of 119871119864119891are positive According

to Fort and Moore [20] positive 119871119864119891should be attributed to

the dispersive forces As mentioned earlier positive values ofΔ119896119904and 119871119864

119891are mainly attributed to weak forces between the

component molecules in the mixture [21]

6 Journal of Applied Chemistry

0

001

002

003

004

005

006

0 02 04 06 08 1

minus10

m)

x1

LE f(10

Figure 3 Variation of excess free length 119871119864119891 with mole fraction 119909

1

of cyclohexanone in (X) 119899-butanol(◼) sec-butanol(998771) and tert-butanol at 30815 K

00 02 04 06 08 1

minus004

minus008

minus012

minus016

6kg

mminus2

sminus1)

x1

ZE(10

Figure 4 Variation of excess acoustic impedance 119911119864 withmole fraction 119909

1 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

The variations of excess acoustic impedance (119911119864) anddeviation in ultrasonic speed (Δ119906) have been presented inFigures 4 and 5 respectively From Figure 4 it has beenobserved that the values of 119911119864 are negative over the entiremole fraction range indicating the decreasing strength ofinteractions between component molecules of the mixtureAccording to Gowrisankar et al [22] the negative valuesfor Δ119906 indicate the decrease in the strength of interactionbetween the molecules and the negative deviations in Δ119906from linear dependence suggest the presence of weak inter-action between the component molecules These deviationexcess properties further support the conclusions drawn from119881119864

119898 119871119864119891 and Δ119896

119904

The existing molecular interactions in the systems arewell reflected in the properties of partial molar volumes Thepartial molar volumes 119881

1198981of component 1 (CH) and 119881

1198982

of component 2 (isomers of butanol) in the mixtures overthe entire composition range have been calculated by usingthe following relations

1198811198981= 119881119864

119898+ 119881lowast

1+ 1199092(

120597119881119864

119898

120597119909

)

119879119875

00 02 04 06 08 1

minus20

minus40

minus60

minus80

x1

Δu

(msminus

1)

Figure 5 Variation of deviation in ultrasonic speed Δ119906 withmole fraction 119909

1 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

1198811198982= 119881119864

119898+ 119881lowast

2+ 1199091(

120597119881119864

119898

120597119909

)

119879119875

(9)

where 119881lowast1and 119881lowast

2are the molar volumes of the pure com-

ponents of CH and butanols respectively The derivates inthe above equations are obtained by differentiating Redlich-Kister equation (7) which leads to the following equations for1198811198981

and 1198811198982

1198811198981= 119881lowast

1+ 1199092

2

119895

sum

119894=0

119860119894(1199092minus 1199091)119894

minus 211990911199092

2

119895

sum

119894=1

119860119894(1199092minus 1199091)119894minus1

(10)

1198811198982= 119881lowast

2+ 1199092

1

119895

sum

119894=0

119860119894(1199092minus 1199091)119894

+ 211990921199092

1

119895

sum

119894=1

119860119894(1199092minus 1199091)119894minus1

(11)

using the above equations 1198811198641198981

1198811198641198982

have been calculatedusing

119881

119864

1198981= 1198811198981minus 119881lowast

1

119881

119864

1198982= 1198811198982minus 119881lowast

2

(12)

The pertinent values of 1198811198981

and 1198811198982

are furnished inTable 4 From this table the values of 119881

1198981and 119881

1198982for

both the components in the mixtures are greater than theirrespective molar volumes in the pure state that is an expan-sion of volume takes place on mixing alcohols with ketoneThese results also support the observed positive values of119881119864

119898in all the binary systems Figures 6 and 7 represent the

variation of excess partial molar volumes of 1198811198641198981

(CH) 1198811198641198982

(isomers of butanol) in the binary mixtures Examinationof these figures reveals that dispersion forces exist betweenthe unlike molecules These figures support the conclusionsdrawn from119881119864

119898The partial molar volumes and excess partial

Journal of Applied Chemistry 7

Table 4 Partial molar volumes of CH (1198811198981

10minus5m3 molminus1) and butanols (1198811198982

10minus5m3 molminus1) of all the binary systems with mole fraction(1199091) of CH at 30815 K

CH + 119899-butanol CH + 119904119890119888-butanol CH + 119905119890119903119905-butanol1199091

1198811198981

1198811198982

1199091

1198811198981

1198811198982

1199091

1198811198981

1198811198982

10000 7210 42676 10000 7210 49234 10000 7210 5461209121 7699 32512 09212 7681 38378 09221 7606 4459008854 7999 30035 08867 8130 34445 08895 7997 4078807211 10600 19303 07121 11586 20460 07012 12366 2341306687 11554 17041 06786 12354 18636 06814 12989 2202305232 14365 12385 05123 16219 12221 05112 19004 1308704752 15378 11198 04688 17234 11058 04777 20247 1189303231 19092 8232 03121 20995 8043 03321 25389 841602112 22264 6843 02797 21794 7619 02635 27459 756201313 24403 6314 01112 25586 6406 01323 30211 687400000 25905 6128 00000 26462 6307 00000 30421 6823

0

10

20

30

40

50

0 02 04 06 08 1

minus5

m3

mol

minus1)

x1

VE m2

(10

Figure 6 Variation of excess partial molar volume 1198811198641198982

withmole fraction 119909

1 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

molar volumes ofCHand isomers of butanols in all the binaryliquid mixtures at infinite dilution 119881infin

1198981 119881infin1198982

119881119864infin1198981

and119881

119864infin

1198982 respectively were obtained by putting 119909 = 0 in (10)

and 119909 = 1 in (11) Consider

119881

119864infin

1198981= 1198600+ 1198601+ 1198602+ 1198603+ sdot sdot sdot = 119881

infin

1198981minus 119881lowast

1

119881

119864infin

1198982= 1198600minus 1198601+ 1198602minus 1198603+ sdot sdot sdot = 119881

infin

1198982minus 119881lowast

2

(13)

The pertinent values of 119881infin1198981

119881infin1198982

119881119864infin1198981

and 119881119864infin1198982

arereported in Table 5 From this table it is seen that these valuesare positive from which we conclude that weak interactionsexist among the unlike molecules of the liquid mixtures

FT-IR spectra of pure CH butanols and binary mixturesof CH with butanols at equal concentrations are depicted inFigures 8 9 and 10 According to Karunakar and Srinivas[23] the intensity of an absorption in the IR spectrum isrelated to the change in dipole moment that occurs duringthe vibration Consequently vibrations that produce a largechange in dipole moment (eg C=O stretch) result in amore intense absorption than those that result in a relativelymodest change in dipole (eg C=C) Vibrations that do notresult in a change in dipole moment (eg a symmetrical

0

5

10

15

20

25

0 02 04 06 08 1

minus5

m3

mol

minus1)

x1

VE m1

(10

Figure 7 Variation of excess partial molar volume 1198811198641198981

withmole fraction 119909

1 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

020

040

060

080

100

500 1375 2250 3125 4000

Tran

smitt

ance

()

n-ButanolCH

Wave number (cmminus1)

CH + n-Butanol

Figure 8 Fourier transform infrared spectra of pure cyclohexanone(red) cyclohexanone and 119899-butanol in the ratio 5 5 (green) andpure 119899-butanol (blue)

8 Journal of Applied Chemistry

020

040

060

080

100

500 1375 2250 3125 4000

Tran

smitt

ance

()

sec-ButanolCH

Wave number (cmminus1)

CH + sec-Butanol

Figure 9 Fourier transform infrared spectra of pure cyclohexanone(red) cyclohexanone and sec-butanol in the ratio 5 5 (green) andpure sec-butanol (blue)

020

040

060

080

100

500 1375 2250 3125 4000

Tran

smitt

ance

()

tert-ButanolCH

Wave number (cmminus1)

CH + tert-Butanol

Figure 10 Fourier transform infrared spectra of pure cyclohex-anone (red) cyclohexanone and tert-butanol in the ratio 5 5(green) and pure tert-butanol (blue)

alkyne CequivC stretch) will show little or no absorption for thisvibration In the present FT-IR spectra liquid mixture showsvery small variations in the intensity of the respective bondsthat is dipole moment and hence it supports that weakinteractions take place between the components of liquidmolecules

Theoretical evaluation of ultrasonic speed in binary liquidmixtures and its correlation to study molecular interactionhas been successfully done in recent years Ultrasonic speedsin liquid mixtures have been calculated and compared with

Table 5 Partial molar volumes (119881infin1198981

119881infin1198982

) and excess partial molarvolumes (119881119864infin

1198981 119881119864infin1198982

) of the components at infinite dilution for allthe systems at 30815 K

System 119881

infin

1198981119881

infin

1198982119881

119864infin

1198981119881

119864infin

1198982

(10minus5m3 molminus1)CH + 119899-butanol 25519 43758 18696 36548CH + 119904119890119888-butanol 25561 509205 19253 42933CH + 119905119890119903119905-butanol 30034 55000 23211 47790

experimental values using various theories Such an evalua-tion offers a simple method to investigate molecular interac-tions besides verifying the applicability of various theories toliquid mixtures

Nomoto [24] established the following relation for soundspeed (119880

119873) based on the assumption of the linearity of the

molecular sound speed and the additivity of molar volume

119880119873=

(sum119909119894119877119894)

(sum119909119894119881119894)

3

(14)

where 119877119894is molar sound speed and 119881

119894is molar volume

van Dael and Vangeel [25] obtained the ideal mixturerelation

sum(

119909119894119872119894

1199062

119894

) =

1

sum119909119894119872119894

1

119880119881

2

(15)

Baluja and Parsania [26] have given impedance relationon the basis of force of resistance for sound speed by theinteracting molecules

119880imp =sum119909119894119885119894

sum119909119894120588119894

(16)

Raorsquos (specific sound speed) [27] relation is given by

119880119877= (sum119909

119894119903119894120588)

3

(17)

where 119903119894= 11990613

119894120588119894is Raorsquos specific sound speed of 119894th com-

ponent of the mixturePercentage deviation in ultrasonic speed is given by

Δ119906 = 100 lowast [1 minus119880cal119906exp 119905

] (18)

Table 6 shows the values of ultrasonic speed computed byvarious theories along with their percentage error for all thesystems The variations between the evaluated and experi-mental values may be due to interactions occurring betweenthe hetero molecules of the binaries From the observedvalues of all three systems there is a good agreementbetween theoretical and experimental values through vanDeal andVangeel relation It can be seen fromTable 6 that thetheoretical values of ultrasonic speed calculated by using var-ious theories show deviation from experimental values Thelimitations and approximation incorporated in these theories

Journal of Applied Chemistry 9

Table 6Theoretical values of ultrasonic speed from various equations and percentage error withmole fraction1199091of CH for all binary systems

at 30815 K

1199091

119880119873

119880119881

119880Imp 119880119877

119880119873

119880119881

119880Imp 119880119877

CH + 119899-butanol10000 136200 136200 136200 136200 000 000 000 00009121 135001 134547 135043 129806 143 109 146 24808854 134632 134060 134687 128317 177 133 181 30107211 132309 131199 132427 122196 305 218 314 48306687 131549 130334 131681 120973 322 227 332 50805232 129386 128042 129542 118502 333 226 346 53604752 128656 127319 128814 117871 317 210 330 54803231 126283 125129 126429 116393 261 168 273 54202112 124478 123609 124594 116166 196 125 205 48501313 123158 122567 123239 116883 135 086 142 38200000 120930 120930 120930 120930 000 000 000 000

CH + 119904119890119888-butanol10000 136200 136200 136200 136200 000 000 000 00009212 134836 134412 134936 128464 144 112 152 33508867 134234 133650 134375 125830 198 153 208 44107121 131130 129973 131435 117255 382 291 406 71606786 130524 129300 130852 116263 402 304 428 73505123 127465 126097 127860 113158 433 321 465 73804688 126650 125296 127049 112705 422 310 455 72603121 123666 122524 124027 112004 338 243 369 63702797 123039 121972 123381 112051 313 223 341 60801112 119722 119210 119901 113885 141 098 156 35300000 117480 117480 117480 117480 000 000 000 000

CH + 119905119890119903119905-butanol10000 136200 136200 136200 136200 000 000 000 00009221 134013 133538 134413 126923 209 173 240 33108895 133099 132456 133651 123600 283 233 325 45107012 127840 126544 129065 109588 561 454 663 94606814 127289 125953 128564 108550 578 467 684 98005112 122570 121104 124087 102359 633 506 764 112104777 121645 120195 123170 101661 627 501 761 111903321 117638 116400 119036 100406 548 437 674 99702635 115760 114696 117000 100794 480 384 592 87501323 112183 111575 112939 103339 289 233 358 52300000 108600 108600 108600 108600 000 000 000 000

are responsible for the deviations of theoretical values fromexperimental values Nomotorsquos theory proposes that the vol-ume does not change upon mixingTherefore no interactionbetween the components of liquid mixtures has been takeninto account Similarly the assumption for the formation ofideal mixing relation is that the ratios of specific heats of idealmixtures and the volumes are also equal Again no molecularinteractions are taken into account But upon mixing inter-actions between the molecules occur because of the presenceof various types of forces such as dispersion forces chargetransfer and hydrogen bonding dipole-dipole and dipole-induced dipole interactions Thus the observed deviationof theoretical values of speed from the experimental values

shows that the molecular interactions are taking placebetween the CH and isomers of butanol molecules Thedeviations of experimental values and values calculated fromimpedance relation and Raorsquos relation imply nonadditivity ofacoustic impedance and Raorsquos speed in the liquid mixturesAmong all the empirical theories van Dael and Vangeelsrelation gives better estimate of experimental values of soundspeed in all the systems In the present binary systems thedifference between experimental and theoretical speeds isgreater where themole fraction of CH varies in the region 03to 06 Hence it can be qualitatively inferred that the strengthof interaction in the binary mixtures is more in this range ofcomposition of CH with isomers of butanol liquid system

10 Journal of Applied Chemistry

5 Conclusion

(i) Ultrasonic speeds 119906 and densities 120588 of mixtures ofcyclohexanone with 119899-butanol or sec-butanol or tert-butanol over the entire composition range have beenmeasured at 119879 = 30815K

(ii) The values of 119881119864119898 Δ119896119904 119871119864119891 119911119864 and Δ119906 are calculated

from experimental data of density and ultrasonicspeed The excess and deviation properties have beenfitted to Redlich-Kister type polynomial and corre-sponding standard deviations have been evaluatedThe observed positive values of 119881119864

119898 Δ119896119904 and 119871119864

119891and

negative values of 119911119864 Δ119906 for all the liquid mixturesstudied clearly indicate the presence of weak inter-actions such as rupturing of hydrogen bond or reduc-tion in H-bond strength of butanol or breaking ofthe structure of one or both of the components in asolution

(iii) The deviationexcess properties have been fitted toRedlich-Kister type polynomial and the correspond-ing standard deviations have been calculated

(iv) The calculated values of partial molar volumes havealso been examined The observed higher partialmolar volumes in the liquid mixture when comparedto the respective molar volumes of pure componentsindicate weak interactions present in the systems

(v) The strength of interaction in themixtures follows theorder CH + tert-butanol gt sec-butanol gt 119899-butanol

(vi) FT-IR spectra for the present binary mixture alsosupport the conclusions drawn from the 119881119864

119898 119871119864119891 Δ119896119904

Δ119906 and 119911119864(vii) Further theoretical values of sound speed in the mix-

tures have been evaluated using various theories andhave been compared with experimental sound speedsto verify the applicability of such theories to the sys-tems studied

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

One of the authors SkMdNayeem is thankful to UGC NewDelhi Government of India for the financial grants towardsMRP (MRP-467114C (SERO-UGC))

References

[1] T B Thoe D K Aspinwall and M L H Wise ldquoReview onultrasonic machiningrdquo International Journal of Machine Toolsand Manufacture vol 38 no 4 pp 239ndash255 1998

[2] G Thomas Chemistry for Pharmacy and the Life SciencesPrentice Hall London UK 1996

[3] A M Ababneh C C Large and S Georghiou ldquoSolvation ofnucleosides in aqueous mixtures of organic solvents relevanceto dna open basepairsrdquo Biophysical Journal vol 85 no 2 pp1111ndash1127 2003

[4] R E Treybal Mass Transfer Operations McGraw Hill Singa-pore 3rd edition 1981

[5] PM Krishna B R Kumar B Sathyanarayana K S Kumar andN Satyanarayana ldquoDensities and speeds of sound for binaryliquid mixtures of thiolane-11-dioxide with butanone pentan-2-one pentan-3-one and 4-methyl-pentan-2-one atT = (30315or 30815 or 31315) Krdquo Journal of Chemical and EngineeringData vol 54 no 6 pp 1947ndash1950 2009

[6] PGnanaKumari PVenkatesuMV PrabhakaraRaoM-J Leeand H-M Lin ldquoExcess molar volumes and ultrasonic studiesof 119873-methyl-2-pyrrolidone with ketones at 119879 = 30315 Krdquo TheJournal of ChemicalThermodynamics vol 41 no 5 pp 586ndash5902009

[7] M Sreenivasulu and P R Naidu ldquoExcess volumes and adiabaticcompressibility of binary mixtures of butyl amine and cyclicketonesrdquo Australian Journal of Chemistry vol 32 no 8 pp1649ndash1652 1979

[8] K Rajagopal and S Chenthilnath ldquoExcess thermodynamicstudies of binary liquid mixtures of 2-methyl-2-propanol withketonesrdquo Indian Journal of Pure amp Applied Physics vol 48 no5 pp 326ndash333 2010

[9] R K Bachu M K Patwari S Boodida and S Nallani ldquoVol-umetric and transport properties of binary liquid mixtures ofaliphatic ketones with phenylacetonitrile at T = 30815 Krdquo Jour-nal of Chemical amp Engineering Data vol 53 no 10 pp 2403ndash2407 2008

[10] N G Tsierkezos I E Molinou and A C Filippou ldquoThermo-dynamic properties of binary mixtures of cyclohexanone with119899-alkanols (C

1-C5) at 29315 Krdquo Journal of Solution Chemistry

vol 34 no 12 pp 1371ndash1386 2005[11] M Sri Lakshmi R R Raju C Rambabu G V R Rao and

K Narendra ldquoStudy of molecular interactions in binary liquidmixtures containing higher alcohols at different temperaturesrdquoResearchampReviews Journal of Chemistry vol 2 no 1 pp 12ndash242013

[12] A I Vogel Text Book of Practical Organic Chemistry LongmanLondon UK 5th edition 1989

[13] J A Riddick W Bunger and T K Sakano Techniques of Chem-istry Organic Solvents Physical Properties andMethods of Purifi-cation Wiley Interscience New York NY USA 4th edition1987

[14] R K Bachu andM K Patwari ldquoDensities viscosities and speedof sound of binary mixtures of phenylacetonitrile with somealiphatic alcohols at 30815 Krdquo Indian Journal of Chemistry Avol 47 no 7 pp 1026ndash1031 2008

[15] H C Parker and E W Parker ldquoDensities of certain aque-ous potassium chloride solutions as determined with a newpyknometerrdquo Journal of Physical Chemistry vol 29 pp 130ndash1371925

[16] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification solutionsrdquoIndustrial and Engineering Chemistry vol 40 no 2 pp 345ndash348 1948

[17] R Vijaya Kumar S Viswanathan and M Anand Rao ldquoExcessvolumes speeds of sound and isentropic compressibilitiesof 2-propyn-1-ol + 12-dichloroethane +111-trichloroe thane+1122-tetrachloroethane and +trichloroethylene at 30315Krdquo

Journal of Applied Chemistry 11

Journal of Chemical and EngineeringData vol 41 no 4 pp 755ndash757 1996

[18] J S Matos and J L Trenzado ldquoVolumetric properties and vis-cosities of the methyl butanoate+n-heptane+n-octane ternarysystem and its binary constitutions in the temperature rangefrom 28315K to 31315Krdquo Fluid Phase Equilibria vol 186 pp207ndash234 2001

[19] O Kiyohara and G C Benson ldquoUltrasonic speeds and isen-tropic compressibilities of n-alkanol + n-heptane mixtures at29815 KrdquoThe Journal of Chemical Thermodynamics vol 11 no9 pp 861ndash873 1979

[20] R J Fort and W R Moore ldquoAdiabatic compressibilities ofbinary liquidmixturesrdquo Transactions of the Faraday Society vol61 pp 2102ndash2111 1965

[21] A Ali A K Nain V K Sharma and S Ahmed ldquoUltrasonicstudies in binary liquid mixturesrdquo Indian Journal of Physics Bvol 75 no 6 pp 519ndash525 2001

[22] M Gowrisankar S Sivarambabu P Venkateswarlu and K SKumar ldquoExcess volumes speeds of sound isentropic compress-ibilities and viscosities of binary mixtures of 119873-ethyl anilinewith some aromatic ketones at 30315 Krdquo Bulletin of the KoreanChemical Society vol 33 no 5 pp 1686ndash1692 2012

[23] T Karunakar andCH Srinivas ldquoThermo acoustic and infraredstudy of molecular interactions in binary mixture aniline+1-butanolrdquo Research amp Reviews Journal of Pure and AppliedPhysics vol 1 no 1 pp 5ndash10 2013

[24] O Nomoto ldquoEmpirical formula for sound velocity in liquidmixturesrdquo Journal of the Physical Society of Japan vol 13 no12 pp 1528ndash1532 1958

[25] W van Dael Thermodynamic Properties and Velocity of SoundButterworth London UK 1975

[26] S Baluja and P H Parsania ldquoAcoustical properties of 3-120572-furylacrylic acid in protic and aprotic solventsrdquo Asian Journal ofChemistry vol 7 pp 417ndash423 1995

[27] K Sreekanth D S Kumar M Kondaiah and D Krishna RaoldquoStudy of molecular interactions in the mixtures of secondaryalcohols with equimolar mixture of ethanol + formamide fromacoustic and thermodynamic parametersrdquo Journal of Chemicaland Pharmaceutical Research vol 3 no 4 pp 29ndash41 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 2: Research Article Ultrasonic Investigations of Molecular ...downloads.hindawi.com/journals/jac/2014/741795.pdf · Research Article Ultrasonic Investigations of Molecular Interaction

2 Journal of Applied Chemistry

RR

RR

C CO O+ minus

Resonance structure

hArr∙∙

∙∙

∙∙

∙∙

∙∙

Scheme 1

cyclohexanone with 119899-heptanol 119899-octanol and isooctanolat temperatures 30315 30815 31315 and 31815 K overthe entire range of composition Keeping these importantaspects in mind the present study deals with ultrasonic andthermodynamic study of cyclohexanone (CH) with the iso-mers of butanol (119899-butanol sec-butanol and tert-butanol) at30815 K The liquids under investigation have been chosenon the basis of their multifold applications

2 Experimental Section

High purity analytical reagent (AR) grade compounds ofcyclohexanone (mass fraction purity gt 99) and 119899-butanolsec-butanol and tert-butanol (mass fraction purity gt 995)obtained from S D Fine Chemicals are used in the presentstudy The chemicals are further purified by standard meth-ods mentioned in [12 13]The weighing of solutions has beenmade usingMETTLER TOLEDO (Switzerlandmake) ABB5-SFACT digital balance with an accuracy of plusmn001mg Theuncertainty in themole fraction is 10minus4The ultrasonic speedsof pure liquids and liquid mixtures have been measuredusing an ultrasonic interferometer (Mittal type Model F-82)working at 2MHz fixed frequencywith an accuracy ofplusmn02The temperature of liquid sample in the interferometer cellis maintained constant by circulating water pumped fromconstant temperature water bath In the present study theconstant temperature water bath (digital electronic) suppliedby Concord Instruments Co Ltd Chennai (RAAGA type)has been used The instrument can maintain temperature toplusmn001 K as per its specifications

Densities of pure liquids and their mixtures have beendetermined by using a 5 cm3 two-stem double-walled Parkeramp Parker type pycnometer [15]This pycnometer is calibratedwith triply distilled water The pycnometer filled with airbubble free experimental liquids was kept in a transparentwalled constant temperature bath for 20 to 30min to attainthermal equilibrium The positions of the liquid levels in thetwo arms are recorded with the help of traveling microscopeAt least three to four measurements are performed fromwhich an average value of density of the experimental liquid isdetermined The estimated accuracy in the density measure-ment is 3 in 105 parts The ultrasonic speeds 119906 and densities120588 measured at 30815 K for the pure liquids used in this inves-tigation are compiled in Table 1 together with the literaturedata [11 14] available These results are in good agreementwith the reported data

3 Theory

Thermodynamic and acoustical parameters such as molarvolume (119881

119898) adiabatic compressibility (119896

119904) intermolecular

Table 1 Comparison of experimental values of density 120588 andultrasonic speed 119906 of pure liquids with the corresponding literaturevalues at 30815 K

Liquid 120588(kgmminus3) 119906(m sminus1)Presentwork Literature Present

work Literature

Cyclohexanone 93960 9396 [11] 136200 13620 [11]119899-Butanol 79650 7965 [14] 120930 12093 [14]119904119890119888-Butanol 79320 7932 [14] 117480 11748 [14]119905119890119903119905-Butanol 76840 7683 [14] 108600 10860 [14]

free length (119871119891) and acoustic impedance (119911) are evaluated

using the relations given below

119881119898=

119872eff120588

(1)

where119872eff is given by119872eff = (11990911198721 + 11990921198722) where1198721 and1198722are the molar masses of pure components and 120588 is the

density of the liquid mixtureThe speed of sound (119906) and the density of themedium (120588)

are related by using Newton and Laplace equation as

119896119904=

1

1205881199062

119871119891= 11987011989612

119904

(2)

Here119870 is the temperature dependent constant which is equalto119870 = (93875 + 0375119879) times 10minus8 where 119879 is absolute temper-ature Consider

119911 = 119906120588 (3)

In order to understand the nature of the molecular interac-tions between the components of the liquid mixtures it isof interest to discuss the same in terms of excess parametersrather than actual values Nonideal liquidmixtures show con-siderable deviation from linearity in their concentrations andthis has been interpreted to arise from the presence of strongorweak interactionsThedifference between the properties ofthe realmixtures (119884real) and those corresponding to idealmix-ture (119884ideal = sum119909119894119884119894) values namely excess properties (119884119864)such as excess molar volume (119881119864

119898) free length (119871119864

119891) acoustic

impedance (119911119864) and deviations in ultrasonic speed (Δ119906) iscomputed by the relation

119884119864

= 119884real minussum119909119894119884119894 (4)

where 119884119864 = 119881119864119898 119871119864

119891 119911119864 and Δ119906 119909

119894is the mole fraction and 119884

119894

is the value of the property of the 119894th component liquid ofmixture

The deviation in adiabatic compressibility (Δ119896119904) has been

calculated from the equation

Δ119896119904= 119896119904minus (Φ11198961199041+ Φ21198961199042) (5)

Journal of Applied Chemistry 3

where Φ1 Φ2 and 119896

1199041 1198961199042are the volume fractions and adi-

abatic compressibilities of components 1 and 2 respectivelySince 119896

119904is not additive on mole fraction but is additive on

volume fraction such values are calculated using volumefraction (Φ)

Φ119894=

119909119894119881119894

sum119909119894119881119894

(6)

The experimentally measured values of ultrasonic speed (119906)and density (120588) and calculated properties of molar vol-ume (119881

119898) adiabatic compressibility (119896

119904) intermolecular free

length (119871119891) and acoustic impedance (119911) and excessdeviation

thermodynamic properties 119881119864119898 119871119864119891 119911119864 Δ119906 and Δ119896

119904are

presented in Table 2 for all binary systems over the entirecomposition range of CH

The excessdeviation properties have been fitted to aRedlich-Kister type polynomial equation [16]

119884119864

= 11990911199092

119899

sum

119894=0

119860119894(1199092minus 1199091)119894

(7)

where119884119864 = 119881119864119898 119871119864

119891 119911119864

Δ119906 andΔ119896119904 1199091is the mole fraction of

the soluteThe values of Δ119896

119904have been fitted to Redlich-Kister type

polynomial with volume fraction instead of mole fraction inthe above polynomial and 119860

119894are the adjustable parameters

of the function and are determined using the least squaremethod In the present investigation ldquo119894rdquo values are taken from0 to 4 The corresponding standard deviation 120590(119884119864) wascalculated using the expression

120590 (119884119864

) =[

[

sum(119884119864

exp minus 119884119864

cal)2

(119898 minus 119899)

]

]

12

(8)

where ldquo119898rdquo is the total number of experimental points and ldquo119899rdquois the number of coefficients in (7) The calculated values ofthe coefficients119860

119894alongwith the standard deviations (120590) have

been presented in Table 3

4 Results and Discussion

Figure 1 represents the variation of excess molar volume (119881119864119898)

with mole fraction of CH The sign of 119881119864119898

depends uponthe contraction and expansion of volume of the liquids dueto mixing The factors that are mainly responsible for theexpansion of molar volume that is positive values of 119881119864

119898 are

the following (i) breaking of the structure of one or bothof the components in a solution that is the loss of dipolarassociation between themolecules (dispersion forces) (ii) H-bond rupture and stretching of self-associatedmolecules (likealcohols) (iii) the geometry of molecular structures whichdoes not favour the fitting of molecules of one componentinto void space of another molecule (iv) steric hindrance ofthe molecules The negative values of 119881119864

119898are due to the (i)

association of molecules through the formation of hydrogenbond that is strong specific interactions and (ii) accom-modation of molecules because of large differences in their

0

01

02

03

04

05

0 02 04 06 08 1

minus02

minus01

minus5

m3

mol

minus1)

VE m

(10

x1

Figure 1 Variation of excess molar volume 119881119864119898 with mole fraction

1199091 of cyclohexanone in (X) 119899-butanol(◼) sec-butanol(998771) and

tert-butanol at 30815 K and Tsierkezos et al [10] for cyclohex-anone + 1-butanol (dotted lines) at 29315 K

molar volumes In other words 119881119864119898arises due to the result

of physical chemical and structural contributions Physicalinteractions involving mainly nonspecific interactions suchas dispersion or weak forces (breaking of the liquid orderon mixing ie loss of dipolar association between themolecules) contribute to positive 119881119864

119898 The chemical or spe-

cific interactions such as complex formation and hydrogenbond formation between constituent molecules contributeto negative 119881119864

119898 The structural effects arise from interstitial

accommodation due to the difference in the molar volumesand free volumes between the liquid components on mixingcontributing to negative119881119864

119898[17]The variation of119881119864

119898is found

to be positive over the entire composition range in the presentinvestigation which indicates that weak forces exist Sri Lak-shmi et al [11] reported similar results in CHwith 119899-heptanol119899-octanol and iso-octanol at temperatures of 30315 3081531315 and 31815 KThe119881119864

119898data obtained by Tsierkezos et al

[10] for CH + 1-butanol binary system are negative at 29315 Kwhereas in our investigations they are found to be positivewhen performed at 30815 K Such behaviour may arise dueto the fact that as temperature increases the effective collisionbetween the component molecules increases Thus largernumber of free dipoles of component molecules may beavailable due to declusttering of molecules in the pure state

Thenature of interaction in binary liquids can be analysedby knowing their chemical and physical properties (physic-ochemical properties) Generally butanols are associatedthrough the hydrogen bonding as shown below and in thepure state they exhibit equilibrium between the monomerand multimer species Also they can be associated withany other groups having some degree of polar attractionsAs discussed earlier butanol exhibits strong intermolecularinteractions (H-bond) Alcohol size chain length and phys-ical properties (boiling point density hydrophobic propertyviscosity insolubility and refractive index) are importantparameters that must be taken into account to explain thebehaviour of the interactions (Scheme 2)

CH is a polar molecule because of the presence ofcarbonyl group (C=O) this is due to the fact that oxygenis more electronegative (Ominus) than carbon (C+) Thus they

4 Journal of Applied Chemistry

Table2Ex

perim

entalvalueso

fdensities120588ultrason

icspeeds119906m

olarvolume119881119898adiabaticcompressib

ility119896119904intermolecularfre

elength119871119891acoustic

impedance119911and

excessdeviatio

nprop

ertie

s119881119864 119898119871119864 119891119911119864

Δ119906andΔ119896119904fora

llbinary

syste

msw

ithmolefraction1199091ofcyclohexano

neat30815K

1199091

120588(kg

mminus3

)119906(msminus1

)119881119898(1

0minus5

m3molminus1

)119896119904(1

0minus10

Paminus1

)119871119891(1

0minus10

m)119911(1

06kg

mminus2

sminus1

)119881119864 119898(1

0minus5

m3molminus1

)Δ119896119904(1

0minus10

Paminus1

)119871119864 119891(1

0minus10

m)119911119864

(106

kgmminus2

sminus1

)Δ119906(msminus1

)CH

+119899-butanol

1000

09396

0136200

72100

83164

060

4012

797

000

00000

00000

00000

00000

09121

91391

133102

72125

89952

06281

12164

00977

03231

00107

minus00355

minus1755

08854

9072

0132296

72111

91843

06347

12002

01252

040

0800133

minus00432

minus2154

07211

87362

128396

71186

10204

806690

11217

02105

06763

00226

minus00697

minus3545

066

8786485

127447

70775

104903

06783

11022

02261

07151

00239

minus00726

minus3694

05232

84320

125214

69241

112327

07019

10558

02302

07516

00254

minus00730

minus3705

04752

83665

1246

98

68566

114565

07089

10433

02147

07367

00251

minus00703

minus3488

03231

81759

123068

66549

1215

5807302

10062

01776

06877

00232

minus00593

minus2795

02112

80599

122087

64872

126087

07437

09840

01311

05914

00197

minus004

60minus2068

01313

7999

1121519

63611

12861

07511

09720

00915

04550

00150

minus00328

minus1415

000

0079650

120930

61275

130345

07561

09632

000

00000

00000

00000

00000

CH+119904119890119888-butanol

1000

09396

0136200

72100

83164

060

4012

797

000

00000

00000

00000

00000

09212

91229

132922

7244

990

394

06297

12126

01060

03836

00126

minus00397

minus1802

08867

90208

131633

72474

93357

06399

11874

01397

05194

00171

minus00529

minus2446

07121

86217

126303

72207

106512

06835

10889

02705

09784

00316

minus00907

minus4507

06786

85620

125483

7204

2108709

06905

10744

02843

10245

00331

minus00935

minus4700

05123

8315

6122177

70717

118365

07205

10160

03018

10967

00354

minus00941

minus4893

046

8882613

121526

70273

120569

07272

1004

002967

10794

00349

minus00909

minus4729

03121

8092

6119

619

68217

1276

5107483

09680

02325

09202

00299

minus00724

minus3703

02797

80631

119309

67723

128921

07520

09620

02124

08684

00282

minus00672

minus3406

01112

79503

118057

65053

134011

07667

09386

00974

046

0400149

minus00320

minus1504

000

0079320

117480

63075

1352

9207703

09319

000

00000

00000

00000

00000

CH+119905119890119903119905-butanol

1000

09396

0136200

72100

83164

060

4012

797

000

00000

00000

00000

00000

09221

90829

131268

73361

92340

06364

11923

01562

04969

00150

minus00527

minus2781

08895

89642

129440

73779

96141

06494

11603

02106

06834

00207

minus00702

minus3710

07012

84030

121044

75179

117001

07164

10171

04235

15137

00457

minus01296

minus6909

06814

83551

120337

75205

119041

07226

10054

04337

15721

00475

minus01325

minus7069

05112

8017

9115277

74950

134939

07693

09243

04741

18707

00562

minus01378

minus7432

04777

79661

114465

74783

1376

6907771

09118

04703

18823

00566

minus01354

minus7319

03321

7791

2111524

73616

147714

08049

08689

040

9917

360

00519

minus01135

minus6241

02635

77360

110459

72878

1512

7508146

08545

03627

15506

004

63minus00973

minus5413

01323

7677

8109036

70894

155581

08261

08372

02150

09556

00285

minus00562

minus3215

000

0076840

108600

68232

155954

08271

08345

000

00000

00000

00000

00000

Journal of Applied Chemistry 5

Table 3 Coefficients 119860119894of Redlich-Kister type polynomial equation (7) and the corresponding standard deviations 120590 of all the systems at

30815 K

1198600

1198601

1198602

1198603

1198604

120590

CH + 119899-butanol119881119864

119898(10minus5m3 molminus1) 247625 minus57880 36945 minus31381 minus08351 00019

Δ119896119904(10minus10 Paminus1) 00183 minus00020 00075 00029 minus00004 00091

119871119864

119891(10minus10m) 08201 minus01460 02529 00638 01066 00009

119911119864(106 kgmminus2 sminus1) minus02875 00836 minus01081 00006 minus00202 00002Δ119906(msminus1) minus140 058 minus031 minus003 minus018 00024

CH + 119904119890119888-butanol119881119864

119898(10minus5m3 molminus1) 275896 minus9594 42809 minus22460 minus07780 00018

Δ119896119904(10minus10 Paminus1) 00267 minus0001 00001 00033 00034 00001

119871119864

119891(10minus10m) 11507 minus01810 00576 01082 00684 00011

119911119864(106 kgmminus2 sminus1) minus03733 01252 minus00791 00092 minus00110 00001Δ119906(msminus1) minus194 059 minus004 minus001 minus004 00006

CH + 119905119890119903119905-butanol119881119864

119898(10minus5m3 molminus1) 364535 minus123900 minus06780 01003 minus02750 00009

Δ119896119904(10minus10 Paminus1) 00428 00120 00024 00019 00011 00001

119871119864

119891(10minus10m) 18117 01253 01393 00862 minus00290 00006

119911119864(106 kgmminus2 sminus1) minus05484 01374 minus00850 00123 minus00032 00001Δ119906(msminus1) minus296 062 minus054 001 minus001 00001

R R R

Structure of alcoholOndashHmiddot middot middotOndashH middot middot middot middot middot middot OndashH

Scheme 2

Resonance structure

middot middot middot

R R

R

C OOminus H+

Scheme 3

cause strong dipole-dipole interactions in chemical reactionsMoreover CH lacks hydroxyl groups so it is incapable ofcreating intermolecular hydrogen bonds In CH + isomersof butanol binary systems the negatively charged oxygen(Ominus) in CH tries to drag the positively charged H+ whichwere bounded in very strong intermolecular interactions ofbutanol (Scheme 3) An equilibrium stage is reached whererupturing of hydrogen bond or reduction inH-bond strengthof butanol or breaking of the structure of one or both ofthe components in a solution that is the loss of dipolarassociation between the molecules (dispersion forces) [18]will be favourable leading to weak interactions This causesincrease in volume of binary liquid and explains the observedpositive values 119881119864

119898in the systems

Kiyohara and Benson [19] have suggested that Δ119896119904is

the resultant of several opposing effects Negative values ofΔ119896119904contribute to charge transfer dipole-induced dipole and

00

04

08

12

16

20

0 02 04 06 08 1

minus10

Paminus1)

x1

Δks

(10

Figure 2 Variation of deviation in adiabatic compressibility Δ119896119904

with mole fraction 1199091 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

dipole-dipole interactions interstitial accommodation andbreaking up of the alcohol structures leads to positive valuesof Δ119896119904 From Figure 2 the observed positive values of Δ119896

119904for

binary mixtures of CHwith 119899-butanol 119904119890119888-butanol and 119905119890119903119905-butanol are due to declustering of alcohols in the presence ofCH The positive deviation in Δ119896

119904for the binary systems fol-

lows the order CH+ 119905119890119903119905-butanolgt 119904119890119888-butanolgt 119899-butanolFigure 3 represents the variation of119871119864

119891withmole fraction (119909

1)

of CH The observed values of 119871119864119891are positive According

to Fort and Moore [20] positive 119871119864119891should be attributed to

the dispersive forces As mentioned earlier positive values ofΔ119896119904and 119871119864

119891are mainly attributed to weak forces between the

component molecules in the mixture [21]

6 Journal of Applied Chemistry

0

001

002

003

004

005

006

0 02 04 06 08 1

minus10

m)

x1

LE f(10

Figure 3 Variation of excess free length 119871119864119891 with mole fraction 119909

1

of cyclohexanone in (X) 119899-butanol(◼) sec-butanol(998771) and tert-butanol at 30815 K

00 02 04 06 08 1

minus004

minus008

minus012

minus016

6kg

mminus2

sminus1)

x1

ZE(10

Figure 4 Variation of excess acoustic impedance 119911119864 withmole fraction 119909

1 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

The variations of excess acoustic impedance (119911119864) anddeviation in ultrasonic speed (Δ119906) have been presented inFigures 4 and 5 respectively From Figure 4 it has beenobserved that the values of 119911119864 are negative over the entiremole fraction range indicating the decreasing strength ofinteractions between component molecules of the mixtureAccording to Gowrisankar et al [22] the negative valuesfor Δ119906 indicate the decrease in the strength of interactionbetween the molecules and the negative deviations in Δ119906from linear dependence suggest the presence of weak inter-action between the component molecules These deviationexcess properties further support the conclusions drawn from119881119864

119898 119871119864119891 and Δ119896

119904

The existing molecular interactions in the systems arewell reflected in the properties of partial molar volumes Thepartial molar volumes 119881

1198981of component 1 (CH) and 119881

1198982

of component 2 (isomers of butanol) in the mixtures overthe entire composition range have been calculated by usingthe following relations

1198811198981= 119881119864

119898+ 119881lowast

1+ 1199092(

120597119881119864

119898

120597119909

)

119879119875

00 02 04 06 08 1

minus20

minus40

minus60

minus80

x1

Δu

(msminus

1)

Figure 5 Variation of deviation in ultrasonic speed Δ119906 withmole fraction 119909

1 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

1198811198982= 119881119864

119898+ 119881lowast

2+ 1199091(

120597119881119864

119898

120597119909

)

119879119875

(9)

where 119881lowast1and 119881lowast

2are the molar volumes of the pure com-

ponents of CH and butanols respectively The derivates inthe above equations are obtained by differentiating Redlich-Kister equation (7) which leads to the following equations for1198811198981

and 1198811198982

1198811198981= 119881lowast

1+ 1199092

2

119895

sum

119894=0

119860119894(1199092minus 1199091)119894

minus 211990911199092

2

119895

sum

119894=1

119860119894(1199092minus 1199091)119894minus1

(10)

1198811198982= 119881lowast

2+ 1199092

1

119895

sum

119894=0

119860119894(1199092minus 1199091)119894

+ 211990921199092

1

119895

sum

119894=1

119860119894(1199092minus 1199091)119894minus1

(11)

using the above equations 1198811198641198981

1198811198641198982

have been calculatedusing

119881

119864

1198981= 1198811198981minus 119881lowast

1

119881

119864

1198982= 1198811198982minus 119881lowast

2

(12)

The pertinent values of 1198811198981

and 1198811198982

are furnished inTable 4 From this table the values of 119881

1198981and 119881

1198982for

both the components in the mixtures are greater than theirrespective molar volumes in the pure state that is an expan-sion of volume takes place on mixing alcohols with ketoneThese results also support the observed positive values of119881119864

119898in all the binary systems Figures 6 and 7 represent the

variation of excess partial molar volumes of 1198811198641198981

(CH) 1198811198641198982

(isomers of butanol) in the binary mixtures Examinationof these figures reveals that dispersion forces exist betweenthe unlike molecules These figures support the conclusionsdrawn from119881119864

119898The partial molar volumes and excess partial

Journal of Applied Chemistry 7

Table 4 Partial molar volumes of CH (1198811198981

10minus5m3 molminus1) and butanols (1198811198982

10minus5m3 molminus1) of all the binary systems with mole fraction(1199091) of CH at 30815 K

CH + 119899-butanol CH + 119904119890119888-butanol CH + 119905119890119903119905-butanol1199091

1198811198981

1198811198982

1199091

1198811198981

1198811198982

1199091

1198811198981

1198811198982

10000 7210 42676 10000 7210 49234 10000 7210 5461209121 7699 32512 09212 7681 38378 09221 7606 4459008854 7999 30035 08867 8130 34445 08895 7997 4078807211 10600 19303 07121 11586 20460 07012 12366 2341306687 11554 17041 06786 12354 18636 06814 12989 2202305232 14365 12385 05123 16219 12221 05112 19004 1308704752 15378 11198 04688 17234 11058 04777 20247 1189303231 19092 8232 03121 20995 8043 03321 25389 841602112 22264 6843 02797 21794 7619 02635 27459 756201313 24403 6314 01112 25586 6406 01323 30211 687400000 25905 6128 00000 26462 6307 00000 30421 6823

0

10

20

30

40

50

0 02 04 06 08 1

minus5

m3

mol

minus1)

x1

VE m2

(10

Figure 6 Variation of excess partial molar volume 1198811198641198982

withmole fraction 119909

1 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

molar volumes ofCHand isomers of butanols in all the binaryliquid mixtures at infinite dilution 119881infin

1198981 119881infin1198982

119881119864infin1198981

and119881

119864infin

1198982 respectively were obtained by putting 119909 = 0 in (10)

and 119909 = 1 in (11) Consider

119881

119864infin

1198981= 1198600+ 1198601+ 1198602+ 1198603+ sdot sdot sdot = 119881

infin

1198981minus 119881lowast

1

119881

119864infin

1198982= 1198600minus 1198601+ 1198602minus 1198603+ sdot sdot sdot = 119881

infin

1198982minus 119881lowast

2

(13)

The pertinent values of 119881infin1198981

119881infin1198982

119881119864infin1198981

and 119881119864infin1198982

arereported in Table 5 From this table it is seen that these valuesare positive from which we conclude that weak interactionsexist among the unlike molecules of the liquid mixtures

FT-IR spectra of pure CH butanols and binary mixturesof CH with butanols at equal concentrations are depicted inFigures 8 9 and 10 According to Karunakar and Srinivas[23] the intensity of an absorption in the IR spectrum isrelated to the change in dipole moment that occurs duringthe vibration Consequently vibrations that produce a largechange in dipole moment (eg C=O stretch) result in amore intense absorption than those that result in a relativelymodest change in dipole (eg C=C) Vibrations that do notresult in a change in dipole moment (eg a symmetrical

0

5

10

15

20

25

0 02 04 06 08 1

minus5

m3

mol

minus1)

x1

VE m1

(10

Figure 7 Variation of excess partial molar volume 1198811198641198981

withmole fraction 119909

1 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

020

040

060

080

100

500 1375 2250 3125 4000

Tran

smitt

ance

()

n-ButanolCH

Wave number (cmminus1)

CH + n-Butanol

Figure 8 Fourier transform infrared spectra of pure cyclohexanone(red) cyclohexanone and 119899-butanol in the ratio 5 5 (green) andpure 119899-butanol (blue)

8 Journal of Applied Chemistry

020

040

060

080

100

500 1375 2250 3125 4000

Tran

smitt

ance

()

sec-ButanolCH

Wave number (cmminus1)

CH + sec-Butanol

Figure 9 Fourier transform infrared spectra of pure cyclohexanone(red) cyclohexanone and sec-butanol in the ratio 5 5 (green) andpure sec-butanol (blue)

020

040

060

080

100

500 1375 2250 3125 4000

Tran

smitt

ance

()

tert-ButanolCH

Wave number (cmminus1)

CH + tert-Butanol

Figure 10 Fourier transform infrared spectra of pure cyclohex-anone (red) cyclohexanone and tert-butanol in the ratio 5 5(green) and pure tert-butanol (blue)

alkyne CequivC stretch) will show little or no absorption for thisvibration In the present FT-IR spectra liquid mixture showsvery small variations in the intensity of the respective bondsthat is dipole moment and hence it supports that weakinteractions take place between the components of liquidmolecules

Theoretical evaluation of ultrasonic speed in binary liquidmixtures and its correlation to study molecular interactionhas been successfully done in recent years Ultrasonic speedsin liquid mixtures have been calculated and compared with

Table 5 Partial molar volumes (119881infin1198981

119881infin1198982

) and excess partial molarvolumes (119881119864infin

1198981 119881119864infin1198982

) of the components at infinite dilution for allthe systems at 30815 K

System 119881

infin

1198981119881

infin

1198982119881

119864infin

1198981119881

119864infin

1198982

(10minus5m3 molminus1)CH + 119899-butanol 25519 43758 18696 36548CH + 119904119890119888-butanol 25561 509205 19253 42933CH + 119905119890119903119905-butanol 30034 55000 23211 47790

experimental values using various theories Such an evalua-tion offers a simple method to investigate molecular interac-tions besides verifying the applicability of various theories toliquid mixtures

Nomoto [24] established the following relation for soundspeed (119880

119873) based on the assumption of the linearity of the

molecular sound speed and the additivity of molar volume

119880119873=

(sum119909119894119877119894)

(sum119909119894119881119894)

3

(14)

where 119877119894is molar sound speed and 119881

119894is molar volume

van Dael and Vangeel [25] obtained the ideal mixturerelation

sum(

119909119894119872119894

1199062

119894

) =

1

sum119909119894119872119894

1

119880119881

2

(15)

Baluja and Parsania [26] have given impedance relationon the basis of force of resistance for sound speed by theinteracting molecules

119880imp =sum119909119894119885119894

sum119909119894120588119894

(16)

Raorsquos (specific sound speed) [27] relation is given by

119880119877= (sum119909

119894119903119894120588)

3

(17)

where 119903119894= 11990613

119894120588119894is Raorsquos specific sound speed of 119894th com-

ponent of the mixturePercentage deviation in ultrasonic speed is given by

Δ119906 = 100 lowast [1 minus119880cal119906exp 119905

] (18)

Table 6 shows the values of ultrasonic speed computed byvarious theories along with their percentage error for all thesystems The variations between the evaluated and experi-mental values may be due to interactions occurring betweenthe hetero molecules of the binaries From the observedvalues of all three systems there is a good agreementbetween theoretical and experimental values through vanDeal andVangeel relation It can be seen fromTable 6 that thetheoretical values of ultrasonic speed calculated by using var-ious theories show deviation from experimental values Thelimitations and approximation incorporated in these theories

Journal of Applied Chemistry 9

Table 6Theoretical values of ultrasonic speed from various equations and percentage error withmole fraction1199091of CH for all binary systems

at 30815 K

1199091

119880119873

119880119881

119880Imp 119880119877

119880119873

119880119881

119880Imp 119880119877

CH + 119899-butanol10000 136200 136200 136200 136200 000 000 000 00009121 135001 134547 135043 129806 143 109 146 24808854 134632 134060 134687 128317 177 133 181 30107211 132309 131199 132427 122196 305 218 314 48306687 131549 130334 131681 120973 322 227 332 50805232 129386 128042 129542 118502 333 226 346 53604752 128656 127319 128814 117871 317 210 330 54803231 126283 125129 126429 116393 261 168 273 54202112 124478 123609 124594 116166 196 125 205 48501313 123158 122567 123239 116883 135 086 142 38200000 120930 120930 120930 120930 000 000 000 000

CH + 119904119890119888-butanol10000 136200 136200 136200 136200 000 000 000 00009212 134836 134412 134936 128464 144 112 152 33508867 134234 133650 134375 125830 198 153 208 44107121 131130 129973 131435 117255 382 291 406 71606786 130524 129300 130852 116263 402 304 428 73505123 127465 126097 127860 113158 433 321 465 73804688 126650 125296 127049 112705 422 310 455 72603121 123666 122524 124027 112004 338 243 369 63702797 123039 121972 123381 112051 313 223 341 60801112 119722 119210 119901 113885 141 098 156 35300000 117480 117480 117480 117480 000 000 000 000

CH + 119905119890119903119905-butanol10000 136200 136200 136200 136200 000 000 000 00009221 134013 133538 134413 126923 209 173 240 33108895 133099 132456 133651 123600 283 233 325 45107012 127840 126544 129065 109588 561 454 663 94606814 127289 125953 128564 108550 578 467 684 98005112 122570 121104 124087 102359 633 506 764 112104777 121645 120195 123170 101661 627 501 761 111903321 117638 116400 119036 100406 548 437 674 99702635 115760 114696 117000 100794 480 384 592 87501323 112183 111575 112939 103339 289 233 358 52300000 108600 108600 108600 108600 000 000 000 000

are responsible for the deviations of theoretical values fromexperimental values Nomotorsquos theory proposes that the vol-ume does not change upon mixingTherefore no interactionbetween the components of liquid mixtures has been takeninto account Similarly the assumption for the formation ofideal mixing relation is that the ratios of specific heats of idealmixtures and the volumes are also equal Again no molecularinteractions are taken into account But upon mixing inter-actions between the molecules occur because of the presenceof various types of forces such as dispersion forces chargetransfer and hydrogen bonding dipole-dipole and dipole-induced dipole interactions Thus the observed deviationof theoretical values of speed from the experimental values

shows that the molecular interactions are taking placebetween the CH and isomers of butanol molecules Thedeviations of experimental values and values calculated fromimpedance relation and Raorsquos relation imply nonadditivity ofacoustic impedance and Raorsquos speed in the liquid mixturesAmong all the empirical theories van Dael and Vangeelsrelation gives better estimate of experimental values of soundspeed in all the systems In the present binary systems thedifference between experimental and theoretical speeds isgreater where themole fraction of CH varies in the region 03to 06 Hence it can be qualitatively inferred that the strengthof interaction in the binary mixtures is more in this range ofcomposition of CH with isomers of butanol liquid system

10 Journal of Applied Chemistry

5 Conclusion

(i) Ultrasonic speeds 119906 and densities 120588 of mixtures ofcyclohexanone with 119899-butanol or sec-butanol or tert-butanol over the entire composition range have beenmeasured at 119879 = 30815K

(ii) The values of 119881119864119898 Δ119896119904 119871119864119891 119911119864 and Δ119906 are calculated

from experimental data of density and ultrasonicspeed The excess and deviation properties have beenfitted to Redlich-Kister type polynomial and corre-sponding standard deviations have been evaluatedThe observed positive values of 119881119864

119898 Δ119896119904 and 119871119864

119891and

negative values of 119911119864 Δ119906 for all the liquid mixturesstudied clearly indicate the presence of weak inter-actions such as rupturing of hydrogen bond or reduc-tion in H-bond strength of butanol or breaking ofthe structure of one or both of the components in asolution

(iii) The deviationexcess properties have been fitted toRedlich-Kister type polynomial and the correspond-ing standard deviations have been calculated

(iv) The calculated values of partial molar volumes havealso been examined The observed higher partialmolar volumes in the liquid mixture when comparedto the respective molar volumes of pure componentsindicate weak interactions present in the systems

(v) The strength of interaction in themixtures follows theorder CH + tert-butanol gt sec-butanol gt 119899-butanol

(vi) FT-IR spectra for the present binary mixture alsosupport the conclusions drawn from the 119881119864

119898 119871119864119891 Δ119896119904

Δ119906 and 119911119864(vii) Further theoretical values of sound speed in the mix-

tures have been evaluated using various theories andhave been compared with experimental sound speedsto verify the applicability of such theories to the sys-tems studied

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

One of the authors SkMdNayeem is thankful to UGC NewDelhi Government of India for the financial grants towardsMRP (MRP-467114C (SERO-UGC))

References

[1] T B Thoe D K Aspinwall and M L H Wise ldquoReview onultrasonic machiningrdquo International Journal of Machine Toolsand Manufacture vol 38 no 4 pp 239ndash255 1998

[2] G Thomas Chemistry for Pharmacy and the Life SciencesPrentice Hall London UK 1996

[3] A M Ababneh C C Large and S Georghiou ldquoSolvation ofnucleosides in aqueous mixtures of organic solvents relevanceto dna open basepairsrdquo Biophysical Journal vol 85 no 2 pp1111ndash1127 2003

[4] R E Treybal Mass Transfer Operations McGraw Hill Singa-pore 3rd edition 1981

[5] PM Krishna B R Kumar B Sathyanarayana K S Kumar andN Satyanarayana ldquoDensities and speeds of sound for binaryliquid mixtures of thiolane-11-dioxide with butanone pentan-2-one pentan-3-one and 4-methyl-pentan-2-one atT = (30315or 30815 or 31315) Krdquo Journal of Chemical and EngineeringData vol 54 no 6 pp 1947ndash1950 2009

[6] PGnanaKumari PVenkatesuMV PrabhakaraRaoM-J Leeand H-M Lin ldquoExcess molar volumes and ultrasonic studiesof 119873-methyl-2-pyrrolidone with ketones at 119879 = 30315 Krdquo TheJournal of ChemicalThermodynamics vol 41 no 5 pp 586ndash5902009

[7] M Sreenivasulu and P R Naidu ldquoExcess volumes and adiabaticcompressibility of binary mixtures of butyl amine and cyclicketonesrdquo Australian Journal of Chemistry vol 32 no 8 pp1649ndash1652 1979

[8] K Rajagopal and S Chenthilnath ldquoExcess thermodynamicstudies of binary liquid mixtures of 2-methyl-2-propanol withketonesrdquo Indian Journal of Pure amp Applied Physics vol 48 no5 pp 326ndash333 2010

[9] R K Bachu M K Patwari S Boodida and S Nallani ldquoVol-umetric and transport properties of binary liquid mixtures ofaliphatic ketones with phenylacetonitrile at T = 30815 Krdquo Jour-nal of Chemical amp Engineering Data vol 53 no 10 pp 2403ndash2407 2008

[10] N G Tsierkezos I E Molinou and A C Filippou ldquoThermo-dynamic properties of binary mixtures of cyclohexanone with119899-alkanols (C

1-C5) at 29315 Krdquo Journal of Solution Chemistry

vol 34 no 12 pp 1371ndash1386 2005[11] M Sri Lakshmi R R Raju C Rambabu G V R Rao and

K Narendra ldquoStudy of molecular interactions in binary liquidmixtures containing higher alcohols at different temperaturesrdquoResearchampReviews Journal of Chemistry vol 2 no 1 pp 12ndash242013

[12] A I Vogel Text Book of Practical Organic Chemistry LongmanLondon UK 5th edition 1989

[13] J A Riddick W Bunger and T K Sakano Techniques of Chem-istry Organic Solvents Physical Properties andMethods of Purifi-cation Wiley Interscience New York NY USA 4th edition1987

[14] R K Bachu andM K Patwari ldquoDensities viscosities and speedof sound of binary mixtures of phenylacetonitrile with somealiphatic alcohols at 30815 Krdquo Indian Journal of Chemistry Avol 47 no 7 pp 1026ndash1031 2008

[15] H C Parker and E W Parker ldquoDensities of certain aque-ous potassium chloride solutions as determined with a newpyknometerrdquo Journal of Physical Chemistry vol 29 pp 130ndash1371925

[16] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification solutionsrdquoIndustrial and Engineering Chemistry vol 40 no 2 pp 345ndash348 1948

[17] R Vijaya Kumar S Viswanathan and M Anand Rao ldquoExcessvolumes speeds of sound and isentropic compressibilitiesof 2-propyn-1-ol + 12-dichloroethane +111-trichloroe thane+1122-tetrachloroethane and +trichloroethylene at 30315Krdquo

Journal of Applied Chemistry 11

Journal of Chemical and EngineeringData vol 41 no 4 pp 755ndash757 1996

[18] J S Matos and J L Trenzado ldquoVolumetric properties and vis-cosities of the methyl butanoate+n-heptane+n-octane ternarysystem and its binary constitutions in the temperature rangefrom 28315K to 31315Krdquo Fluid Phase Equilibria vol 186 pp207ndash234 2001

[19] O Kiyohara and G C Benson ldquoUltrasonic speeds and isen-tropic compressibilities of n-alkanol + n-heptane mixtures at29815 KrdquoThe Journal of Chemical Thermodynamics vol 11 no9 pp 861ndash873 1979

[20] R J Fort and W R Moore ldquoAdiabatic compressibilities ofbinary liquidmixturesrdquo Transactions of the Faraday Society vol61 pp 2102ndash2111 1965

[21] A Ali A K Nain V K Sharma and S Ahmed ldquoUltrasonicstudies in binary liquid mixturesrdquo Indian Journal of Physics Bvol 75 no 6 pp 519ndash525 2001

[22] M Gowrisankar S Sivarambabu P Venkateswarlu and K SKumar ldquoExcess volumes speeds of sound isentropic compress-ibilities and viscosities of binary mixtures of 119873-ethyl anilinewith some aromatic ketones at 30315 Krdquo Bulletin of the KoreanChemical Society vol 33 no 5 pp 1686ndash1692 2012

[23] T Karunakar andCH Srinivas ldquoThermo acoustic and infraredstudy of molecular interactions in binary mixture aniline+1-butanolrdquo Research amp Reviews Journal of Pure and AppliedPhysics vol 1 no 1 pp 5ndash10 2013

[24] O Nomoto ldquoEmpirical formula for sound velocity in liquidmixturesrdquo Journal of the Physical Society of Japan vol 13 no12 pp 1528ndash1532 1958

[25] W van Dael Thermodynamic Properties and Velocity of SoundButterworth London UK 1975

[26] S Baluja and P H Parsania ldquoAcoustical properties of 3-120572-furylacrylic acid in protic and aprotic solventsrdquo Asian Journal ofChemistry vol 7 pp 417ndash423 1995

[27] K Sreekanth D S Kumar M Kondaiah and D Krishna RaoldquoStudy of molecular interactions in the mixtures of secondaryalcohols with equimolar mixture of ethanol + formamide fromacoustic and thermodynamic parametersrdquo Journal of Chemicaland Pharmaceutical Research vol 3 no 4 pp 29ndash41 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 3: Research Article Ultrasonic Investigations of Molecular ...downloads.hindawi.com/journals/jac/2014/741795.pdf · Research Article Ultrasonic Investigations of Molecular Interaction

Journal of Applied Chemistry 3

where Φ1 Φ2 and 119896

1199041 1198961199042are the volume fractions and adi-

abatic compressibilities of components 1 and 2 respectivelySince 119896

119904is not additive on mole fraction but is additive on

volume fraction such values are calculated using volumefraction (Φ)

Φ119894=

119909119894119881119894

sum119909119894119881119894

(6)

The experimentally measured values of ultrasonic speed (119906)and density (120588) and calculated properties of molar vol-ume (119881

119898) adiabatic compressibility (119896

119904) intermolecular free

length (119871119891) and acoustic impedance (119911) and excessdeviation

thermodynamic properties 119881119864119898 119871119864119891 119911119864 Δ119906 and Δ119896

119904are

presented in Table 2 for all binary systems over the entirecomposition range of CH

The excessdeviation properties have been fitted to aRedlich-Kister type polynomial equation [16]

119884119864

= 11990911199092

119899

sum

119894=0

119860119894(1199092minus 1199091)119894

(7)

where119884119864 = 119881119864119898 119871119864

119891 119911119864

Δ119906 andΔ119896119904 1199091is the mole fraction of

the soluteThe values of Δ119896

119904have been fitted to Redlich-Kister type

polynomial with volume fraction instead of mole fraction inthe above polynomial and 119860

119894are the adjustable parameters

of the function and are determined using the least squaremethod In the present investigation ldquo119894rdquo values are taken from0 to 4 The corresponding standard deviation 120590(119884119864) wascalculated using the expression

120590 (119884119864

) =[

[

sum(119884119864

exp minus 119884119864

cal)2

(119898 minus 119899)

]

]

12

(8)

where ldquo119898rdquo is the total number of experimental points and ldquo119899rdquois the number of coefficients in (7) The calculated values ofthe coefficients119860

119894alongwith the standard deviations (120590) have

been presented in Table 3

4 Results and Discussion

Figure 1 represents the variation of excess molar volume (119881119864119898)

with mole fraction of CH The sign of 119881119864119898

depends uponthe contraction and expansion of volume of the liquids dueto mixing The factors that are mainly responsible for theexpansion of molar volume that is positive values of 119881119864

119898 are

the following (i) breaking of the structure of one or bothof the components in a solution that is the loss of dipolarassociation between themolecules (dispersion forces) (ii) H-bond rupture and stretching of self-associatedmolecules (likealcohols) (iii) the geometry of molecular structures whichdoes not favour the fitting of molecules of one componentinto void space of another molecule (iv) steric hindrance ofthe molecules The negative values of 119881119864

119898are due to the (i)

association of molecules through the formation of hydrogenbond that is strong specific interactions and (ii) accom-modation of molecules because of large differences in their

0

01

02

03

04

05

0 02 04 06 08 1

minus02

minus01

minus5

m3

mol

minus1)

VE m

(10

x1

Figure 1 Variation of excess molar volume 119881119864119898 with mole fraction

1199091 of cyclohexanone in (X) 119899-butanol(◼) sec-butanol(998771) and

tert-butanol at 30815 K and Tsierkezos et al [10] for cyclohex-anone + 1-butanol (dotted lines) at 29315 K

molar volumes In other words 119881119864119898arises due to the result

of physical chemical and structural contributions Physicalinteractions involving mainly nonspecific interactions suchas dispersion or weak forces (breaking of the liquid orderon mixing ie loss of dipolar association between themolecules) contribute to positive 119881119864

119898 The chemical or spe-

cific interactions such as complex formation and hydrogenbond formation between constituent molecules contributeto negative 119881119864

119898 The structural effects arise from interstitial

accommodation due to the difference in the molar volumesand free volumes between the liquid components on mixingcontributing to negative119881119864

119898[17]The variation of119881119864

119898is found

to be positive over the entire composition range in the presentinvestigation which indicates that weak forces exist Sri Lak-shmi et al [11] reported similar results in CHwith 119899-heptanol119899-octanol and iso-octanol at temperatures of 30315 3081531315 and 31815 KThe119881119864

119898data obtained by Tsierkezos et al

[10] for CH + 1-butanol binary system are negative at 29315 Kwhereas in our investigations they are found to be positivewhen performed at 30815 K Such behaviour may arise dueto the fact that as temperature increases the effective collisionbetween the component molecules increases Thus largernumber of free dipoles of component molecules may beavailable due to declusttering of molecules in the pure state

Thenature of interaction in binary liquids can be analysedby knowing their chemical and physical properties (physic-ochemical properties) Generally butanols are associatedthrough the hydrogen bonding as shown below and in thepure state they exhibit equilibrium between the monomerand multimer species Also they can be associated withany other groups having some degree of polar attractionsAs discussed earlier butanol exhibits strong intermolecularinteractions (H-bond) Alcohol size chain length and phys-ical properties (boiling point density hydrophobic propertyviscosity insolubility and refractive index) are importantparameters that must be taken into account to explain thebehaviour of the interactions (Scheme 2)

CH is a polar molecule because of the presence ofcarbonyl group (C=O) this is due to the fact that oxygenis more electronegative (Ominus) than carbon (C+) Thus they

4 Journal of Applied Chemistry

Table2Ex

perim

entalvalueso

fdensities120588ultrason

icspeeds119906m

olarvolume119881119898adiabaticcompressib

ility119896119904intermolecularfre

elength119871119891acoustic

impedance119911and

excessdeviatio

nprop

ertie

s119881119864 119898119871119864 119891119911119864

Δ119906andΔ119896119904fora

llbinary

syste

msw

ithmolefraction1199091ofcyclohexano

neat30815K

1199091

120588(kg

mminus3

)119906(msminus1

)119881119898(1

0minus5

m3molminus1

)119896119904(1

0minus10

Paminus1

)119871119891(1

0minus10

m)119911(1

06kg

mminus2

sminus1

)119881119864 119898(1

0minus5

m3molminus1

)Δ119896119904(1

0minus10

Paminus1

)119871119864 119891(1

0minus10

m)119911119864

(106

kgmminus2

sminus1

)Δ119906(msminus1

)CH

+119899-butanol

1000

09396

0136200

72100

83164

060

4012

797

000

00000

00000

00000

00000

09121

91391

133102

72125

89952

06281

12164

00977

03231

00107

minus00355

minus1755

08854

9072

0132296

72111

91843

06347

12002

01252

040

0800133

minus00432

minus2154

07211

87362

128396

71186

10204

806690

11217

02105

06763

00226

minus00697

minus3545

066

8786485

127447

70775

104903

06783

11022

02261

07151

00239

minus00726

minus3694

05232

84320

125214

69241

112327

07019

10558

02302

07516

00254

minus00730

minus3705

04752

83665

1246

98

68566

114565

07089

10433

02147

07367

00251

minus00703

minus3488

03231

81759

123068

66549

1215

5807302

10062

01776

06877

00232

minus00593

minus2795

02112

80599

122087

64872

126087

07437

09840

01311

05914

00197

minus004

60minus2068

01313

7999

1121519

63611

12861

07511

09720

00915

04550

00150

minus00328

minus1415

000

0079650

120930

61275

130345

07561

09632

000

00000

00000

00000

00000

CH+119904119890119888-butanol

1000

09396

0136200

72100

83164

060

4012

797

000

00000

00000

00000

00000

09212

91229

132922

7244

990

394

06297

12126

01060

03836

00126

minus00397

minus1802

08867

90208

131633

72474

93357

06399

11874

01397

05194

00171

minus00529

minus2446

07121

86217

126303

72207

106512

06835

10889

02705

09784

00316

minus00907

minus4507

06786

85620

125483

7204

2108709

06905

10744

02843

10245

00331

minus00935

minus4700

05123

8315

6122177

70717

118365

07205

10160

03018

10967

00354

minus00941

minus4893

046

8882613

121526

70273

120569

07272

1004

002967

10794

00349

minus00909

minus4729

03121

8092

6119

619

68217

1276

5107483

09680

02325

09202

00299

minus00724

minus3703

02797

80631

119309

67723

128921

07520

09620

02124

08684

00282

minus00672

minus3406

01112

79503

118057

65053

134011

07667

09386

00974

046

0400149

minus00320

minus1504

000

0079320

117480

63075

1352

9207703

09319

000

00000

00000

00000

00000

CH+119905119890119903119905-butanol

1000

09396

0136200

72100

83164

060

4012

797

000

00000

00000

00000

00000

09221

90829

131268

73361

92340

06364

11923

01562

04969

00150

minus00527

minus2781

08895

89642

129440

73779

96141

06494

11603

02106

06834

00207

minus00702

minus3710

07012

84030

121044

75179

117001

07164

10171

04235

15137

00457

minus01296

minus6909

06814

83551

120337

75205

119041

07226

10054

04337

15721

00475

minus01325

minus7069

05112

8017

9115277

74950

134939

07693

09243

04741

18707

00562

minus01378

minus7432

04777

79661

114465

74783

1376

6907771

09118

04703

18823

00566

minus01354

minus7319

03321

7791

2111524

73616

147714

08049

08689

040

9917

360

00519

minus01135

minus6241

02635

77360

110459

72878

1512

7508146

08545

03627

15506

004

63minus00973

minus5413

01323

7677

8109036

70894

155581

08261

08372

02150

09556

00285

minus00562

minus3215

000

0076840

108600

68232

155954

08271

08345

000

00000

00000

00000

00000

Journal of Applied Chemistry 5

Table 3 Coefficients 119860119894of Redlich-Kister type polynomial equation (7) and the corresponding standard deviations 120590 of all the systems at

30815 K

1198600

1198601

1198602

1198603

1198604

120590

CH + 119899-butanol119881119864

119898(10minus5m3 molminus1) 247625 minus57880 36945 minus31381 minus08351 00019

Δ119896119904(10minus10 Paminus1) 00183 minus00020 00075 00029 minus00004 00091

119871119864

119891(10minus10m) 08201 minus01460 02529 00638 01066 00009

119911119864(106 kgmminus2 sminus1) minus02875 00836 minus01081 00006 minus00202 00002Δ119906(msminus1) minus140 058 minus031 minus003 minus018 00024

CH + 119904119890119888-butanol119881119864

119898(10minus5m3 molminus1) 275896 minus9594 42809 minus22460 minus07780 00018

Δ119896119904(10minus10 Paminus1) 00267 minus0001 00001 00033 00034 00001

119871119864

119891(10minus10m) 11507 minus01810 00576 01082 00684 00011

119911119864(106 kgmminus2 sminus1) minus03733 01252 minus00791 00092 minus00110 00001Δ119906(msminus1) minus194 059 minus004 minus001 minus004 00006

CH + 119905119890119903119905-butanol119881119864

119898(10minus5m3 molminus1) 364535 minus123900 minus06780 01003 minus02750 00009

Δ119896119904(10minus10 Paminus1) 00428 00120 00024 00019 00011 00001

119871119864

119891(10minus10m) 18117 01253 01393 00862 minus00290 00006

119911119864(106 kgmminus2 sminus1) minus05484 01374 minus00850 00123 minus00032 00001Δ119906(msminus1) minus296 062 minus054 001 minus001 00001

R R R

Structure of alcoholOndashHmiddot middot middotOndashH middot middot middot middot middot middot OndashH

Scheme 2

Resonance structure

middot middot middot

R R

R

C OOminus H+

Scheme 3

cause strong dipole-dipole interactions in chemical reactionsMoreover CH lacks hydroxyl groups so it is incapable ofcreating intermolecular hydrogen bonds In CH + isomersof butanol binary systems the negatively charged oxygen(Ominus) in CH tries to drag the positively charged H+ whichwere bounded in very strong intermolecular interactions ofbutanol (Scheme 3) An equilibrium stage is reached whererupturing of hydrogen bond or reduction inH-bond strengthof butanol or breaking of the structure of one or both ofthe components in a solution that is the loss of dipolarassociation between the molecules (dispersion forces) [18]will be favourable leading to weak interactions This causesincrease in volume of binary liquid and explains the observedpositive values 119881119864

119898in the systems

Kiyohara and Benson [19] have suggested that Δ119896119904is

the resultant of several opposing effects Negative values ofΔ119896119904contribute to charge transfer dipole-induced dipole and

00

04

08

12

16

20

0 02 04 06 08 1

minus10

Paminus1)

x1

Δks

(10

Figure 2 Variation of deviation in adiabatic compressibility Δ119896119904

with mole fraction 1199091 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

dipole-dipole interactions interstitial accommodation andbreaking up of the alcohol structures leads to positive valuesof Δ119896119904 From Figure 2 the observed positive values of Δ119896

119904for

binary mixtures of CHwith 119899-butanol 119904119890119888-butanol and 119905119890119903119905-butanol are due to declustering of alcohols in the presence ofCH The positive deviation in Δ119896

119904for the binary systems fol-

lows the order CH+ 119905119890119903119905-butanolgt 119904119890119888-butanolgt 119899-butanolFigure 3 represents the variation of119871119864

119891withmole fraction (119909

1)

of CH The observed values of 119871119864119891are positive According

to Fort and Moore [20] positive 119871119864119891should be attributed to

the dispersive forces As mentioned earlier positive values ofΔ119896119904and 119871119864

119891are mainly attributed to weak forces between the

component molecules in the mixture [21]

6 Journal of Applied Chemistry

0

001

002

003

004

005

006

0 02 04 06 08 1

minus10

m)

x1

LE f(10

Figure 3 Variation of excess free length 119871119864119891 with mole fraction 119909

1

of cyclohexanone in (X) 119899-butanol(◼) sec-butanol(998771) and tert-butanol at 30815 K

00 02 04 06 08 1

minus004

minus008

minus012

minus016

6kg

mminus2

sminus1)

x1

ZE(10

Figure 4 Variation of excess acoustic impedance 119911119864 withmole fraction 119909

1 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

The variations of excess acoustic impedance (119911119864) anddeviation in ultrasonic speed (Δ119906) have been presented inFigures 4 and 5 respectively From Figure 4 it has beenobserved that the values of 119911119864 are negative over the entiremole fraction range indicating the decreasing strength ofinteractions between component molecules of the mixtureAccording to Gowrisankar et al [22] the negative valuesfor Δ119906 indicate the decrease in the strength of interactionbetween the molecules and the negative deviations in Δ119906from linear dependence suggest the presence of weak inter-action between the component molecules These deviationexcess properties further support the conclusions drawn from119881119864

119898 119871119864119891 and Δ119896

119904

The existing molecular interactions in the systems arewell reflected in the properties of partial molar volumes Thepartial molar volumes 119881

1198981of component 1 (CH) and 119881

1198982

of component 2 (isomers of butanol) in the mixtures overthe entire composition range have been calculated by usingthe following relations

1198811198981= 119881119864

119898+ 119881lowast

1+ 1199092(

120597119881119864

119898

120597119909

)

119879119875

00 02 04 06 08 1

minus20

minus40

minus60

minus80

x1

Δu

(msminus

1)

Figure 5 Variation of deviation in ultrasonic speed Δ119906 withmole fraction 119909

1 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

1198811198982= 119881119864

119898+ 119881lowast

2+ 1199091(

120597119881119864

119898

120597119909

)

119879119875

(9)

where 119881lowast1and 119881lowast

2are the molar volumes of the pure com-

ponents of CH and butanols respectively The derivates inthe above equations are obtained by differentiating Redlich-Kister equation (7) which leads to the following equations for1198811198981

and 1198811198982

1198811198981= 119881lowast

1+ 1199092

2

119895

sum

119894=0

119860119894(1199092minus 1199091)119894

minus 211990911199092

2

119895

sum

119894=1

119860119894(1199092minus 1199091)119894minus1

(10)

1198811198982= 119881lowast

2+ 1199092

1

119895

sum

119894=0

119860119894(1199092minus 1199091)119894

+ 211990921199092

1

119895

sum

119894=1

119860119894(1199092minus 1199091)119894minus1

(11)

using the above equations 1198811198641198981

1198811198641198982

have been calculatedusing

119881

119864

1198981= 1198811198981minus 119881lowast

1

119881

119864

1198982= 1198811198982minus 119881lowast

2

(12)

The pertinent values of 1198811198981

and 1198811198982

are furnished inTable 4 From this table the values of 119881

1198981and 119881

1198982for

both the components in the mixtures are greater than theirrespective molar volumes in the pure state that is an expan-sion of volume takes place on mixing alcohols with ketoneThese results also support the observed positive values of119881119864

119898in all the binary systems Figures 6 and 7 represent the

variation of excess partial molar volumes of 1198811198641198981

(CH) 1198811198641198982

(isomers of butanol) in the binary mixtures Examinationof these figures reveals that dispersion forces exist betweenthe unlike molecules These figures support the conclusionsdrawn from119881119864

119898The partial molar volumes and excess partial

Journal of Applied Chemistry 7

Table 4 Partial molar volumes of CH (1198811198981

10minus5m3 molminus1) and butanols (1198811198982

10minus5m3 molminus1) of all the binary systems with mole fraction(1199091) of CH at 30815 K

CH + 119899-butanol CH + 119904119890119888-butanol CH + 119905119890119903119905-butanol1199091

1198811198981

1198811198982

1199091

1198811198981

1198811198982

1199091

1198811198981

1198811198982

10000 7210 42676 10000 7210 49234 10000 7210 5461209121 7699 32512 09212 7681 38378 09221 7606 4459008854 7999 30035 08867 8130 34445 08895 7997 4078807211 10600 19303 07121 11586 20460 07012 12366 2341306687 11554 17041 06786 12354 18636 06814 12989 2202305232 14365 12385 05123 16219 12221 05112 19004 1308704752 15378 11198 04688 17234 11058 04777 20247 1189303231 19092 8232 03121 20995 8043 03321 25389 841602112 22264 6843 02797 21794 7619 02635 27459 756201313 24403 6314 01112 25586 6406 01323 30211 687400000 25905 6128 00000 26462 6307 00000 30421 6823

0

10

20

30

40

50

0 02 04 06 08 1

minus5

m3

mol

minus1)

x1

VE m2

(10

Figure 6 Variation of excess partial molar volume 1198811198641198982

withmole fraction 119909

1 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

molar volumes ofCHand isomers of butanols in all the binaryliquid mixtures at infinite dilution 119881infin

1198981 119881infin1198982

119881119864infin1198981

and119881

119864infin

1198982 respectively were obtained by putting 119909 = 0 in (10)

and 119909 = 1 in (11) Consider

119881

119864infin

1198981= 1198600+ 1198601+ 1198602+ 1198603+ sdot sdot sdot = 119881

infin

1198981minus 119881lowast

1

119881

119864infin

1198982= 1198600minus 1198601+ 1198602minus 1198603+ sdot sdot sdot = 119881

infin

1198982minus 119881lowast

2

(13)

The pertinent values of 119881infin1198981

119881infin1198982

119881119864infin1198981

and 119881119864infin1198982

arereported in Table 5 From this table it is seen that these valuesare positive from which we conclude that weak interactionsexist among the unlike molecules of the liquid mixtures

FT-IR spectra of pure CH butanols and binary mixturesof CH with butanols at equal concentrations are depicted inFigures 8 9 and 10 According to Karunakar and Srinivas[23] the intensity of an absorption in the IR spectrum isrelated to the change in dipole moment that occurs duringthe vibration Consequently vibrations that produce a largechange in dipole moment (eg C=O stretch) result in amore intense absorption than those that result in a relativelymodest change in dipole (eg C=C) Vibrations that do notresult in a change in dipole moment (eg a symmetrical

0

5

10

15

20

25

0 02 04 06 08 1

minus5

m3

mol

minus1)

x1

VE m1

(10

Figure 7 Variation of excess partial molar volume 1198811198641198981

withmole fraction 119909

1 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

020

040

060

080

100

500 1375 2250 3125 4000

Tran

smitt

ance

()

n-ButanolCH

Wave number (cmminus1)

CH + n-Butanol

Figure 8 Fourier transform infrared spectra of pure cyclohexanone(red) cyclohexanone and 119899-butanol in the ratio 5 5 (green) andpure 119899-butanol (blue)

8 Journal of Applied Chemistry

020

040

060

080

100

500 1375 2250 3125 4000

Tran

smitt

ance

()

sec-ButanolCH

Wave number (cmminus1)

CH + sec-Butanol

Figure 9 Fourier transform infrared spectra of pure cyclohexanone(red) cyclohexanone and sec-butanol in the ratio 5 5 (green) andpure sec-butanol (blue)

020

040

060

080

100

500 1375 2250 3125 4000

Tran

smitt

ance

()

tert-ButanolCH

Wave number (cmminus1)

CH + tert-Butanol

Figure 10 Fourier transform infrared spectra of pure cyclohex-anone (red) cyclohexanone and tert-butanol in the ratio 5 5(green) and pure tert-butanol (blue)

alkyne CequivC stretch) will show little or no absorption for thisvibration In the present FT-IR spectra liquid mixture showsvery small variations in the intensity of the respective bondsthat is dipole moment and hence it supports that weakinteractions take place between the components of liquidmolecules

Theoretical evaluation of ultrasonic speed in binary liquidmixtures and its correlation to study molecular interactionhas been successfully done in recent years Ultrasonic speedsin liquid mixtures have been calculated and compared with

Table 5 Partial molar volumes (119881infin1198981

119881infin1198982

) and excess partial molarvolumes (119881119864infin

1198981 119881119864infin1198982

) of the components at infinite dilution for allthe systems at 30815 K

System 119881

infin

1198981119881

infin

1198982119881

119864infin

1198981119881

119864infin

1198982

(10minus5m3 molminus1)CH + 119899-butanol 25519 43758 18696 36548CH + 119904119890119888-butanol 25561 509205 19253 42933CH + 119905119890119903119905-butanol 30034 55000 23211 47790

experimental values using various theories Such an evalua-tion offers a simple method to investigate molecular interac-tions besides verifying the applicability of various theories toliquid mixtures

Nomoto [24] established the following relation for soundspeed (119880

119873) based on the assumption of the linearity of the

molecular sound speed and the additivity of molar volume

119880119873=

(sum119909119894119877119894)

(sum119909119894119881119894)

3

(14)

where 119877119894is molar sound speed and 119881

119894is molar volume

van Dael and Vangeel [25] obtained the ideal mixturerelation

sum(

119909119894119872119894

1199062

119894

) =

1

sum119909119894119872119894

1

119880119881

2

(15)

Baluja and Parsania [26] have given impedance relationon the basis of force of resistance for sound speed by theinteracting molecules

119880imp =sum119909119894119885119894

sum119909119894120588119894

(16)

Raorsquos (specific sound speed) [27] relation is given by

119880119877= (sum119909

119894119903119894120588)

3

(17)

where 119903119894= 11990613

119894120588119894is Raorsquos specific sound speed of 119894th com-

ponent of the mixturePercentage deviation in ultrasonic speed is given by

Δ119906 = 100 lowast [1 minus119880cal119906exp 119905

] (18)

Table 6 shows the values of ultrasonic speed computed byvarious theories along with their percentage error for all thesystems The variations between the evaluated and experi-mental values may be due to interactions occurring betweenthe hetero molecules of the binaries From the observedvalues of all three systems there is a good agreementbetween theoretical and experimental values through vanDeal andVangeel relation It can be seen fromTable 6 that thetheoretical values of ultrasonic speed calculated by using var-ious theories show deviation from experimental values Thelimitations and approximation incorporated in these theories

Journal of Applied Chemistry 9

Table 6Theoretical values of ultrasonic speed from various equations and percentage error withmole fraction1199091of CH for all binary systems

at 30815 K

1199091

119880119873

119880119881

119880Imp 119880119877

119880119873

119880119881

119880Imp 119880119877

CH + 119899-butanol10000 136200 136200 136200 136200 000 000 000 00009121 135001 134547 135043 129806 143 109 146 24808854 134632 134060 134687 128317 177 133 181 30107211 132309 131199 132427 122196 305 218 314 48306687 131549 130334 131681 120973 322 227 332 50805232 129386 128042 129542 118502 333 226 346 53604752 128656 127319 128814 117871 317 210 330 54803231 126283 125129 126429 116393 261 168 273 54202112 124478 123609 124594 116166 196 125 205 48501313 123158 122567 123239 116883 135 086 142 38200000 120930 120930 120930 120930 000 000 000 000

CH + 119904119890119888-butanol10000 136200 136200 136200 136200 000 000 000 00009212 134836 134412 134936 128464 144 112 152 33508867 134234 133650 134375 125830 198 153 208 44107121 131130 129973 131435 117255 382 291 406 71606786 130524 129300 130852 116263 402 304 428 73505123 127465 126097 127860 113158 433 321 465 73804688 126650 125296 127049 112705 422 310 455 72603121 123666 122524 124027 112004 338 243 369 63702797 123039 121972 123381 112051 313 223 341 60801112 119722 119210 119901 113885 141 098 156 35300000 117480 117480 117480 117480 000 000 000 000

CH + 119905119890119903119905-butanol10000 136200 136200 136200 136200 000 000 000 00009221 134013 133538 134413 126923 209 173 240 33108895 133099 132456 133651 123600 283 233 325 45107012 127840 126544 129065 109588 561 454 663 94606814 127289 125953 128564 108550 578 467 684 98005112 122570 121104 124087 102359 633 506 764 112104777 121645 120195 123170 101661 627 501 761 111903321 117638 116400 119036 100406 548 437 674 99702635 115760 114696 117000 100794 480 384 592 87501323 112183 111575 112939 103339 289 233 358 52300000 108600 108600 108600 108600 000 000 000 000

are responsible for the deviations of theoretical values fromexperimental values Nomotorsquos theory proposes that the vol-ume does not change upon mixingTherefore no interactionbetween the components of liquid mixtures has been takeninto account Similarly the assumption for the formation ofideal mixing relation is that the ratios of specific heats of idealmixtures and the volumes are also equal Again no molecularinteractions are taken into account But upon mixing inter-actions between the molecules occur because of the presenceof various types of forces such as dispersion forces chargetransfer and hydrogen bonding dipole-dipole and dipole-induced dipole interactions Thus the observed deviationof theoretical values of speed from the experimental values

shows that the molecular interactions are taking placebetween the CH and isomers of butanol molecules Thedeviations of experimental values and values calculated fromimpedance relation and Raorsquos relation imply nonadditivity ofacoustic impedance and Raorsquos speed in the liquid mixturesAmong all the empirical theories van Dael and Vangeelsrelation gives better estimate of experimental values of soundspeed in all the systems In the present binary systems thedifference between experimental and theoretical speeds isgreater where themole fraction of CH varies in the region 03to 06 Hence it can be qualitatively inferred that the strengthof interaction in the binary mixtures is more in this range ofcomposition of CH with isomers of butanol liquid system

10 Journal of Applied Chemistry

5 Conclusion

(i) Ultrasonic speeds 119906 and densities 120588 of mixtures ofcyclohexanone with 119899-butanol or sec-butanol or tert-butanol over the entire composition range have beenmeasured at 119879 = 30815K

(ii) The values of 119881119864119898 Δ119896119904 119871119864119891 119911119864 and Δ119906 are calculated

from experimental data of density and ultrasonicspeed The excess and deviation properties have beenfitted to Redlich-Kister type polynomial and corre-sponding standard deviations have been evaluatedThe observed positive values of 119881119864

119898 Δ119896119904 and 119871119864

119891and

negative values of 119911119864 Δ119906 for all the liquid mixturesstudied clearly indicate the presence of weak inter-actions such as rupturing of hydrogen bond or reduc-tion in H-bond strength of butanol or breaking ofthe structure of one or both of the components in asolution

(iii) The deviationexcess properties have been fitted toRedlich-Kister type polynomial and the correspond-ing standard deviations have been calculated

(iv) The calculated values of partial molar volumes havealso been examined The observed higher partialmolar volumes in the liquid mixture when comparedto the respective molar volumes of pure componentsindicate weak interactions present in the systems

(v) The strength of interaction in themixtures follows theorder CH + tert-butanol gt sec-butanol gt 119899-butanol

(vi) FT-IR spectra for the present binary mixture alsosupport the conclusions drawn from the 119881119864

119898 119871119864119891 Δ119896119904

Δ119906 and 119911119864(vii) Further theoretical values of sound speed in the mix-

tures have been evaluated using various theories andhave been compared with experimental sound speedsto verify the applicability of such theories to the sys-tems studied

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

One of the authors SkMdNayeem is thankful to UGC NewDelhi Government of India for the financial grants towardsMRP (MRP-467114C (SERO-UGC))

References

[1] T B Thoe D K Aspinwall and M L H Wise ldquoReview onultrasonic machiningrdquo International Journal of Machine Toolsand Manufacture vol 38 no 4 pp 239ndash255 1998

[2] G Thomas Chemistry for Pharmacy and the Life SciencesPrentice Hall London UK 1996

[3] A M Ababneh C C Large and S Georghiou ldquoSolvation ofnucleosides in aqueous mixtures of organic solvents relevanceto dna open basepairsrdquo Biophysical Journal vol 85 no 2 pp1111ndash1127 2003

[4] R E Treybal Mass Transfer Operations McGraw Hill Singa-pore 3rd edition 1981

[5] PM Krishna B R Kumar B Sathyanarayana K S Kumar andN Satyanarayana ldquoDensities and speeds of sound for binaryliquid mixtures of thiolane-11-dioxide with butanone pentan-2-one pentan-3-one and 4-methyl-pentan-2-one atT = (30315or 30815 or 31315) Krdquo Journal of Chemical and EngineeringData vol 54 no 6 pp 1947ndash1950 2009

[6] PGnanaKumari PVenkatesuMV PrabhakaraRaoM-J Leeand H-M Lin ldquoExcess molar volumes and ultrasonic studiesof 119873-methyl-2-pyrrolidone with ketones at 119879 = 30315 Krdquo TheJournal of ChemicalThermodynamics vol 41 no 5 pp 586ndash5902009

[7] M Sreenivasulu and P R Naidu ldquoExcess volumes and adiabaticcompressibility of binary mixtures of butyl amine and cyclicketonesrdquo Australian Journal of Chemistry vol 32 no 8 pp1649ndash1652 1979

[8] K Rajagopal and S Chenthilnath ldquoExcess thermodynamicstudies of binary liquid mixtures of 2-methyl-2-propanol withketonesrdquo Indian Journal of Pure amp Applied Physics vol 48 no5 pp 326ndash333 2010

[9] R K Bachu M K Patwari S Boodida and S Nallani ldquoVol-umetric and transport properties of binary liquid mixtures ofaliphatic ketones with phenylacetonitrile at T = 30815 Krdquo Jour-nal of Chemical amp Engineering Data vol 53 no 10 pp 2403ndash2407 2008

[10] N G Tsierkezos I E Molinou and A C Filippou ldquoThermo-dynamic properties of binary mixtures of cyclohexanone with119899-alkanols (C

1-C5) at 29315 Krdquo Journal of Solution Chemistry

vol 34 no 12 pp 1371ndash1386 2005[11] M Sri Lakshmi R R Raju C Rambabu G V R Rao and

K Narendra ldquoStudy of molecular interactions in binary liquidmixtures containing higher alcohols at different temperaturesrdquoResearchampReviews Journal of Chemistry vol 2 no 1 pp 12ndash242013

[12] A I Vogel Text Book of Practical Organic Chemistry LongmanLondon UK 5th edition 1989

[13] J A Riddick W Bunger and T K Sakano Techniques of Chem-istry Organic Solvents Physical Properties andMethods of Purifi-cation Wiley Interscience New York NY USA 4th edition1987

[14] R K Bachu andM K Patwari ldquoDensities viscosities and speedof sound of binary mixtures of phenylacetonitrile with somealiphatic alcohols at 30815 Krdquo Indian Journal of Chemistry Avol 47 no 7 pp 1026ndash1031 2008

[15] H C Parker and E W Parker ldquoDensities of certain aque-ous potassium chloride solutions as determined with a newpyknometerrdquo Journal of Physical Chemistry vol 29 pp 130ndash1371925

[16] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification solutionsrdquoIndustrial and Engineering Chemistry vol 40 no 2 pp 345ndash348 1948

[17] R Vijaya Kumar S Viswanathan and M Anand Rao ldquoExcessvolumes speeds of sound and isentropic compressibilitiesof 2-propyn-1-ol + 12-dichloroethane +111-trichloroe thane+1122-tetrachloroethane and +trichloroethylene at 30315Krdquo

Journal of Applied Chemistry 11

Journal of Chemical and EngineeringData vol 41 no 4 pp 755ndash757 1996

[18] J S Matos and J L Trenzado ldquoVolumetric properties and vis-cosities of the methyl butanoate+n-heptane+n-octane ternarysystem and its binary constitutions in the temperature rangefrom 28315K to 31315Krdquo Fluid Phase Equilibria vol 186 pp207ndash234 2001

[19] O Kiyohara and G C Benson ldquoUltrasonic speeds and isen-tropic compressibilities of n-alkanol + n-heptane mixtures at29815 KrdquoThe Journal of Chemical Thermodynamics vol 11 no9 pp 861ndash873 1979

[20] R J Fort and W R Moore ldquoAdiabatic compressibilities ofbinary liquidmixturesrdquo Transactions of the Faraday Society vol61 pp 2102ndash2111 1965

[21] A Ali A K Nain V K Sharma and S Ahmed ldquoUltrasonicstudies in binary liquid mixturesrdquo Indian Journal of Physics Bvol 75 no 6 pp 519ndash525 2001

[22] M Gowrisankar S Sivarambabu P Venkateswarlu and K SKumar ldquoExcess volumes speeds of sound isentropic compress-ibilities and viscosities of binary mixtures of 119873-ethyl anilinewith some aromatic ketones at 30315 Krdquo Bulletin of the KoreanChemical Society vol 33 no 5 pp 1686ndash1692 2012

[23] T Karunakar andCH Srinivas ldquoThermo acoustic and infraredstudy of molecular interactions in binary mixture aniline+1-butanolrdquo Research amp Reviews Journal of Pure and AppliedPhysics vol 1 no 1 pp 5ndash10 2013

[24] O Nomoto ldquoEmpirical formula for sound velocity in liquidmixturesrdquo Journal of the Physical Society of Japan vol 13 no12 pp 1528ndash1532 1958

[25] W van Dael Thermodynamic Properties and Velocity of SoundButterworth London UK 1975

[26] S Baluja and P H Parsania ldquoAcoustical properties of 3-120572-furylacrylic acid in protic and aprotic solventsrdquo Asian Journal ofChemistry vol 7 pp 417ndash423 1995

[27] K Sreekanth D S Kumar M Kondaiah and D Krishna RaoldquoStudy of molecular interactions in the mixtures of secondaryalcohols with equimolar mixture of ethanol + formamide fromacoustic and thermodynamic parametersrdquo Journal of Chemicaland Pharmaceutical Research vol 3 no 4 pp 29ndash41 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 4: Research Article Ultrasonic Investigations of Molecular ...downloads.hindawi.com/journals/jac/2014/741795.pdf · Research Article Ultrasonic Investigations of Molecular Interaction

4 Journal of Applied Chemistry

Table2Ex

perim

entalvalueso

fdensities120588ultrason

icspeeds119906m

olarvolume119881119898adiabaticcompressib

ility119896119904intermolecularfre

elength119871119891acoustic

impedance119911and

excessdeviatio

nprop

ertie

s119881119864 119898119871119864 119891119911119864

Δ119906andΔ119896119904fora

llbinary

syste

msw

ithmolefraction1199091ofcyclohexano

neat30815K

1199091

120588(kg

mminus3

)119906(msminus1

)119881119898(1

0minus5

m3molminus1

)119896119904(1

0minus10

Paminus1

)119871119891(1

0minus10

m)119911(1

06kg

mminus2

sminus1

)119881119864 119898(1

0minus5

m3molminus1

)Δ119896119904(1

0minus10

Paminus1

)119871119864 119891(1

0minus10

m)119911119864

(106

kgmminus2

sminus1

)Δ119906(msminus1

)CH

+119899-butanol

1000

09396

0136200

72100

83164

060

4012

797

000

00000

00000

00000

00000

09121

91391

133102

72125

89952

06281

12164

00977

03231

00107

minus00355

minus1755

08854

9072

0132296

72111

91843

06347

12002

01252

040

0800133

minus00432

minus2154

07211

87362

128396

71186

10204

806690

11217

02105

06763

00226

minus00697

minus3545

066

8786485

127447

70775

104903

06783

11022

02261

07151

00239

minus00726

minus3694

05232

84320

125214

69241

112327

07019

10558

02302

07516

00254

minus00730

minus3705

04752

83665

1246

98

68566

114565

07089

10433

02147

07367

00251

minus00703

minus3488

03231

81759

123068

66549

1215

5807302

10062

01776

06877

00232

minus00593

minus2795

02112

80599

122087

64872

126087

07437

09840

01311

05914

00197

minus004

60minus2068

01313

7999

1121519

63611

12861

07511

09720

00915

04550

00150

minus00328

minus1415

000

0079650

120930

61275

130345

07561

09632

000

00000

00000

00000

00000

CH+119904119890119888-butanol

1000

09396

0136200

72100

83164

060

4012

797

000

00000

00000

00000

00000

09212

91229

132922

7244

990

394

06297

12126

01060

03836

00126

minus00397

minus1802

08867

90208

131633

72474

93357

06399

11874

01397

05194

00171

minus00529

minus2446

07121

86217

126303

72207

106512

06835

10889

02705

09784

00316

minus00907

minus4507

06786

85620

125483

7204

2108709

06905

10744

02843

10245

00331

minus00935

minus4700

05123

8315

6122177

70717

118365

07205

10160

03018

10967

00354

minus00941

minus4893

046

8882613

121526

70273

120569

07272

1004

002967

10794

00349

minus00909

minus4729

03121

8092

6119

619

68217

1276

5107483

09680

02325

09202

00299

minus00724

minus3703

02797

80631

119309

67723

128921

07520

09620

02124

08684

00282

minus00672

minus3406

01112

79503

118057

65053

134011

07667

09386

00974

046

0400149

minus00320

minus1504

000

0079320

117480

63075

1352

9207703

09319

000

00000

00000

00000

00000

CH+119905119890119903119905-butanol

1000

09396

0136200

72100

83164

060

4012

797

000

00000

00000

00000

00000

09221

90829

131268

73361

92340

06364

11923

01562

04969

00150

minus00527

minus2781

08895

89642

129440

73779

96141

06494

11603

02106

06834

00207

minus00702

minus3710

07012

84030

121044

75179

117001

07164

10171

04235

15137

00457

minus01296

minus6909

06814

83551

120337

75205

119041

07226

10054

04337

15721

00475

minus01325

minus7069

05112

8017

9115277

74950

134939

07693

09243

04741

18707

00562

minus01378

minus7432

04777

79661

114465

74783

1376

6907771

09118

04703

18823

00566

minus01354

minus7319

03321

7791

2111524

73616

147714

08049

08689

040

9917

360

00519

minus01135

minus6241

02635

77360

110459

72878

1512

7508146

08545

03627

15506

004

63minus00973

minus5413

01323

7677

8109036

70894

155581

08261

08372

02150

09556

00285

minus00562

minus3215

000

0076840

108600

68232

155954

08271

08345

000

00000

00000

00000

00000

Journal of Applied Chemistry 5

Table 3 Coefficients 119860119894of Redlich-Kister type polynomial equation (7) and the corresponding standard deviations 120590 of all the systems at

30815 K

1198600

1198601

1198602

1198603

1198604

120590

CH + 119899-butanol119881119864

119898(10minus5m3 molminus1) 247625 minus57880 36945 minus31381 minus08351 00019

Δ119896119904(10minus10 Paminus1) 00183 minus00020 00075 00029 minus00004 00091

119871119864

119891(10minus10m) 08201 minus01460 02529 00638 01066 00009

119911119864(106 kgmminus2 sminus1) minus02875 00836 minus01081 00006 minus00202 00002Δ119906(msminus1) minus140 058 minus031 minus003 minus018 00024

CH + 119904119890119888-butanol119881119864

119898(10minus5m3 molminus1) 275896 minus9594 42809 minus22460 minus07780 00018

Δ119896119904(10minus10 Paminus1) 00267 minus0001 00001 00033 00034 00001

119871119864

119891(10minus10m) 11507 minus01810 00576 01082 00684 00011

119911119864(106 kgmminus2 sminus1) minus03733 01252 minus00791 00092 minus00110 00001Δ119906(msminus1) minus194 059 minus004 minus001 minus004 00006

CH + 119905119890119903119905-butanol119881119864

119898(10minus5m3 molminus1) 364535 minus123900 minus06780 01003 minus02750 00009

Δ119896119904(10minus10 Paminus1) 00428 00120 00024 00019 00011 00001

119871119864

119891(10minus10m) 18117 01253 01393 00862 minus00290 00006

119911119864(106 kgmminus2 sminus1) minus05484 01374 minus00850 00123 minus00032 00001Δ119906(msminus1) minus296 062 minus054 001 minus001 00001

R R R

Structure of alcoholOndashHmiddot middot middotOndashH middot middot middot middot middot middot OndashH

Scheme 2

Resonance structure

middot middot middot

R R

R

C OOminus H+

Scheme 3

cause strong dipole-dipole interactions in chemical reactionsMoreover CH lacks hydroxyl groups so it is incapable ofcreating intermolecular hydrogen bonds In CH + isomersof butanol binary systems the negatively charged oxygen(Ominus) in CH tries to drag the positively charged H+ whichwere bounded in very strong intermolecular interactions ofbutanol (Scheme 3) An equilibrium stage is reached whererupturing of hydrogen bond or reduction inH-bond strengthof butanol or breaking of the structure of one or both ofthe components in a solution that is the loss of dipolarassociation between the molecules (dispersion forces) [18]will be favourable leading to weak interactions This causesincrease in volume of binary liquid and explains the observedpositive values 119881119864

119898in the systems

Kiyohara and Benson [19] have suggested that Δ119896119904is

the resultant of several opposing effects Negative values ofΔ119896119904contribute to charge transfer dipole-induced dipole and

00

04

08

12

16

20

0 02 04 06 08 1

minus10

Paminus1)

x1

Δks

(10

Figure 2 Variation of deviation in adiabatic compressibility Δ119896119904

with mole fraction 1199091 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

dipole-dipole interactions interstitial accommodation andbreaking up of the alcohol structures leads to positive valuesof Δ119896119904 From Figure 2 the observed positive values of Δ119896

119904for

binary mixtures of CHwith 119899-butanol 119904119890119888-butanol and 119905119890119903119905-butanol are due to declustering of alcohols in the presence ofCH The positive deviation in Δ119896

119904for the binary systems fol-

lows the order CH+ 119905119890119903119905-butanolgt 119904119890119888-butanolgt 119899-butanolFigure 3 represents the variation of119871119864

119891withmole fraction (119909

1)

of CH The observed values of 119871119864119891are positive According

to Fort and Moore [20] positive 119871119864119891should be attributed to

the dispersive forces As mentioned earlier positive values ofΔ119896119904and 119871119864

119891are mainly attributed to weak forces between the

component molecules in the mixture [21]

6 Journal of Applied Chemistry

0

001

002

003

004

005

006

0 02 04 06 08 1

minus10

m)

x1

LE f(10

Figure 3 Variation of excess free length 119871119864119891 with mole fraction 119909

1

of cyclohexanone in (X) 119899-butanol(◼) sec-butanol(998771) and tert-butanol at 30815 K

00 02 04 06 08 1

minus004

minus008

minus012

minus016

6kg

mminus2

sminus1)

x1

ZE(10

Figure 4 Variation of excess acoustic impedance 119911119864 withmole fraction 119909

1 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

The variations of excess acoustic impedance (119911119864) anddeviation in ultrasonic speed (Δ119906) have been presented inFigures 4 and 5 respectively From Figure 4 it has beenobserved that the values of 119911119864 are negative over the entiremole fraction range indicating the decreasing strength ofinteractions between component molecules of the mixtureAccording to Gowrisankar et al [22] the negative valuesfor Δ119906 indicate the decrease in the strength of interactionbetween the molecules and the negative deviations in Δ119906from linear dependence suggest the presence of weak inter-action between the component molecules These deviationexcess properties further support the conclusions drawn from119881119864

119898 119871119864119891 and Δ119896

119904

The existing molecular interactions in the systems arewell reflected in the properties of partial molar volumes Thepartial molar volumes 119881

1198981of component 1 (CH) and 119881

1198982

of component 2 (isomers of butanol) in the mixtures overthe entire composition range have been calculated by usingthe following relations

1198811198981= 119881119864

119898+ 119881lowast

1+ 1199092(

120597119881119864

119898

120597119909

)

119879119875

00 02 04 06 08 1

minus20

minus40

minus60

minus80

x1

Δu

(msminus

1)

Figure 5 Variation of deviation in ultrasonic speed Δ119906 withmole fraction 119909

1 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

1198811198982= 119881119864

119898+ 119881lowast

2+ 1199091(

120597119881119864

119898

120597119909

)

119879119875

(9)

where 119881lowast1and 119881lowast

2are the molar volumes of the pure com-

ponents of CH and butanols respectively The derivates inthe above equations are obtained by differentiating Redlich-Kister equation (7) which leads to the following equations for1198811198981

and 1198811198982

1198811198981= 119881lowast

1+ 1199092

2

119895

sum

119894=0

119860119894(1199092minus 1199091)119894

minus 211990911199092

2

119895

sum

119894=1

119860119894(1199092minus 1199091)119894minus1

(10)

1198811198982= 119881lowast

2+ 1199092

1

119895

sum

119894=0

119860119894(1199092minus 1199091)119894

+ 211990921199092

1

119895

sum

119894=1

119860119894(1199092minus 1199091)119894minus1

(11)

using the above equations 1198811198641198981

1198811198641198982

have been calculatedusing

119881

119864

1198981= 1198811198981minus 119881lowast

1

119881

119864

1198982= 1198811198982minus 119881lowast

2

(12)

The pertinent values of 1198811198981

and 1198811198982

are furnished inTable 4 From this table the values of 119881

1198981and 119881

1198982for

both the components in the mixtures are greater than theirrespective molar volumes in the pure state that is an expan-sion of volume takes place on mixing alcohols with ketoneThese results also support the observed positive values of119881119864

119898in all the binary systems Figures 6 and 7 represent the

variation of excess partial molar volumes of 1198811198641198981

(CH) 1198811198641198982

(isomers of butanol) in the binary mixtures Examinationof these figures reveals that dispersion forces exist betweenthe unlike molecules These figures support the conclusionsdrawn from119881119864

119898The partial molar volumes and excess partial

Journal of Applied Chemistry 7

Table 4 Partial molar volumes of CH (1198811198981

10minus5m3 molminus1) and butanols (1198811198982

10minus5m3 molminus1) of all the binary systems with mole fraction(1199091) of CH at 30815 K

CH + 119899-butanol CH + 119904119890119888-butanol CH + 119905119890119903119905-butanol1199091

1198811198981

1198811198982

1199091

1198811198981

1198811198982

1199091

1198811198981

1198811198982

10000 7210 42676 10000 7210 49234 10000 7210 5461209121 7699 32512 09212 7681 38378 09221 7606 4459008854 7999 30035 08867 8130 34445 08895 7997 4078807211 10600 19303 07121 11586 20460 07012 12366 2341306687 11554 17041 06786 12354 18636 06814 12989 2202305232 14365 12385 05123 16219 12221 05112 19004 1308704752 15378 11198 04688 17234 11058 04777 20247 1189303231 19092 8232 03121 20995 8043 03321 25389 841602112 22264 6843 02797 21794 7619 02635 27459 756201313 24403 6314 01112 25586 6406 01323 30211 687400000 25905 6128 00000 26462 6307 00000 30421 6823

0

10

20

30

40

50

0 02 04 06 08 1

minus5

m3

mol

minus1)

x1

VE m2

(10

Figure 6 Variation of excess partial molar volume 1198811198641198982

withmole fraction 119909

1 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

molar volumes ofCHand isomers of butanols in all the binaryliquid mixtures at infinite dilution 119881infin

1198981 119881infin1198982

119881119864infin1198981

and119881

119864infin

1198982 respectively were obtained by putting 119909 = 0 in (10)

and 119909 = 1 in (11) Consider

119881

119864infin

1198981= 1198600+ 1198601+ 1198602+ 1198603+ sdot sdot sdot = 119881

infin

1198981minus 119881lowast

1

119881

119864infin

1198982= 1198600minus 1198601+ 1198602minus 1198603+ sdot sdot sdot = 119881

infin

1198982minus 119881lowast

2

(13)

The pertinent values of 119881infin1198981

119881infin1198982

119881119864infin1198981

and 119881119864infin1198982

arereported in Table 5 From this table it is seen that these valuesare positive from which we conclude that weak interactionsexist among the unlike molecules of the liquid mixtures

FT-IR spectra of pure CH butanols and binary mixturesof CH with butanols at equal concentrations are depicted inFigures 8 9 and 10 According to Karunakar and Srinivas[23] the intensity of an absorption in the IR spectrum isrelated to the change in dipole moment that occurs duringthe vibration Consequently vibrations that produce a largechange in dipole moment (eg C=O stretch) result in amore intense absorption than those that result in a relativelymodest change in dipole (eg C=C) Vibrations that do notresult in a change in dipole moment (eg a symmetrical

0

5

10

15

20

25

0 02 04 06 08 1

minus5

m3

mol

minus1)

x1

VE m1

(10

Figure 7 Variation of excess partial molar volume 1198811198641198981

withmole fraction 119909

1 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

020

040

060

080

100

500 1375 2250 3125 4000

Tran

smitt

ance

()

n-ButanolCH

Wave number (cmminus1)

CH + n-Butanol

Figure 8 Fourier transform infrared spectra of pure cyclohexanone(red) cyclohexanone and 119899-butanol in the ratio 5 5 (green) andpure 119899-butanol (blue)

8 Journal of Applied Chemistry

020

040

060

080

100

500 1375 2250 3125 4000

Tran

smitt

ance

()

sec-ButanolCH

Wave number (cmminus1)

CH + sec-Butanol

Figure 9 Fourier transform infrared spectra of pure cyclohexanone(red) cyclohexanone and sec-butanol in the ratio 5 5 (green) andpure sec-butanol (blue)

020

040

060

080

100

500 1375 2250 3125 4000

Tran

smitt

ance

()

tert-ButanolCH

Wave number (cmminus1)

CH + tert-Butanol

Figure 10 Fourier transform infrared spectra of pure cyclohex-anone (red) cyclohexanone and tert-butanol in the ratio 5 5(green) and pure tert-butanol (blue)

alkyne CequivC stretch) will show little or no absorption for thisvibration In the present FT-IR spectra liquid mixture showsvery small variations in the intensity of the respective bondsthat is dipole moment and hence it supports that weakinteractions take place between the components of liquidmolecules

Theoretical evaluation of ultrasonic speed in binary liquidmixtures and its correlation to study molecular interactionhas been successfully done in recent years Ultrasonic speedsin liquid mixtures have been calculated and compared with

Table 5 Partial molar volumes (119881infin1198981

119881infin1198982

) and excess partial molarvolumes (119881119864infin

1198981 119881119864infin1198982

) of the components at infinite dilution for allthe systems at 30815 K

System 119881

infin

1198981119881

infin

1198982119881

119864infin

1198981119881

119864infin

1198982

(10minus5m3 molminus1)CH + 119899-butanol 25519 43758 18696 36548CH + 119904119890119888-butanol 25561 509205 19253 42933CH + 119905119890119903119905-butanol 30034 55000 23211 47790

experimental values using various theories Such an evalua-tion offers a simple method to investigate molecular interac-tions besides verifying the applicability of various theories toliquid mixtures

Nomoto [24] established the following relation for soundspeed (119880

119873) based on the assumption of the linearity of the

molecular sound speed and the additivity of molar volume

119880119873=

(sum119909119894119877119894)

(sum119909119894119881119894)

3

(14)

where 119877119894is molar sound speed and 119881

119894is molar volume

van Dael and Vangeel [25] obtained the ideal mixturerelation

sum(

119909119894119872119894

1199062

119894

) =

1

sum119909119894119872119894

1

119880119881

2

(15)

Baluja and Parsania [26] have given impedance relationon the basis of force of resistance for sound speed by theinteracting molecules

119880imp =sum119909119894119885119894

sum119909119894120588119894

(16)

Raorsquos (specific sound speed) [27] relation is given by

119880119877= (sum119909

119894119903119894120588)

3

(17)

where 119903119894= 11990613

119894120588119894is Raorsquos specific sound speed of 119894th com-

ponent of the mixturePercentage deviation in ultrasonic speed is given by

Δ119906 = 100 lowast [1 minus119880cal119906exp 119905

] (18)

Table 6 shows the values of ultrasonic speed computed byvarious theories along with their percentage error for all thesystems The variations between the evaluated and experi-mental values may be due to interactions occurring betweenthe hetero molecules of the binaries From the observedvalues of all three systems there is a good agreementbetween theoretical and experimental values through vanDeal andVangeel relation It can be seen fromTable 6 that thetheoretical values of ultrasonic speed calculated by using var-ious theories show deviation from experimental values Thelimitations and approximation incorporated in these theories

Journal of Applied Chemistry 9

Table 6Theoretical values of ultrasonic speed from various equations and percentage error withmole fraction1199091of CH for all binary systems

at 30815 K

1199091

119880119873

119880119881

119880Imp 119880119877

119880119873

119880119881

119880Imp 119880119877

CH + 119899-butanol10000 136200 136200 136200 136200 000 000 000 00009121 135001 134547 135043 129806 143 109 146 24808854 134632 134060 134687 128317 177 133 181 30107211 132309 131199 132427 122196 305 218 314 48306687 131549 130334 131681 120973 322 227 332 50805232 129386 128042 129542 118502 333 226 346 53604752 128656 127319 128814 117871 317 210 330 54803231 126283 125129 126429 116393 261 168 273 54202112 124478 123609 124594 116166 196 125 205 48501313 123158 122567 123239 116883 135 086 142 38200000 120930 120930 120930 120930 000 000 000 000

CH + 119904119890119888-butanol10000 136200 136200 136200 136200 000 000 000 00009212 134836 134412 134936 128464 144 112 152 33508867 134234 133650 134375 125830 198 153 208 44107121 131130 129973 131435 117255 382 291 406 71606786 130524 129300 130852 116263 402 304 428 73505123 127465 126097 127860 113158 433 321 465 73804688 126650 125296 127049 112705 422 310 455 72603121 123666 122524 124027 112004 338 243 369 63702797 123039 121972 123381 112051 313 223 341 60801112 119722 119210 119901 113885 141 098 156 35300000 117480 117480 117480 117480 000 000 000 000

CH + 119905119890119903119905-butanol10000 136200 136200 136200 136200 000 000 000 00009221 134013 133538 134413 126923 209 173 240 33108895 133099 132456 133651 123600 283 233 325 45107012 127840 126544 129065 109588 561 454 663 94606814 127289 125953 128564 108550 578 467 684 98005112 122570 121104 124087 102359 633 506 764 112104777 121645 120195 123170 101661 627 501 761 111903321 117638 116400 119036 100406 548 437 674 99702635 115760 114696 117000 100794 480 384 592 87501323 112183 111575 112939 103339 289 233 358 52300000 108600 108600 108600 108600 000 000 000 000

are responsible for the deviations of theoretical values fromexperimental values Nomotorsquos theory proposes that the vol-ume does not change upon mixingTherefore no interactionbetween the components of liquid mixtures has been takeninto account Similarly the assumption for the formation ofideal mixing relation is that the ratios of specific heats of idealmixtures and the volumes are also equal Again no molecularinteractions are taken into account But upon mixing inter-actions between the molecules occur because of the presenceof various types of forces such as dispersion forces chargetransfer and hydrogen bonding dipole-dipole and dipole-induced dipole interactions Thus the observed deviationof theoretical values of speed from the experimental values

shows that the molecular interactions are taking placebetween the CH and isomers of butanol molecules Thedeviations of experimental values and values calculated fromimpedance relation and Raorsquos relation imply nonadditivity ofacoustic impedance and Raorsquos speed in the liquid mixturesAmong all the empirical theories van Dael and Vangeelsrelation gives better estimate of experimental values of soundspeed in all the systems In the present binary systems thedifference between experimental and theoretical speeds isgreater where themole fraction of CH varies in the region 03to 06 Hence it can be qualitatively inferred that the strengthof interaction in the binary mixtures is more in this range ofcomposition of CH with isomers of butanol liquid system

10 Journal of Applied Chemistry

5 Conclusion

(i) Ultrasonic speeds 119906 and densities 120588 of mixtures ofcyclohexanone with 119899-butanol or sec-butanol or tert-butanol over the entire composition range have beenmeasured at 119879 = 30815K

(ii) The values of 119881119864119898 Δ119896119904 119871119864119891 119911119864 and Δ119906 are calculated

from experimental data of density and ultrasonicspeed The excess and deviation properties have beenfitted to Redlich-Kister type polynomial and corre-sponding standard deviations have been evaluatedThe observed positive values of 119881119864

119898 Δ119896119904 and 119871119864

119891and

negative values of 119911119864 Δ119906 for all the liquid mixturesstudied clearly indicate the presence of weak inter-actions such as rupturing of hydrogen bond or reduc-tion in H-bond strength of butanol or breaking ofthe structure of one or both of the components in asolution

(iii) The deviationexcess properties have been fitted toRedlich-Kister type polynomial and the correspond-ing standard deviations have been calculated

(iv) The calculated values of partial molar volumes havealso been examined The observed higher partialmolar volumes in the liquid mixture when comparedto the respective molar volumes of pure componentsindicate weak interactions present in the systems

(v) The strength of interaction in themixtures follows theorder CH + tert-butanol gt sec-butanol gt 119899-butanol

(vi) FT-IR spectra for the present binary mixture alsosupport the conclusions drawn from the 119881119864

119898 119871119864119891 Δ119896119904

Δ119906 and 119911119864(vii) Further theoretical values of sound speed in the mix-

tures have been evaluated using various theories andhave been compared with experimental sound speedsto verify the applicability of such theories to the sys-tems studied

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

One of the authors SkMdNayeem is thankful to UGC NewDelhi Government of India for the financial grants towardsMRP (MRP-467114C (SERO-UGC))

References

[1] T B Thoe D K Aspinwall and M L H Wise ldquoReview onultrasonic machiningrdquo International Journal of Machine Toolsand Manufacture vol 38 no 4 pp 239ndash255 1998

[2] G Thomas Chemistry for Pharmacy and the Life SciencesPrentice Hall London UK 1996

[3] A M Ababneh C C Large and S Georghiou ldquoSolvation ofnucleosides in aqueous mixtures of organic solvents relevanceto dna open basepairsrdquo Biophysical Journal vol 85 no 2 pp1111ndash1127 2003

[4] R E Treybal Mass Transfer Operations McGraw Hill Singa-pore 3rd edition 1981

[5] PM Krishna B R Kumar B Sathyanarayana K S Kumar andN Satyanarayana ldquoDensities and speeds of sound for binaryliquid mixtures of thiolane-11-dioxide with butanone pentan-2-one pentan-3-one and 4-methyl-pentan-2-one atT = (30315or 30815 or 31315) Krdquo Journal of Chemical and EngineeringData vol 54 no 6 pp 1947ndash1950 2009

[6] PGnanaKumari PVenkatesuMV PrabhakaraRaoM-J Leeand H-M Lin ldquoExcess molar volumes and ultrasonic studiesof 119873-methyl-2-pyrrolidone with ketones at 119879 = 30315 Krdquo TheJournal of ChemicalThermodynamics vol 41 no 5 pp 586ndash5902009

[7] M Sreenivasulu and P R Naidu ldquoExcess volumes and adiabaticcompressibility of binary mixtures of butyl amine and cyclicketonesrdquo Australian Journal of Chemistry vol 32 no 8 pp1649ndash1652 1979

[8] K Rajagopal and S Chenthilnath ldquoExcess thermodynamicstudies of binary liquid mixtures of 2-methyl-2-propanol withketonesrdquo Indian Journal of Pure amp Applied Physics vol 48 no5 pp 326ndash333 2010

[9] R K Bachu M K Patwari S Boodida and S Nallani ldquoVol-umetric and transport properties of binary liquid mixtures ofaliphatic ketones with phenylacetonitrile at T = 30815 Krdquo Jour-nal of Chemical amp Engineering Data vol 53 no 10 pp 2403ndash2407 2008

[10] N G Tsierkezos I E Molinou and A C Filippou ldquoThermo-dynamic properties of binary mixtures of cyclohexanone with119899-alkanols (C

1-C5) at 29315 Krdquo Journal of Solution Chemistry

vol 34 no 12 pp 1371ndash1386 2005[11] M Sri Lakshmi R R Raju C Rambabu G V R Rao and

K Narendra ldquoStudy of molecular interactions in binary liquidmixtures containing higher alcohols at different temperaturesrdquoResearchampReviews Journal of Chemistry vol 2 no 1 pp 12ndash242013

[12] A I Vogel Text Book of Practical Organic Chemistry LongmanLondon UK 5th edition 1989

[13] J A Riddick W Bunger and T K Sakano Techniques of Chem-istry Organic Solvents Physical Properties andMethods of Purifi-cation Wiley Interscience New York NY USA 4th edition1987

[14] R K Bachu andM K Patwari ldquoDensities viscosities and speedof sound of binary mixtures of phenylacetonitrile with somealiphatic alcohols at 30815 Krdquo Indian Journal of Chemistry Avol 47 no 7 pp 1026ndash1031 2008

[15] H C Parker and E W Parker ldquoDensities of certain aque-ous potassium chloride solutions as determined with a newpyknometerrdquo Journal of Physical Chemistry vol 29 pp 130ndash1371925

[16] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification solutionsrdquoIndustrial and Engineering Chemistry vol 40 no 2 pp 345ndash348 1948

[17] R Vijaya Kumar S Viswanathan and M Anand Rao ldquoExcessvolumes speeds of sound and isentropic compressibilitiesof 2-propyn-1-ol + 12-dichloroethane +111-trichloroe thane+1122-tetrachloroethane and +trichloroethylene at 30315Krdquo

Journal of Applied Chemistry 11

Journal of Chemical and EngineeringData vol 41 no 4 pp 755ndash757 1996

[18] J S Matos and J L Trenzado ldquoVolumetric properties and vis-cosities of the methyl butanoate+n-heptane+n-octane ternarysystem and its binary constitutions in the temperature rangefrom 28315K to 31315Krdquo Fluid Phase Equilibria vol 186 pp207ndash234 2001

[19] O Kiyohara and G C Benson ldquoUltrasonic speeds and isen-tropic compressibilities of n-alkanol + n-heptane mixtures at29815 KrdquoThe Journal of Chemical Thermodynamics vol 11 no9 pp 861ndash873 1979

[20] R J Fort and W R Moore ldquoAdiabatic compressibilities ofbinary liquidmixturesrdquo Transactions of the Faraday Society vol61 pp 2102ndash2111 1965

[21] A Ali A K Nain V K Sharma and S Ahmed ldquoUltrasonicstudies in binary liquid mixturesrdquo Indian Journal of Physics Bvol 75 no 6 pp 519ndash525 2001

[22] M Gowrisankar S Sivarambabu P Venkateswarlu and K SKumar ldquoExcess volumes speeds of sound isentropic compress-ibilities and viscosities of binary mixtures of 119873-ethyl anilinewith some aromatic ketones at 30315 Krdquo Bulletin of the KoreanChemical Society vol 33 no 5 pp 1686ndash1692 2012

[23] T Karunakar andCH Srinivas ldquoThermo acoustic and infraredstudy of molecular interactions in binary mixture aniline+1-butanolrdquo Research amp Reviews Journal of Pure and AppliedPhysics vol 1 no 1 pp 5ndash10 2013

[24] O Nomoto ldquoEmpirical formula for sound velocity in liquidmixturesrdquo Journal of the Physical Society of Japan vol 13 no12 pp 1528ndash1532 1958

[25] W van Dael Thermodynamic Properties and Velocity of SoundButterworth London UK 1975

[26] S Baluja and P H Parsania ldquoAcoustical properties of 3-120572-furylacrylic acid in protic and aprotic solventsrdquo Asian Journal ofChemistry vol 7 pp 417ndash423 1995

[27] K Sreekanth D S Kumar M Kondaiah and D Krishna RaoldquoStudy of molecular interactions in the mixtures of secondaryalcohols with equimolar mixture of ethanol + formamide fromacoustic and thermodynamic parametersrdquo Journal of Chemicaland Pharmaceutical Research vol 3 no 4 pp 29ndash41 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 5: Research Article Ultrasonic Investigations of Molecular ...downloads.hindawi.com/journals/jac/2014/741795.pdf · Research Article Ultrasonic Investigations of Molecular Interaction

Journal of Applied Chemistry 5

Table 3 Coefficients 119860119894of Redlich-Kister type polynomial equation (7) and the corresponding standard deviations 120590 of all the systems at

30815 K

1198600

1198601

1198602

1198603

1198604

120590

CH + 119899-butanol119881119864

119898(10minus5m3 molminus1) 247625 minus57880 36945 minus31381 minus08351 00019

Δ119896119904(10minus10 Paminus1) 00183 minus00020 00075 00029 minus00004 00091

119871119864

119891(10minus10m) 08201 minus01460 02529 00638 01066 00009

119911119864(106 kgmminus2 sminus1) minus02875 00836 minus01081 00006 minus00202 00002Δ119906(msminus1) minus140 058 minus031 minus003 minus018 00024

CH + 119904119890119888-butanol119881119864

119898(10minus5m3 molminus1) 275896 minus9594 42809 minus22460 minus07780 00018

Δ119896119904(10minus10 Paminus1) 00267 minus0001 00001 00033 00034 00001

119871119864

119891(10minus10m) 11507 minus01810 00576 01082 00684 00011

119911119864(106 kgmminus2 sminus1) minus03733 01252 minus00791 00092 minus00110 00001Δ119906(msminus1) minus194 059 minus004 minus001 minus004 00006

CH + 119905119890119903119905-butanol119881119864

119898(10minus5m3 molminus1) 364535 minus123900 minus06780 01003 minus02750 00009

Δ119896119904(10minus10 Paminus1) 00428 00120 00024 00019 00011 00001

119871119864

119891(10minus10m) 18117 01253 01393 00862 minus00290 00006

119911119864(106 kgmminus2 sminus1) minus05484 01374 minus00850 00123 minus00032 00001Δ119906(msminus1) minus296 062 minus054 001 minus001 00001

R R R

Structure of alcoholOndashHmiddot middot middotOndashH middot middot middot middot middot middot OndashH

Scheme 2

Resonance structure

middot middot middot

R R

R

C OOminus H+

Scheme 3

cause strong dipole-dipole interactions in chemical reactionsMoreover CH lacks hydroxyl groups so it is incapable ofcreating intermolecular hydrogen bonds In CH + isomersof butanol binary systems the negatively charged oxygen(Ominus) in CH tries to drag the positively charged H+ whichwere bounded in very strong intermolecular interactions ofbutanol (Scheme 3) An equilibrium stage is reached whererupturing of hydrogen bond or reduction inH-bond strengthof butanol or breaking of the structure of one or both ofthe components in a solution that is the loss of dipolarassociation between the molecules (dispersion forces) [18]will be favourable leading to weak interactions This causesincrease in volume of binary liquid and explains the observedpositive values 119881119864

119898in the systems

Kiyohara and Benson [19] have suggested that Δ119896119904is

the resultant of several opposing effects Negative values ofΔ119896119904contribute to charge transfer dipole-induced dipole and

00

04

08

12

16

20

0 02 04 06 08 1

minus10

Paminus1)

x1

Δks

(10

Figure 2 Variation of deviation in adiabatic compressibility Δ119896119904

with mole fraction 1199091 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

dipole-dipole interactions interstitial accommodation andbreaking up of the alcohol structures leads to positive valuesof Δ119896119904 From Figure 2 the observed positive values of Δ119896

119904for

binary mixtures of CHwith 119899-butanol 119904119890119888-butanol and 119905119890119903119905-butanol are due to declustering of alcohols in the presence ofCH The positive deviation in Δ119896

119904for the binary systems fol-

lows the order CH+ 119905119890119903119905-butanolgt 119904119890119888-butanolgt 119899-butanolFigure 3 represents the variation of119871119864

119891withmole fraction (119909

1)

of CH The observed values of 119871119864119891are positive According

to Fort and Moore [20] positive 119871119864119891should be attributed to

the dispersive forces As mentioned earlier positive values ofΔ119896119904and 119871119864

119891are mainly attributed to weak forces between the

component molecules in the mixture [21]

6 Journal of Applied Chemistry

0

001

002

003

004

005

006

0 02 04 06 08 1

minus10

m)

x1

LE f(10

Figure 3 Variation of excess free length 119871119864119891 with mole fraction 119909

1

of cyclohexanone in (X) 119899-butanol(◼) sec-butanol(998771) and tert-butanol at 30815 K

00 02 04 06 08 1

minus004

minus008

minus012

minus016

6kg

mminus2

sminus1)

x1

ZE(10

Figure 4 Variation of excess acoustic impedance 119911119864 withmole fraction 119909

1 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

The variations of excess acoustic impedance (119911119864) anddeviation in ultrasonic speed (Δ119906) have been presented inFigures 4 and 5 respectively From Figure 4 it has beenobserved that the values of 119911119864 are negative over the entiremole fraction range indicating the decreasing strength ofinteractions between component molecules of the mixtureAccording to Gowrisankar et al [22] the negative valuesfor Δ119906 indicate the decrease in the strength of interactionbetween the molecules and the negative deviations in Δ119906from linear dependence suggest the presence of weak inter-action between the component molecules These deviationexcess properties further support the conclusions drawn from119881119864

119898 119871119864119891 and Δ119896

119904

The existing molecular interactions in the systems arewell reflected in the properties of partial molar volumes Thepartial molar volumes 119881

1198981of component 1 (CH) and 119881

1198982

of component 2 (isomers of butanol) in the mixtures overthe entire composition range have been calculated by usingthe following relations

1198811198981= 119881119864

119898+ 119881lowast

1+ 1199092(

120597119881119864

119898

120597119909

)

119879119875

00 02 04 06 08 1

minus20

minus40

minus60

minus80

x1

Δu

(msminus

1)

Figure 5 Variation of deviation in ultrasonic speed Δ119906 withmole fraction 119909

1 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

1198811198982= 119881119864

119898+ 119881lowast

2+ 1199091(

120597119881119864

119898

120597119909

)

119879119875

(9)

where 119881lowast1and 119881lowast

2are the molar volumes of the pure com-

ponents of CH and butanols respectively The derivates inthe above equations are obtained by differentiating Redlich-Kister equation (7) which leads to the following equations for1198811198981

and 1198811198982

1198811198981= 119881lowast

1+ 1199092

2

119895

sum

119894=0

119860119894(1199092minus 1199091)119894

minus 211990911199092

2

119895

sum

119894=1

119860119894(1199092minus 1199091)119894minus1

(10)

1198811198982= 119881lowast

2+ 1199092

1

119895

sum

119894=0

119860119894(1199092minus 1199091)119894

+ 211990921199092

1

119895

sum

119894=1

119860119894(1199092minus 1199091)119894minus1

(11)

using the above equations 1198811198641198981

1198811198641198982

have been calculatedusing

119881

119864

1198981= 1198811198981minus 119881lowast

1

119881

119864

1198982= 1198811198982minus 119881lowast

2

(12)

The pertinent values of 1198811198981

and 1198811198982

are furnished inTable 4 From this table the values of 119881

1198981and 119881

1198982for

both the components in the mixtures are greater than theirrespective molar volumes in the pure state that is an expan-sion of volume takes place on mixing alcohols with ketoneThese results also support the observed positive values of119881119864

119898in all the binary systems Figures 6 and 7 represent the

variation of excess partial molar volumes of 1198811198641198981

(CH) 1198811198641198982

(isomers of butanol) in the binary mixtures Examinationof these figures reveals that dispersion forces exist betweenthe unlike molecules These figures support the conclusionsdrawn from119881119864

119898The partial molar volumes and excess partial

Journal of Applied Chemistry 7

Table 4 Partial molar volumes of CH (1198811198981

10minus5m3 molminus1) and butanols (1198811198982

10minus5m3 molminus1) of all the binary systems with mole fraction(1199091) of CH at 30815 K

CH + 119899-butanol CH + 119904119890119888-butanol CH + 119905119890119903119905-butanol1199091

1198811198981

1198811198982

1199091

1198811198981

1198811198982

1199091

1198811198981

1198811198982

10000 7210 42676 10000 7210 49234 10000 7210 5461209121 7699 32512 09212 7681 38378 09221 7606 4459008854 7999 30035 08867 8130 34445 08895 7997 4078807211 10600 19303 07121 11586 20460 07012 12366 2341306687 11554 17041 06786 12354 18636 06814 12989 2202305232 14365 12385 05123 16219 12221 05112 19004 1308704752 15378 11198 04688 17234 11058 04777 20247 1189303231 19092 8232 03121 20995 8043 03321 25389 841602112 22264 6843 02797 21794 7619 02635 27459 756201313 24403 6314 01112 25586 6406 01323 30211 687400000 25905 6128 00000 26462 6307 00000 30421 6823

0

10

20

30

40

50

0 02 04 06 08 1

minus5

m3

mol

minus1)

x1

VE m2

(10

Figure 6 Variation of excess partial molar volume 1198811198641198982

withmole fraction 119909

1 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

molar volumes ofCHand isomers of butanols in all the binaryliquid mixtures at infinite dilution 119881infin

1198981 119881infin1198982

119881119864infin1198981

and119881

119864infin

1198982 respectively were obtained by putting 119909 = 0 in (10)

and 119909 = 1 in (11) Consider

119881

119864infin

1198981= 1198600+ 1198601+ 1198602+ 1198603+ sdot sdot sdot = 119881

infin

1198981minus 119881lowast

1

119881

119864infin

1198982= 1198600minus 1198601+ 1198602minus 1198603+ sdot sdot sdot = 119881

infin

1198982minus 119881lowast

2

(13)

The pertinent values of 119881infin1198981

119881infin1198982

119881119864infin1198981

and 119881119864infin1198982

arereported in Table 5 From this table it is seen that these valuesare positive from which we conclude that weak interactionsexist among the unlike molecules of the liquid mixtures

FT-IR spectra of pure CH butanols and binary mixturesof CH with butanols at equal concentrations are depicted inFigures 8 9 and 10 According to Karunakar and Srinivas[23] the intensity of an absorption in the IR spectrum isrelated to the change in dipole moment that occurs duringthe vibration Consequently vibrations that produce a largechange in dipole moment (eg C=O stretch) result in amore intense absorption than those that result in a relativelymodest change in dipole (eg C=C) Vibrations that do notresult in a change in dipole moment (eg a symmetrical

0

5

10

15

20

25

0 02 04 06 08 1

minus5

m3

mol

minus1)

x1

VE m1

(10

Figure 7 Variation of excess partial molar volume 1198811198641198981

withmole fraction 119909

1 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

020

040

060

080

100

500 1375 2250 3125 4000

Tran

smitt

ance

()

n-ButanolCH

Wave number (cmminus1)

CH + n-Butanol

Figure 8 Fourier transform infrared spectra of pure cyclohexanone(red) cyclohexanone and 119899-butanol in the ratio 5 5 (green) andpure 119899-butanol (blue)

8 Journal of Applied Chemistry

020

040

060

080

100

500 1375 2250 3125 4000

Tran

smitt

ance

()

sec-ButanolCH

Wave number (cmminus1)

CH + sec-Butanol

Figure 9 Fourier transform infrared spectra of pure cyclohexanone(red) cyclohexanone and sec-butanol in the ratio 5 5 (green) andpure sec-butanol (blue)

020

040

060

080

100

500 1375 2250 3125 4000

Tran

smitt

ance

()

tert-ButanolCH

Wave number (cmminus1)

CH + tert-Butanol

Figure 10 Fourier transform infrared spectra of pure cyclohex-anone (red) cyclohexanone and tert-butanol in the ratio 5 5(green) and pure tert-butanol (blue)

alkyne CequivC stretch) will show little or no absorption for thisvibration In the present FT-IR spectra liquid mixture showsvery small variations in the intensity of the respective bondsthat is dipole moment and hence it supports that weakinteractions take place between the components of liquidmolecules

Theoretical evaluation of ultrasonic speed in binary liquidmixtures and its correlation to study molecular interactionhas been successfully done in recent years Ultrasonic speedsin liquid mixtures have been calculated and compared with

Table 5 Partial molar volumes (119881infin1198981

119881infin1198982

) and excess partial molarvolumes (119881119864infin

1198981 119881119864infin1198982

) of the components at infinite dilution for allthe systems at 30815 K

System 119881

infin

1198981119881

infin

1198982119881

119864infin

1198981119881

119864infin

1198982

(10minus5m3 molminus1)CH + 119899-butanol 25519 43758 18696 36548CH + 119904119890119888-butanol 25561 509205 19253 42933CH + 119905119890119903119905-butanol 30034 55000 23211 47790

experimental values using various theories Such an evalua-tion offers a simple method to investigate molecular interac-tions besides verifying the applicability of various theories toliquid mixtures

Nomoto [24] established the following relation for soundspeed (119880

119873) based on the assumption of the linearity of the

molecular sound speed and the additivity of molar volume

119880119873=

(sum119909119894119877119894)

(sum119909119894119881119894)

3

(14)

where 119877119894is molar sound speed and 119881

119894is molar volume

van Dael and Vangeel [25] obtained the ideal mixturerelation

sum(

119909119894119872119894

1199062

119894

) =

1

sum119909119894119872119894

1

119880119881

2

(15)

Baluja and Parsania [26] have given impedance relationon the basis of force of resistance for sound speed by theinteracting molecules

119880imp =sum119909119894119885119894

sum119909119894120588119894

(16)

Raorsquos (specific sound speed) [27] relation is given by

119880119877= (sum119909

119894119903119894120588)

3

(17)

where 119903119894= 11990613

119894120588119894is Raorsquos specific sound speed of 119894th com-

ponent of the mixturePercentage deviation in ultrasonic speed is given by

Δ119906 = 100 lowast [1 minus119880cal119906exp 119905

] (18)

Table 6 shows the values of ultrasonic speed computed byvarious theories along with their percentage error for all thesystems The variations between the evaluated and experi-mental values may be due to interactions occurring betweenthe hetero molecules of the binaries From the observedvalues of all three systems there is a good agreementbetween theoretical and experimental values through vanDeal andVangeel relation It can be seen fromTable 6 that thetheoretical values of ultrasonic speed calculated by using var-ious theories show deviation from experimental values Thelimitations and approximation incorporated in these theories

Journal of Applied Chemistry 9

Table 6Theoretical values of ultrasonic speed from various equations and percentage error withmole fraction1199091of CH for all binary systems

at 30815 K

1199091

119880119873

119880119881

119880Imp 119880119877

119880119873

119880119881

119880Imp 119880119877

CH + 119899-butanol10000 136200 136200 136200 136200 000 000 000 00009121 135001 134547 135043 129806 143 109 146 24808854 134632 134060 134687 128317 177 133 181 30107211 132309 131199 132427 122196 305 218 314 48306687 131549 130334 131681 120973 322 227 332 50805232 129386 128042 129542 118502 333 226 346 53604752 128656 127319 128814 117871 317 210 330 54803231 126283 125129 126429 116393 261 168 273 54202112 124478 123609 124594 116166 196 125 205 48501313 123158 122567 123239 116883 135 086 142 38200000 120930 120930 120930 120930 000 000 000 000

CH + 119904119890119888-butanol10000 136200 136200 136200 136200 000 000 000 00009212 134836 134412 134936 128464 144 112 152 33508867 134234 133650 134375 125830 198 153 208 44107121 131130 129973 131435 117255 382 291 406 71606786 130524 129300 130852 116263 402 304 428 73505123 127465 126097 127860 113158 433 321 465 73804688 126650 125296 127049 112705 422 310 455 72603121 123666 122524 124027 112004 338 243 369 63702797 123039 121972 123381 112051 313 223 341 60801112 119722 119210 119901 113885 141 098 156 35300000 117480 117480 117480 117480 000 000 000 000

CH + 119905119890119903119905-butanol10000 136200 136200 136200 136200 000 000 000 00009221 134013 133538 134413 126923 209 173 240 33108895 133099 132456 133651 123600 283 233 325 45107012 127840 126544 129065 109588 561 454 663 94606814 127289 125953 128564 108550 578 467 684 98005112 122570 121104 124087 102359 633 506 764 112104777 121645 120195 123170 101661 627 501 761 111903321 117638 116400 119036 100406 548 437 674 99702635 115760 114696 117000 100794 480 384 592 87501323 112183 111575 112939 103339 289 233 358 52300000 108600 108600 108600 108600 000 000 000 000

are responsible for the deviations of theoretical values fromexperimental values Nomotorsquos theory proposes that the vol-ume does not change upon mixingTherefore no interactionbetween the components of liquid mixtures has been takeninto account Similarly the assumption for the formation ofideal mixing relation is that the ratios of specific heats of idealmixtures and the volumes are also equal Again no molecularinteractions are taken into account But upon mixing inter-actions between the molecules occur because of the presenceof various types of forces such as dispersion forces chargetransfer and hydrogen bonding dipole-dipole and dipole-induced dipole interactions Thus the observed deviationof theoretical values of speed from the experimental values

shows that the molecular interactions are taking placebetween the CH and isomers of butanol molecules Thedeviations of experimental values and values calculated fromimpedance relation and Raorsquos relation imply nonadditivity ofacoustic impedance and Raorsquos speed in the liquid mixturesAmong all the empirical theories van Dael and Vangeelsrelation gives better estimate of experimental values of soundspeed in all the systems In the present binary systems thedifference between experimental and theoretical speeds isgreater where themole fraction of CH varies in the region 03to 06 Hence it can be qualitatively inferred that the strengthof interaction in the binary mixtures is more in this range ofcomposition of CH with isomers of butanol liquid system

10 Journal of Applied Chemistry

5 Conclusion

(i) Ultrasonic speeds 119906 and densities 120588 of mixtures ofcyclohexanone with 119899-butanol or sec-butanol or tert-butanol over the entire composition range have beenmeasured at 119879 = 30815K

(ii) The values of 119881119864119898 Δ119896119904 119871119864119891 119911119864 and Δ119906 are calculated

from experimental data of density and ultrasonicspeed The excess and deviation properties have beenfitted to Redlich-Kister type polynomial and corre-sponding standard deviations have been evaluatedThe observed positive values of 119881119864

119898 Δ119896119904 and 119871119864

119891and

negative values of 119911119864 Δ119906 for all the liquid mixturesstudied clearly indicate the presence of weak inter-actions such as rupturing of hydrogen bond or reduc-tion in H-bond strength of butanol or breaking ofthe structure of one or both of the components in asolution

(iii) The deviationexcess properties have been fitted toRedlich-Kister type polynomial and the correspond-ing standard deviations have been calculated

(iv) The calculated values of partial molar volumes havealso been examined The observed higher partialmolar volumes in the liquid mixture when comparedto the respective molar volumes of pure componentsindicate weak interactions present in the systems

(v) The strength of interaction in themixtures follows theorder CH + tert-butanol gt sec-butanol gt 119899-butanol

(vi) FT-IR spectra for the present binary mixture alsosupport the conclusions drawn from the 119881119864

119898 119871119864119891 Δ119896119904

Δ119906 and 119911119864(vii) Further theoretical values of sound speed in the mix-

tures have been evaluated using various theories andhave been compared with experimental sound speedsto verify the applicability of such theories to the sys-tems studied

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

One of the authors SkMdNayeem is thankful to UGC NewDelhi Government of India for the financial grants towardsMRP (MRP-467114C (SERO-UGC))

References

[1] T B Thoe D K Aspinwall and M L H Wise ldquoReview onultrasonic machiningrdquo International Journal of Machine Toolsand Manufacture vol 38 no 4 pp 239ndash255 1998

[2] G Thomas Chemistry for Pharmacy and the Life SciencesPrentice Hall London UK 1996

[3] A M Ababneh C C Large and S Georghiou ldquoSolvation ofnucleosides in aqueous mixtures of organic solvents relevanceto dna open basepairsrdquo Biophysical Journal vol 85 no 2 pp1111ndash1127 2003

[4] R E Treybal Mass Transfer Operations McGraw Hill Singa-pore 3rd edition 1981

[5] PM Krishna B R Kumar B Sathyanarayana K S Kumar andN Satyanarayana ldquoDensities and speeds of sound for binaryliquid mixtures of thiolane-11-dioxide with butanone pentan-2-one pentan-3-one and 4-methyl-pentan-2-one atT = (30315or 30815 or 31315) Krdquo Journal of Chemical and EngineeringData vol 54 no 6 pp 1947ndash1950 2009

[6] PGnanaKumari PVenkatesuMV PrabhakaraRaoM-J Leeand H-M Lin ldquoExcess molar volumes and ultrasonic studiesof 119873-methyl-2-pyrrolidone with ketones at 119879 = 30315 Krdquo TheJournal of ChemicalThermodynamics vol 41 no 5 pp 586ndash5902009

[7] M Sreenivasulu and P R Naidu ldquoExcess volumes and adiabaticcompressibility of binary mixtures of butyl amine and cyclicketonesrdquo Australian Journal of Chemistry vol 32 no 8 pp1649ndash1652 1979

[8] K Rajagopal and S Chenthilnath ldquoExcess thermodynamicstudies of binary liquid mixtures of 2-methyl-2-propanol withketonesrdquo Indian Journal of Pure amp Applied Physics vol 48 no5 pp 326ndash333 2010

[9] R K Bachu M K Patwari S Boodida and S Nallani ldquoVol-umetric and transport properties of binary liquid mixtures ofaliphatic ketones with phenylacetonitrile at T = 30815 Krdquo Jour-nal of Chemical amp Engineering Data vol 53 no 10 pp 2403ndash2407 2008

[10] N G Tsierkezos I E Molinou and A C Filippou ldquoThermo-dynamic properties of binary mixtures of cyclohexanone with119899-alkanols (C

1-C5) at 29315 Krdquo Journal of Solution Chemistry

vol 34 no 12 pp 1371ndash1386 2005[11] M Sri Lakshmi R R Raju C Rambabu G V R Rao and

K Narendra ldquoStudy of molecular interactions in binary liquidmixtures containing higher alcohols at different temperaturesrdquoResearchampReviews Journal of Chemistry vol 2 no 1 pp 12ndash242013

[12] A I Vogel Text Book of Practical Organic Chemistry LongmanLondon UK 5th edition 1989

[13] J A Riddick W Bunger and T K Sakano Techniques of Chem-istry Organic Solvents Physical Properties andMethods of Purifi-cation Wiley Interscience New York NY USA 4th edition1987

[14] R K Bachu andM K Patwari ldquoDensities viscosities and speedof sound of binary mixtures of phenylacetonitrile with somealiphatic alcohols at 30815 Krdquo Indian Journal of Chemistry Avol 47 no 7 pp 1026ndash1031 2008

[15] H C Parker and E W Parker ldquoDensities of certain aque-ous potassium chloride solutions as determined with a newpyknometerrdquo Journal of Physical Chemistry vol 29 pp 130ndash1371925

[16] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification solutionsrdquoIndustrial and Engineering Chemistry vol 40 no 2 pp 345ndash348 1948

[17] R Vijaya Kumar S Viswanathan and M Anand Rao ldquoExcessvolumes speeds of sound and isentropic compressibilitiesof 2-propyn-1-ol + 12-dichloroethane +111-trichloroe thane+1122-tetrachloroethane and +trichloroethylene at 30315Krdquo

Journal of Applied Chemistry 11

Journal of Chemical and EngineeringData vol 41 no 4 pp 755ndash757 1996

[18] J S Matos and J L Trenzado ldquoVolumetric properties and vis-cosities of the methyl butanoate+n-heptane+n-octane ternarysystem and its binary constitutions in the temperature rangefrom 28315K to 31315Krdquo Fluid Phase Equilibria vol 186 pp207ndash234 2001

[19] O Kiyohara and G C Benson ldquoUltrasonic speeds and isen-tropic compressibilities of n-alkanol + n-heptane mixtures at29815 KrdquoThe Journal of Chemical Thermodynamics vol 11 no9 pp 861ndash873 1979

[20] R J Fort and W R Moore ldquoAdiabatic compressibilities ofbinary liquidmixturesrdquo Transactions of the Faraday Society vol61 pp 2102ndash2111 1965

[21] A Ali A K Nain V K Sharma and S Ahmed ldquoUltrasonicstudies in binary liquid mixturesrdquo Indian Journal of Physics Bvol 75 no 6 pp 519ndash525 2001

[22] M Gowrisankar S Sivarambabu P Venkateswarlu and K SKumar ldquoExcess volumes speeds of sound isentropic compress-ibilities and viscosities of binary mixtures of 119873-ethyl anilinewith some aromatic ketones at 30315 Krdquo Bulletin of the KoreanChemical Society vol 33 no 5 pp 1686ndash1692 2012

[23] T Karunakar andCH Srinivas ldquoThermo acoustic and infraredstudy of molecular interactions in binary mixture aniline+1-butanolrdquo Research amp Reviews Journal of Pure and AppliedPhysics vol 1 no 1 pp 5ndash10 2013

[24] O Nomoto ldquoEmpirical formula for sound velocity in liquidmixturesrdquo Journal of the Physical Society of Japan vol 13 no12 pp 1528ndash1532 1958

[25] W van Dael Thermodynamic Properties and Velocity of SoundButterworth London UK 1975

[26] S Baluja and P H Parsania ldquoAcoustical properties of 3-120572-furylacrylic acid in protic and aprotic solventsrdquo Asian Journal ofChemistry vol 7 pp 417ndash423 1995

[27] K Sreekanth D S Kumar M Kondaiah and D Krishna RaoldquoStudy of molecular interactions in the mixtures of secondaryalcohols with equimolar mixture of ethanol + formamide fromacoustic and thermodynamic parametersrdquo Journal of Chemicaland Pharmaceutical Research vol 3 no 4 pp 29ndash41 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 6: Research Article Ultrasonic Investigations of Molecular ...downloads.hindawi.com/journals/jac/2014/741795.pdf · Research Article Ultrasonic Investigations of Molecular Interaction

6 Journal of Applied Chemistry

0

001

002

003

004

005

006

0 02 04 06 08 1

minus10

m)

x1

LE f(10

Figure 3 Variation of excess free length 119871119864119891 with mole fraction 119909

1

of cyclohexanone in (X) 119899-butanol(◼) sec-butanol(998771) and tert-butanol at 30815 K

00 02 04 06 08 1

minus004

minus008

minus012

minus016

6kg

mminus2

sminus1)

x1

ZE(10

Figure 4 Variation of excess acoustic impedance 119911119864 withmole fraction 119909

1 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

The variations of excess acoustic impedance (119911119864) anddeviation in ultrasonic speed (Δ119906) have been presented inFigures 4 and 5 respectively From Figure 4 it has beenobserved that the values of 119911119864 are negative over the entiremole fraction range indicating the decreasing strength ofinteractions between component molecules of the mixtureAccording to Gowrisankar et al [22] the negative valuesfor Δ119906 indicate the decrease in the strength of interactionbetween the molecules and the negative deviations in Δ119906from linear dependence suggest the presence of weak inter-action between the component molecules These deviationexcess properties further support the conclusions drawn from119881119864

119898 119871119864119891 and Δ119896

119904

The existing molecular interactions in the systems arewell reflected in the properties of partial molar volumes Thepartial molar volumes 119881

1198981of component 1 (CH) and 119881

1198982

of component 2 (isomers of butanol) in the mixtures overthe entire composition range have been calculated by usingthe following relations

1198811198981= 119881119864

119898+ 119881lowast

1+ 1199092(

120597119881119864

119898

120597119909

)

119879119875

00 02 04 06 08 1

minus20

minus40

minus60

minus80

x1

Δu

(msminus

1)

Figure 5 Variation of deviation in ultrasonic speed Δ119906 withmole fraction 119909

1 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

1198811198982= 119881119864

119898+ 119881lowast

2+ 1199091(

120597119881119864

119898

120597119909

)

119879119875

(9)

where 119881lowast1and 119881lowast

2are the molar volumes of the pure com-

ponents of CH and butanols respectively The derivates inthe above equations are obtained by differentiating Redlich-Kister equation (7) which leads to the following equations for1198811198981

and 1198811198982

1198811198981= 119881lowast

1+ 1199092

2

119895

sum

119894=0

119860119894(1199092minus 1199091)119894

minus 211990911199092

2

119895

sum

119894=1

119860119894(1199092minus 1199091)119894minus1

(10)

1198811198982= 119881lowast

2+ 1199092

1

119895

sum

119894=0

119860119894(1199092minus 1199091)119894

+ 211990921199092

1

119895

sum

119894=1

119860119894(1199092minus 1199091)119894minus1

(11)

using the above equations 1198811198641198981

1198811198641198982

have been calculatedusing

119881

119864

1198981= 1198811198981minus 119881lowast

1

119881

119864

1198982= 1198811198982minus 119881lowast

2

(12)

The pertinent values of 1198811198981

and 1198811198982

are furnished inTable 4 From this table the values of 119881

1198981and 119881

1198982for

both the components in the mixtures are greater than theirrespective molar volumes in the pure state that is an expan-sion of volume takes place on mixing alcohols with ketoneThese results also support the observed positive values of119881119864

119898in all the binary systems Figures 6 and 7 represent the

variation of excess partial molar volumes of 1198811198641198981

(CH) 1198811198641198982

(isomers of butanol) in the binary mixtures Examinationof these figures reveals that dispersion forces exist betweenthe unlike molecules These figures support the conclusionsdrawn from119881119864

119898The partial molar volumes and excess partial

Journal of Applied Chemistry 7

Table 4 Partial molar volumes of CH (1198811198981

10minus5m3 molminus1) and butanols (1198811198982

10minus5m3 molminus1) of all the binary systems with mole fraction(1199091) of CH at 30815 K

CH + 119899-butanol CH + 119904119890119888-butanol CH + 119905119890119903119905-butanol1199091

1198811198981

1198811198982

1199091

1198811198981

1198811198982

1199091

1198811198981

1198811198982

10000 7210 42676 10000 7210 49234 10000 7210 5461209121 7699 32512 09212 7681 38378 09221 7606 4459008854 7999 30035 08867 8130 34445 08895 7997 4078807211 10600 19303 07121 11586 20460 07012 12366 2341306687 11554 17041 06786 12354 18636 06814 12989 2202305232 14365 12385 05123 16219 12221 05112 19004 1308704752 15378 11198 04688 17234 11058 04777 20247 1189303231 19092 8232 03121 20995 8043 03321 25389 841602112 22264 6843 02797 21794 7619 02635 27459 756201313 24403 6314 01112 25586 6406 01323 30211 687400000 25905 6128 00000 26462 6307 00000 30421 6823

0

10

20

30

40

50

0 02 04 06 08 1

minus5

m3

mol

minus1)

x1

VE m2

(10

Figure 6 Variation of excess partial molar volume 1198811198641198982

withmole fraction 119909

1 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

molar volumes ofCHand isomers of butanols in all the binaryliquid mixtures at infinite dilution 119881infin

1198981 119881infin1198982

119881119864infin1198981

and119881

119864infin

1198982 respectively were obtained by putting 119909 = 0 in (10)

and 119909 = 1 in (11) Consider

119881

119864infin

1198981= 1198600+ 1198601+ 1198602+ 1198603+ sdot sdot sdot = 119881

infin

1198981minus 119881lowast

1

119881

119864infin

1198982= 1198600minus 1198601+ 1198602minus 1198603+ sdot sdot sdot = 119881

infin

1198982minus 119881lowast

2

(13)

The pertinent values of 119881infin1198981

119881infin1198982

119881119864infin1198981

and 119881119864infin1198982

arereported in Table 5 From this table it is seen that these valuesare positive from which we conclude that weak interactionsexist among the unlike molecules of the liquid mixtures

FT-IR spectra of pure CH butanols and binary mixturesof CH with butanols at equal concentrations are depicted inFigures 8 9 and 10 According to Karunakar and Srinivas[23] the intensity of an absorption in the IR spectrum isrelated to the change in dipole moment that occurs duringthe vibration Consequently vibrations that produce a largechange in dipole moment (eg C=O stretch) result in amore intense absorption than those that result in a relativelymodest change in dipole (eg C=C) Vibrations that do notresult in a change in dipole moment (eg a symmetrical

0

5

10

15

20

25

0 02 04 06 08 1

minus5

m3

mol

minus1)

x1

VE m1

(10

Figure 7 Variation of excess partial molar volume 1198811198641198981

withmole fraction 119909

1 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

020

040

060

080

100

500 1375 2250 3125 4000

Tran

smitt

ance

()

n-ButanolCH

Wave number (cmminus1)

CH + n-Butanol

Figure 8 Fourier transform infrared spectra of pure cyclohexanone(red) cyclohexanone and 119899-butanol in the ratio 5 5 (green) andpure 119899-butanol (blue)

8 Journal of Applied Chemistry

020

040

060

080

100

500 1375 2250 3125 4000

Tran

smitt

ance

()

sec-ButanolCH

Wave number (cmminus1)

CH + sec-Butanol

Figure 9 Fourier transform infrared spectra of pure cyclohexanone(red) cyclohexanone and sec-butanol in the ratio 5 5 (green) andpure sec-butanol (blue)

020

040

060

080

100

500 1375 2250 3125 4000

Tran

smitt

ance

()

tert-ButanolCH

Wave number (cmminus1)

CH + tert-Butanol

Figure 10 Fourier transform infrared spectra of pure cyclohex-anone (red) cyclohexanone and tert-butanol in the ratio 5 5(green) and pure tert-butanol (blue)

alkyne CequivC stretch) will show little or no absorption for thisvibration In the present FT-IR spectra liquid mixture showsvery small variations in the intensity of the respective bondsthat is dipole moment and hence it supports that weakinteractions take place between the components of liquidmolecules

Theoretical evaluation of ultrasonic speed in binary liquidmixtures and its correlation to study molecular interactionhas been successfully done in recent years Ultrasonic speedsin liquid mixtures have been calculated and compared with

Table 5 Partial molar volumes (119881infin1198981

119881infin1198982

) and excess partial molarvolumes (119881119864infin

1198981 119881119864infin1198982

) of the components at infinite dilution for allthe systems at 30815 K

System 119881

infin

1198981119881

infin

1198982119881

119864infin

1198981119881

119864infin

1198982

(10minus5m3 molminus1)CH + 119899-butanol 25519 43758 18696 36548CH + 119904119890119888-butanol 25561 509205 19253 42933CH + 119905119890119903119905-butanol 30034 55000 23211 47790

experimental values using various theories Such an evalua-tion offers a simple method to investigate molecular interac-tions besides verifying the applicability of various theories toliquid mixtures

Nomoto [24] established the following relation for soundspeed (119880

119873) based on the assumption of the linearity of the

molecular sound speed and the additivity of molar volume

119880119873=

(sum119909119894119877119894)

(sum119909119894119881119894)

3

(14)

where 119877119894is molar sound speed and 119881

119894is molar volume

van Dael and Vangeel [25] obtained the ideal mixturerelation

sum(

119909119894119872119894

1199062

119894

) =

1

sum119909119894119872119894

1

119880119881

2

(15)

Baluja and Parsania [26] have given impedance relationon the basis of force of resistance for sound speed by theinteracting molecules

119880imp =sum119909119894119885119894

sum119909119894120588119894

(16)

Raorsquos (specific sound speed) [27] relation is given by

119880119877= (sum119909

119894119903119894120588)

3

(17)

where 119903119894= 11990613

119894120588119894is Raorsquos specific sound speed of 119894th com-

ponent of the mixturePercentage deviation in ultrasonic speed is given by

Δ119906 = 100 lowast [1 minus119880cal119906exp 119905

] (18)

Table 6 shows the values of ultrasonic speed computed byvarious theories along with their percentage error for all thesystems The variations between the evaluated and experi-mental values may be due to interactions occurring betweenthe hetero molecules of the binaries From the observedvalues of all three systems there is a good agreementbetween theoretical and experimental values through vanDeal andVangeel relation It can be seen fromTable 6 that thetheoretical values of ultrasonic speed calculated by using var-ious theories show deviation from experimental values Thelimitations and approximation incorporated in these theories

Journal of Applied Chemistry 9

Table 6Theoretical values of ultrasonic speed from various equations and percentage error withmole fraction1199091of CH for all binary systems

at 30815 K

1199091

119880119873

119880119881

119880Imp 119880119877

119880119873

119880119881

119880Imp 119880119877

CH + 119899-butanol10000 136200 136200 136200 136200 000 000 000 00009121 135001 134547 135043 129806 143 109 146 24808854 134632 134060 134687 128317 177 133 181 30107211 132309 131199 132427 122196 305 218 314 48306687 131549 130334 131681 120973 322 227 332 50805232 129386 128042 129542 118502 333 226 346 53604752 128656 127319 128814 117871 317 210 330 54803231 126283 125129 126429 116393 261 168 273 54202112 124478 123609 124594 116166 196 125 205 48501313 123158 122567 123239 116883 135 086 142 38200000 120930 120930 120930 120930 000 000 000 000

CH + 119904119890119888-butanol10000 136200 136200 136200 136200 000 000 000 00009212 134836 134412 134936 128464 144 112 152 33508867 134234 133650 134375 125830 198 153 208 44107121 131130 129973 131435 117255 382 291 406 71606786 130524 129300 130852 116263 402 304 428 73505123 127465 126097 127860 113158 433 321 465 73804688 126650 125296 127049 112705 422 310 455 72603121 123666 122524 124027 112004 338 243 369 63702797 123039 121972 123381 112051 313 223 341 60801112 119722 119210 119901 113885 141 098 156 35300000 117480 117480 117480 117480 000 000 000 000

CH + 119905119890119903119905-butanol10000 136200 136200 136200 136200 000 000 000 00009221 134013 133538 134413 126923 209 173 240 33108895 133099 132456 133651 123600 283 233 325 45107012 127840 126544 129065 109588 561 454 663 94606814 127289 125953 128564 108550 578 467 684 98005112 122570 121104 124087 102359 633 506 764 112104777 121645 120195 123170 101661 627 501 761 111903321 117638 116400 119036 100406 548 437 674 99702635 115760 114696 117000 100794 480 384 592 87501323 112183 111575 112939 103339 289 233 358 52300000 108600 108600 108600 108600 000 000 000 000

are responsible for the deviations of theoretical values fromexperimental values Nomotorsquos theory proposes that the vol-ume does not change upon mixingTherefore no interactionbetween the components of liquid mixtures has been takeninto account Similarly the assumption for the formation ofideal mixing relation is that the ratios of specific heats of idealmixtures and the volumes are also equal Again no molecularinteractions are taken into account But upon mixing inter-actions between the molecules occur because of the presenceof various types of forces such as dispersion forces chargetransfer and hydrogen bonding dipole-dipole and dipole-induced dipole interactions Thus the observed deviationof theoretical values of speed from the experimental values

shows that the molecular interactions are taking placebetween the CH and isomers of butanol molecules Thedeviations of experimental values and values calculated fromimpedance relation and Raorsquos relation imply nonadditivity ofacoustic impedance and Raorsquos speed in the liquid mixturesAmong all the empirical theories van Dael and Vangeelsrelation gives better estimate of experimental values of soundspeed in all the systems In the present binary systems thedifference between experimental and theoretical speeds isgreater where themole fraction of CH varies in the region 03to 06 Hence it can be qualitatively inferred that the strengthof interaction in the binary mixtures is more in this range ofcomposition of CH with isomers of butanol liquid system

10 Journal of Applied Chemistry

5 Conclusion

(i) Ultrasonic speeds 119906 and densities 120588 of mixtures ofcyclohexanone with 119899-butanol or sec-butanol or tert-butanol over the entire composition range have beenmeasured at 119879 = 30815K

(ii) The values of 119881119864119898 Δ119896119904 119871119864119891 119911119864 and Δ119906 are calculated

from experimental data of density and ultrasonicspeed The excess and deviation properties have beenfitted to Redlich-Kister type polynomial and corre-sponding standard deviations have been evaluatedThe observed positive values of 119881119864

119898 Δ119896119904 and 119871119864

119891and

negative values of 119911119864 Δ119906 for all the liquid mixturesstudied clearly indicate the presence of weak inter-actions such as rupturing of hydrogen bond or reduc-tion in H-bond strength of butanol or breaking ofthe structure of one or both of the components in asolution

(iii) The deviationexcess properties have been fitted toRedlich-Kister type polynomial and the correspond-ing standard deviations have been calculated

(iv) The calculated values of partial molar volumes havealso been examined The observed higher partialmolar volumes in the liquid mixture when comparedto the respective molar volumes of pure componentsindicate weak interactions present in the systems

(v) The strength of interaction in themixtures follows theorder CH + tert-butanol gt sec-butanol gt 119899-butanol

(vi) FT-IR spectra for the present binary mixture alsosupport the conclusions drawn from the 119881119864

119898 119871119864119891 Δ119896119904

Δ119906 and 119911119864(vii) Further theoretical values of sound speed in the mix-

tures have been evaluated using various theories andhave been compared with experimental sound speedsto verify the applicability of such theories to the sys-tems studied

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

One of the authors SkMdNayeem is thankful to UGC NewDelhi Government of India for the financial grants towardsMRP (MRP-467114C (SERO-UGC))

References

[1] T B Thoe D K Aspinwall and M L H Wise ldquoReview onultrasonic machiningrdquo International Journal of Machine Toolsand Manufacture vol 38 no 4 pp 239ndash255 1998

[2] G Thomas Chemistry for Pharmacy and the Life SciencesPrentice Hall London UK 1996

[3] A M Ababneh C C Large and S Georghiou ldquoSolvation ofnucleosides in aqueous mixtures of organic solvents relevanceto dna open basepairsrdquo Biophysical Journal vol 85 no 2 pp1111ndash1127 2003

[4] R E Treybal Mass Transfer Operations McGraw Hill Singa-pore 3rd edition 1981

[5] PM Krishna B R Kumar B Sathyanarayana K S Kumar andN Satyanarayana ldquoDensities and speeds of sound for binaryliquid mixtures of thiolane-11-dioxide with butanone pentan-2-one pentan-3-one and 4-methyl-pentan-2-one atT = (30315or 30815 or 31315) Krdquo Journal of Chemical and EngineeringData vol 54 no 6 pp 1947ndash1950 2009

[6] PGnanaKumari PVenkatesuMV PrabhakaraRaoM-J Leeand H-M Lin ldquoExcess molar volumes and ultrasonic studiesof 119873-methyl-2-pyrrolidone with ketones at 119879 = 30315 Krdquo TheJournal of ChemicalThermodynamics vol 41 no 5 pp 586ndash5902009

[7] M Sreenivasulu and P R Naidu ldquoExcess volumes and adiabaticcompressibility of binary mixtures of butyl amine and cyclicketonesrdquo Australian Journal of Chemistry vol 32 no 8 pp1649ndash1652 1979

[8] K Rajagopal and S Chenthilnath ldquoExcess thermodynamicstudies of binary liquid mixtures of 2-methyl-2-propanol withketonesrdquo Indian Journal of Pure amp Applied Physics vol 48 no5 pp 326ndash333 2010

[9] R K Bachu M K Patwari S Boodida and S Nallani ldquoVol-umetric and transport properties of binary liquid mixtures ofaliphatic ketones with phenylacetonitrile at T = 30815 Krdquo Jour-nal of Chemical amp Engineering Data vol 53 no 10 pp 2403ndash2407 2008

[10] N G Tsierkezos I E Molinou and A C Filippou ldquoThermo-dynamic properties of binary mixtures of cyclohexanone with119899-alkanols (C

1-C5) at 29315 Krdquo Journal of Solution Chemistry

vol 34 no 12 pp 1371ndash1386 2005[11] M Sri Lakshmi R R Raju C Rambabu G V R Rao and

K Narendra ldquoStudy of molecular interactions in binary liquidmixtures containing higher alcohols at different temperaturesrdquoResearchampReviews Journal of Chemistry vol 2 no 1 pp 12ndash242013

[12] A I Vogel Text Book of Practical Organic Chemistry LongmanLondon UK 5th edition 1989

[13] J A Riddick W Bunger and T K Sakano Techniques of Chem-istry Organic Solvents Physical Properties andMethods of Purifi-cation Wiley Interscience New York NY USA 4th edition1987

[14] R K Bachu andM K Patwari ldquoDensities viscosities and speedof sound of binary mixtures of phenylacetonitrile with somealiphatic alcohols at 30815 Krdquo Indian Journal of Chemistry Avol 47 no 7 pp 1026ndash1031 2008

[15] H C Parker and E W Parker ldquoDensities of certain aque-ous potassium chloride solutions as determined with a newpyknometerrdquo Journal of Physical Chemistry vol 29 pp 130ndash1371925

[16] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification solutionsrdquoIndustrial and Engineering Chemistry vol 40 no 2 pp 345ndash348 1948

[17] R Vijaya Kumar S Viswanathan and M Anand Rao ldquoExcessvolumes speeds of sound and isentropic compressibilitiesof 2-propyn-1-ol + 12-dichloroethane +111-trichloroe thane+1122-tetrachloroethane and +trichloroethylene at 30315Krdquo

Journal of Applied Chemistry 11

Journal of Chemical and EngineeringData vol 41 no 4 pp 755ndash757 1996

[18] J S Matos and J L Trenzado ldquoVolumetric properties and vis-cosities of the methyl butanoate+n-heptane+n-octane ternarysystem and its binary constitutions in the temperature rangefrom 28315K to 31315Krdquo Fluid Phase Equilibria vol 186 pp207ndash234 2001

[19] O Kiyohara and G C Benson ldquoUltrasonic speeds and isen-tropic compressibilities of n-alkanol + n-heptane mixtures at29815 KrdquoThe Journal of Chemical Thermodynamics vol 11 no9 pp 861ndash873 1979

[20] R J Fort and W R Moore ldquoAdiabatic compressibilities ofbinary liquidmixturesrdquo Transactions of the Faraday Society vol61 pp 2102ndash2111 1965

[21] A Ali A K Nain V K Sharma and S Ahmed ldquoUltrasonicstudies in binary liquid mixturesrdquo Indian Journal of Physics Bvol 75 no 6 pp 519ndash525 2001

[22] M Gowrisankar S Sivarambabu P Venkateswarlu and K SKumar ldquoExcess volumes speeds of sound isentropic compress-ibilities and viscosities of binary mixtures of 119873-ethyl anilinewith some aromatic ketones at 30315 Krdquo Bulletin of the KoreanChemical Society vol 33 no 5 pp 1686ndash1692 2012

[23] T Karunakar andCH Srinivas ldquoThermo acoustic and infraredstudy of molecular interactions in binary mixture aniline+1-butanolrdquo Research amp Reviews Journal of Pure and AppliedPhysics vol 1 no 1 pp 5ndash10 2013

[24] O Nomoto ldquoEmpirical formula for sound velocity in liquidmixturesrdquo Journal of the Physical Society of Japan vol 13 no12 pp 1528ndash1532 1958

[25] W van Dael Thermodynamic Properties and Velocity of SoundButterworth London UK 1975

[26] S Baluja and P H Parsania ldquoAcoustical properties of 3-120572-furylacrylic acid in protic and aprotic solventsrdquo Asian Journal ofChemistry vol 7 pp 417ndash423 1995

[27] K Sreekanth D S Kumar M Kondaiah and D Krishna RaoldquoStudy of molecular interactions in the mixtures of secondaryalcohols with equimolar mixture of ethanol + formamide fromacoustic and thermodynamic parametersrdquo Journal of Chemicaland Pharmaceutical Research vol 3 no 4 pp 29ndash41 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 7: Research Article Ultrasonic Investigations of Molecular ...downloads.hindawi.com/journals/jac/2014/741795.pdf · Research Article Ultrasonic Investigations of Molecular Interaction

Journal of Applied Chemistry 7

Table 4 Partial molar volumes of CH (1198811198981

10minus5m3 molminus1) and butanols (1198811198982

10minus5m3 molminus1) of all the binary systems with mole fraction(1199091) of CH at 30815 K

CH + 119899-butanol CH + 119904119890119888-butanol CH + 119905119890119903119905-butanol1199091

1198811198981

1198811198982

1199091

1198811198981

1198811198982

1199091

1198811198981

1198811198982

10000 7210 42676 10000 7210 49234 10000 7210 5461209121 7699 32512 09212 7681 38378 09221 7606 4459008854 7999 30035 08867 8130 34445 08895 7997 4078807211 10600 19303 07121 11586 20460 07012 12366 2341306687 11554 17041 06786 12354 18636 06814 12989 2202305232 14365 12385 05123 16219 12221 05112 19004 1308704752 15378 11198 04688 17234 11058 04777 20247 1189303231 19092 8232 03121 20995 8043 03321 25389 841602112 22264 6843 02797 21794 7619 02635 27459 756201313 24403 6314 01112 25586 6406 01323 30211 687400000 25905 6128 00000 26462 6307 00000 30421 6823

0

10

20

30

40

50

0 02 04 06 08 1

minus5

m3

mol

minus1)

x1

VE m2

(10

Figure 6 Variation of excess partial molar volume 1198811198641198982

withmole fraction 119909

1 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

molar volumes ofCHand isomers of butanols in all the binaryliquid mixtures at infinite dilution 119881infin

1198981 119881infin1198982

119881119864infin1198981

and119881

119864infin

1198982 respectively were obtained by putting 119909 = 0 in (10)

and 119909 = 1 in (11) Consider

119881

119864infin

1198981= 1198600+ 1198601+ 1198602+ 1198603+ sdot sdot sdot = 119881

infin

1198981minus 119881lowast

1

119881

119864infin

1198982= 1198600minus 1198601+ 1198602minus 1198603+ sdot sdot sdot = 119881

infin

1198982minus 119881lowast

2

(13)

The pertinent values of 119881infin1198981

119881infin1198982

119881119864infin1198981

and 119881119864infin1198982

arereported in Table 5 From this table it is seen that these valuesare positive from which we conclude that weak interactionsexist among the unlike molecules of the liquid mixtures

FT-IR spectra of pure CH butanols and binary mixturesof CH with butanols at equal concentrations are depicted inFigures 8 9 and 10 According to Karunakar and Srinivas[23] the intensity of an absorption in the IR spectrum isrelated to the change in dipole moment that occurs duringthe vibration Consequently vibrations that produce a largechange in dipole moment (eg C=O stretch) result in amore intense absorption than those that result in a relativelymodest change in dipole (eg C=C) Vibrations that do notresult in a change in dipole moment (eg a symmetrical

0

5

10

15

20

25

0 02 04 06 08 1

minus5

m3

mol

minus1)

x1

VE m1

(10

Figure 7 Variation of excess partial molar volume 1198811198641198981

withmole fraction 119909

1 of cyclohexanone in (X) 119899-butanol(◼) sec-

butanol(998771) and tert-butanol at 30815 K

020

040

060

080

100

500 1375 2250 3125 4000

Tran

smitt

ance

()

n-ButanolCH

Wave number (cmminus1)

CH + n-Butanol

Figure 8 Fourier transform infrared spectra of pure cyclohexanone(red) cyclohexanone and 119899-butanol in the ratio 5 5 (green) andpure 119899-butanol (blue)

8 Journal of Applied Chemistry

020

040

060

080

100

500 1375 2250 3125 4000

Tran

smitt

ance

()

sec-ButanolCH

Wave number (cmminus1)

CH + sec-Butanol

Figure 9 Fourier transform infrared spectra of pure cyclohexanone(red) cyclohexanone and sec-butanol in the ratio 5 5 (green) andpure sec-butanol (blue)

020

040

060

080

100

500 1375 2250 3125 4000

Tran

smitt

ance

()

tert-ButanolCH

Wave number (cmminus1)

CH + tert-Butanol

Figure 10 Fourier transform infrared spectra of pure cyclohex-anone (red) cyclohexanone and tert-butanol in the ratio 5 5(green) and pure tert-butanol (blue)

alkyne CequivC stretch) will show little or no absorption for thisvibration In the present FT-IR spectra liquid mixture showsvery small variations in the intensity of the respective bondsthat is dipole moment and hence it supports that weakinteractions take place between the components of liquidmolecules

Theoretical evaluation of ultrasonic speed in binary liquidmixtures and its correlation to study molecular interactionhas been successfully done in recent years Ultrasonic speedsin liquid mixtures have been calculated and compared with

Table 5 Partial molar volumes (119881infin1198981

119881infin1198982

) and excess partial molarvolumes (119881119864infin

1198981 119881119864infin1198982

) of the components at infinite dilution for allthe systems at 30815 K

System 119881

infin

1198981119881

infin

1198982119881

119864infin

1198981119881

119864infin

1198982

(10minus5m3 molminus1)CH + 119899-butanol 25519 43758 18696 36548CH + 119904119890119888-butanol 25561 509205 19253 42933CH + 119905119890119903119905-butanol 30034 55000 23211 47790

experimental values using various theories Such an evalua-tion offers a simple method to investigate molecular interac-tions besides verifying the applicability of various theories toliquid mixtures

Nomoto [24] established the following relation for soundspeed (119880

119873) based on the assumption of the linearity of the

molecular sound speed and the additivity of molar volume

119880119873=

(sum119909119894119877119894)

(sum119909119894119881119894)

3

(14)

where 119877119894is molar sound speed and 119881

119894is molar volume

van Dael and Vangeel [25] obtained the ideal mixturerelation

sum(

119909119894119872119894

1199062

119894

) =

1

sum119909119894119872119894

1

119880119881

2

(15)

Baluja and Parsania [26] have given impedance relationon the basis of force of resistance for sound speed by theinteracting molecules

119880imp =sum119909119894119885119894

sum119909119894120588119894

(16)

Raorsquos (specific sound speed) [27] relation is given by

119880119877= (sum119909

119894119903119894120588)

3

(17)

where 119903119894= 11990613

119894120588119894is Raorsquos specific sound speed of 119894th com-

ponent of the mixturePercentage deviation in ultrasonic speed is given by

Δ119906 = 100 lowast [1 minus119880cal119906exp 119905

] (18)

Table 6 shows the values of ultrasonic speed computed byvarious theories along with their percentage error for all thesystems The variations between the evaluated and experi-mental values may be due to interactions occurring betweenthe hetero molecules of the binaries From the observedvalues of all three systems there is a good agreementbetween theoretical and experimental values through vanDeal andVangeel relation It can be seen fromTable 6 that thetheoretical values of ultrasonic speed calculated by using var-ious theories show deviation from experimental values Thelimitations and approximation incorporated in these theories

Journal of Applied Chemistry 9

Table 6Theoretical values of ultrasonic speed from various equations and percentage error withmole fraction1199091of CH for all binary systems

at 30815 K

1199091

119880119873

119880119881

119880Imp 119880119877

119880119873

119880119881

119880Imp 119880119877

CH + 119899-butanol10000 136200 136200 136200 136200 000 000 000 00009121 135001 134547 135043 129806 143 109 146 24808854 134632 134060 134687 128317 177 133 181 30107211 132309 131199 132427 122196 305 218 314 48306687 131549 130334 131681 120973 322 227 332 50805232 129386 128042 129542 118502 333 226 346 53604752 128656 127319 128814 117871 317 210 330 54803231 126283 125129 126429 116393 261 168 273 54202112 124478 123609 124594 116166 196 125 205 48501313 123158 122567 123239 116883 135 086 142 38200000 120930 120930 120930 120930 000 000 000 000

CH + 119904119890119888-butanol10000 136200 136200 136200 136200 000 000 000 00009212 134836 134412 134936 128464 144 112 152 33508867 134234 133650 134375 125830 198 153 208 44107121 131130 129973 131435 117255 382 291 406 71606786 130524 129300 130852 116263 402 304 428 73505123 127465 126097 127860 113158 433 321 465 73804688 126650 125296 127049 112705 422 310 455 72603121 123666 122524 124027 112004 338 243 369 63702797 123039 121972 123381 112051 313 223 341 60801112 119722 119210 119901 113885 141 098 156 35300000 117480 117480 117480 117480 000 000 000 000

CH + 119905119890119903119905-butanol10000 136200 136200 136200 136200 000 000 000 00009221 134013 133538 134413 126923 209 173 240 33108895 133099 132456 133651 123600 283 233 325 45107012 127840 126544 129065 109588 561 454 663 94606814 127289 125953 128564 108550 578 467 684 98005112 122570 121104 124087 102359 633 506 764 112104777 121645 120195 123170 101661 627 501 761 111903321 117638 116400 119036 100406 548 437 674 99702635 115760 114696 117000 100794 480 384 592 87501323 112183 111575 112939 103339 289 233 358 52300000 108600 108600 108600 108600 000 000 000 000

are responsible for the deviations of theoretical values fromexperimental values Nomotorsquos theory proposes that the vol-ume does not change upon mixingTherefore no interactionbetween the components of liquid mixtures has been takeninto account Similarly the assumption for the formation ofideal mixing relation is that the ratios of specific heats of idealmixtures and the volumes are also equal Again no molecularinteractions are taken into account But upon mixing inter-actions between the molecules occur because of the presenceof various types of forces such as dispersion forces chargetransfer and hydrogen bonding dipole-dipole and dipole-induced dipole interactions Thus the observed deviationof theoretical values of speed from the experimental values

shows that the molecular interactions are taking placebetween the CH and isomers of butanol molecules Thedeviations of experimental values and values calculated fromimpedance relation and Raorsquos relation imply nonadditivity ofacoustic impedance and Raorsquos speed in the liquid mixturesAmong all the empirical theories van Dael and Vangeelsrelation gives better estimate of experimental values of soundspeed in all the systems In the present binary systems thedifference between experimental and theoretical speeds isgreater where themole fraction of CH varies in the region 03to 06 Hence it can be qualitatively inferred that the strengthof interaction in the binary mixtures is more in this range ofcomposition of CH with isomers of butanol liquid system

10 Journal of Applied Chemistry

5 Conclusion

(i) Ultrasonic speeds 119906 and densities 120588 of mixtures ofcyclohexanone with 119899-butanol or sec-butanol or tert-butanol over the entire composition range have beenmeasured at 119879 = 30815K

(ii) The values of 119881119864119898 Δ119896119904 119871119864119891 119911119864 and Δ119906 are calculated

from experimental data of density and ultrasonicspeed The excess and deviation properties have beenfitted to Redlich-Kister type polynomial and corre-sponding standard deviations have been evaluatedThe observed positive values of 119881119864

119898 Δ119896119904 and 119871119864

119891and

negative values of 119911119864 Δ119906 for all the liquid mixturesstudied clearly indicate the presence of weak inter-actions such as rupturing of hydrogen bond or reduc-tion in H-bond strength of butanol or breaking ofthe structure of one or both of the components in asolution

(iii) The deviationexcess properties have been fitted toRedlich-Kister type polynomial and the correspond-ing standard deviations have been calculated

(iv) The calculated values of partial molar volumes havealso been examined The observed higher partialmolar volumes in the liquid mixture when comparedto the respective molar volumes of pure componentsindicate weak interactions present in the systems

(v) The strength of interaction in themixtures follows theorder CH + tert-butanol gt sec-butanol gt 119899-butanol

(vi) FT-IR spectra for the present binary mixture alsosupport the conclusions drawn from the 119881119864

119898 119871119864119891 Δ119896119904

Δ119906 and 119911119864(vii) Further theoretical values of sound speed in the mix-

tures have been evaluated using various theories andhave been compared with experimental sound speedsto verify the applicability of such theories to the sys-tems studied

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

One of the authors SkMdNayeem is thankful to UGC NewDelhi Government of India for the financial grants towardsMRP (MRP-467114C (SERO-UGC))

References

[1] T B Thoe D K Aspinwall and M L H Wise ldquoReview onultrasonic machiningrdquo International Journal of Machine Toolsand Manufacture vol 38 no 4 pp 239ndash255 1998

[2] G Thomas Chemistry for Pharmacy and the Life SciencesPrentice Hall London UK 1996

[3] A M Ababneh C C Large and S Georghiou ldquoSolvation ofnucleosides in aqueous mixtures of organic solvents relevanceto dna open basepairsrdquo Biophysical Journal vol 85 no 2 pp1111ndash1127 2003

[4] R E Treybal Mass Transfer Operations McGraw Hill Singa-pore 3rd edition 1981

[5] PM Krishna B R Kumar B Sathyanarayana K S Kumar andN Satyanarayana ldquoDensities and speeds of sound for binaryliquid mixtures of thiolane-11-dioxide with butanone pentan-2-one pentan-3-one and 4-methyl-pentan-2-one atT = (30315or 30815 or 31315) Krdquo Journal of Chemical and EngineeringData vol 54 no 6 pp 1947ndash1950 2009

[6] PGnanaKumari PVenkatesuMV PrabhakaraRaoM-J Leeand H-M Lin ldquoExcess molar volumes and ultrasonic studiesof 119873-methyl-2-pyrrolidone with ketones at 119879 = 30315 Krdquo TheJournal of ChemicalThermodynamics vol 41 no 5 pp 586ndash5902009

[7] M Sreenivasulu and P R Naidu ldquoExcess volumes and adiabaticcompressibility of binary mixtures of butyl amine and cyclicketonesrdquo Australian Journal of Chemistry vol 32 no 8 pp1649ndash1652 1979

[8] K Rajagopal and S Chenthilnath ldquoExcess thermodynamicstudies of binary liquid mixtures of 2-methyl-2-propanol withketonesrdquo Indian Journal of Pure amp Applied Physics vol 48 no5 pp 326ndash333 2010

[9] R K Bachu M K Patwari S Boodida and S Nallani ldquoVol-umetric and transport properties of binary liquid mixtures ofaliphatic ketones with phenylacetonitrile at T = 30815 Krdquo Jour-nal of Chemical amp Engineering Data vol 53 no 10 pp 2403ndash2407 2008

[10] N G Tsierkezos I E Molinou and A C Filippou ldquoThermo-dynamic properties of binary mixtures of cyclohexanone with119899-alkanols (C

1-C5) at 29315 Krdquo Journal of Solution Chemistry

vol 34 no 12 pp 1371ndash1386 2005[11] M Sri Lakshmi R R Raju C Rambabu G V R Rao and

K Narendra ldquoStudy of molecular interactions in binary liquidmixtures containing higher alcohols at different temperaturesrdquoResearchampReviews Journal of Chemistry vol 2 no 1 pp 12ndash242013

[12] A I Vogel Text Book of Practical Organic Chemistry LongmanLondon UK 5th edition 1989

[13] J A Riddick W Bunger and T K Sakano Techniques of Chem-istry Organic Solvents Physical Properties andMethods of Purifi-cation Wiley Interscience New York NY USA 4th edition1987

[14] R K Bachu andM K Patwari ldquoDensities viscosities and speedof sound of binary mixtures of phenylacetonitrile with somealiphatic alcohols at 30815 Krdquo Indian Journal of Chemistry Avol 47 no 7 pp 1026ndash1031 2008

[15] H C Parker and E W Parker ldquoDensities of certain aque-ous potassium chloride solutions as determined with a newpyknometerrdquo Journal of Physical Chemistry vol 29 pp 130ndash1371925

[16] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification solutionsrdquoIndustrial and Engineering Chemistry vol 40 no 2 pp 345ndash348 1948

[17] R Vijaya Kumar S Viswanathan and M Anand Rao ldquoExcessvolumes speeds of sound and isentropic compressibilitiesof 2-propyn-1-ol + 12-dichloroethane +111-trichloroe thane+1122-tetrachloroethane and +trichloroethylene at 30315Krdquo

Journal of Applied Chemistry 11

Journal of Chemical and EngineeringData vol 41 no 4 pp 755ndash757 1996

[18] J S Matos and J L Trenzado ldquoVolumetric properties and vis-cosities of the methyl butanoate+n-heptane+n-octane ternarysystem and its binary constitutions in the temperature rangefrom 28315K to 31315Krdquo Fluid Phase Equilibria vol 186 pp207ndash234 2001

[19] O Kiyohara and G C Benson ldquoUltrasonic speeds and isen-tropic compressibilities of n-alkanol + n-heptane mixtures at29815 KrdquoThe Journal of Chemical Thermodynamics vol 11 no9 pp 861ndash873 1979

[20] R J Fort and W R Moore ldquoAdiabatic compressibilities ofbinary liquidmixturesrdquo Transactions of the Faraday Society vol61 pp 2102ndash2111 1965

[21] A Ali A K Nain V K Sharma and S Ahmed ldquoUltrasonicstudies in binary liquid mixturesrdquo Indian Journal of Physics Bvol 75 no 6 pp 519ndash525 2001

[22] M Gowrisankar S Sivarambabu P Venkateswarlu and K SKumar ldquoExcess volumes speeds of sound isentropic compress-ibilities and viscosities of binary mixtures of 119873-ethyl anilinewith some aromatic ketones at 30315 Krdquo Bulletin of the KoreanChemical Society vol 33 no 5 pp 1686ndash1692 2012

[23] T Karunakar andCH Srinivas ldquoThermo acoustic and infraredstudy of molecular interactions in binary mixture aniline+1-butanolrdquo Research amp Reviews Journal of Pure and AppliedPhysics vol 1 no 1 pp 5ndash10 2013

[24] O Nomoto ldquoEmpirical formula for sound velocity in liquidmixturesrdquo Journal of the Physical Society of Japan vol 13 no12 pp 1528ndash1532 1958

[25] W van Dael Thermodynamic Properties and Velocity of SoundButterworth London UK 1975

[26] S Baluja and P H Parsania ldquoAcoustical properties of 3-120572-furylacrylic acid in protic and aprotic solventsrdquo Asian Journal ofChemistry vol 7 pp 417ndash423 1995

[27] K Sreekanth D S Kumar M Kondaiah and D Krishna RaoldquoStudy of molecular interactions in the mixtures of secondaryalcohols with equimolar mixture of ethanol + formamide fromacoustic and thermodynamic parametersrdquo Journal of Chemicaland Pharmaceutical Research vol 3 no 4 pp 29ndash41 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 8: Research Article Ultrasonic Investigations of Molecular ...downloads.hindawi.com/journals/jac/2014/741795.pdf · Research Article Ultrasonic Investigations of Molecular Interaction

8 Journal of Applied Chemistry

020

040

060

080

100

500 1375 2250 3125 4000

Tran

smitt

ance

()

sec-ButanolCH

Wave number (cmminus1)

CH + sec-Butanol

Figure 9 Fourier transform infrared spectra of pure cyclohexanone(red) cyclohexanone and sec-butanol in the ratio 5 5 (green) andpure sec-butanol (blue)

020

040

060

080

100

500 1375 2250 3125 4000

Tran

smitt

ance

()

tert-ButanolCH

Wave number (cmminus1)

CH + tert-Butanol

Figure 10 Fourier transform infrared spectra of pure cyclohex-anone (red) cyclohexanone and tert-butanol in the ratio 5 5(green) and pure tert-butanol (blue)

alkyne CequivC stretch) will show little or no absorption for thisvibration In the present FT-IR spectra liquid mixture showsvery small variations in the intensity of the respective bondsthat is dipole moment and hence it supports that weakinteractions take place between the components of liquidmolecules

Theoretical evaluation of ultrasonic speed in binary liquidmixtures and its correlation to study molecular interactionhas been successfully done in recent years Ultrasonic speedsin liquid mixtures have been calculated and compared with

Table 5 Partial molar volumes (119881infin1198981

119881infin1198982

) and excess partial molarvolumes (119881119864infin

1198981 119881119864infin1198982

) of the components at infinite dilution for allthe systems at 30815 K

System 119881

infin

1198981119881

infin

1198982119881

119864infin

1198981119881

119864infin

1198982

(10minus5m3 molminus1)CH + 119899-butanol 25519 43758 18696 36548CH + 119904119890119888-butanol 25561 509205 19253 42933CH + 119905119890119903119905-butanol 30034 55000 23211 47790

experimental values using various theories Such an evalua-tion offers a simple method to investigate molecular interac-tions besides verifying the applicability of various theories toliquid mixtures

Nomoto [24] established the following relation for soundspeed (119880

119873) based on the assumption of the linearity of the

molecular sound speed and the additivity of molar volume

119880119873=

(sum119909119894119877119894)

(sum119909119894119881119894)

3

(14)

where 119877119894is molar sound speed and 119881

119894is molar volume

van Dael and Vangeel [25] obtained the ideal mixturerelation

sum(

119909119894119872119894

1199062

119894

) =

1

sum119909119894119872119894

1

119880119881

2

(15)

Baluja and Parsania [26] have given impedance relationon the basis of force of resistance for sound speed by theinteracting molecules

119880imp =sum119909119894119885119894

sum119909119894120588119894

(16)

Raorsquos (specific sound speed) [27] relation is given by

119880119877= (sum119909

119894119903119894120588)

3

(17)

where 119903119894= 11990613

119894120588119894is Raorsquos specific sound speed of 119894th com-

ponent of the mixturePercentage deviation in ultrasonic speed is given by

Δ119906 = 100 lowast [1 minus119880cal119906exp 119905

] (18)

Table 6 shows the values of ultrasonic speed computed byvarious theories along with their percentage error for all thesystems The variations between the evaluated and experi-mental values may be due to interactions occurring betweenthe hetero molecules of the binaries From the observedvalues of all three systems there is a good agreementbetween theoretical and experimental values through vanDeal andVangeel relation It can be seen fromTable 6 that thetheoretical values of ultrasonic speed calculated by using var-ious theories show deviation from experimental values Thelimitations and approximation incorporated in these theories

Journal of Applied Chemistry 9

Table 6Theoretical values of ultrasonic speed from various equations and percentage error withmole fraction1199091of CH for all binary systems

at 30815 K

1199091

119880119873

119880119881

119880Imp 119880119877

119880119873

119880119881

119880Imp 119880119877

CH + 119899-butanol10000 136200 136200 136200 136200 000 000 000 00009121 135001 134547 135043 129806 143 109 146 24808854 134632 134060 134687 128317 177 133 181 30107211 132309 131199 132427 122196 305 218 314 48306687 131549 130334 131681 120973 322 227 332 50805232 129386 128042 129542 118502 333 226 346 53604752 128656 127319 128814 117871 317 210 330 54803231 126283 125129 126429 116393 261 168 273 54202112 124478 123609 124594 116166 196 125 205 48501313 123158 122567 123239 116883 135 086 142 38200000 120930 120930 120930 120930 000 000 000 000

CH + 119904119890119888-butanol10000 136200 136200 136200 136200 000 000 000 00009212 134836 134412 134936 128464 144 112 152 33508867 134234 133650 134375 125830 198 153 208 44107121 131130 129973 131435 117255 382 291 406 71606786 130524 129300 130852 116263 402 304 428 73505123 127465 126097 127860 113158 433 321 465 73804688 126650 125296 127049 112705 422 310 455 72603121 123666 122524 124027 112004 338 243 369 63702797 123039 121972 123381 112051 313 223 341 60801112 119722 119210 119901 113885 141 098 156 35300000 117480 117480 117480 117480 000 000 000 000

CH + 119905119890119903119905-butanol10000 136200 136200 136200 136200 000 000 000 00009221 134013 133538 134413 126923 209 173 240 33108895 133099 132456 133651 123600 283 233 325 45107012 127840 126544 129065 109588 561 454 663 94606814 127289 125953 128564 108550 578 467 684 98005112 122570 121104 124087 102359 633 506 764 112104777 121645 120195 123170 101661 627 501 761 111903321 117638 116400 119036 100406 548 437 674 99702635 115760 114696 117000 100794 480 384 592 87501323 112183 111575 112939 103339 289 233 358 52300000 108600 108600 108600 108600 000 000 000 000

are responsible for the deviations of theoretical values fromexperimental values Nomotorsquos theory proposes that the vol-ume does not change upon mixingTherefore no interactionbetween the components of liquid mixtures has been takeninto account Similarly the assumption for the formation ofideal mixing relation is that the ratios of specific heats of idealmixtures and the volumes are also equal Again no molecularinteractions are taken into account But upon mixing inter-actions between the molecules occur because of the presenceof various types of forces such as dispersion forces chargetransfer and hydrogen bonding dipole-dipole and dipole-induced dipole interactions Thus the observed deviationof theoretical values of speed from the experimental values

shows that the molecular interactions are taking placebetween the CH and isomers of butanol molecules Thedeviations of experimental values and values calculated fromimpedance relation and Raorsquos relation imply nonadditivity ofacoustic impedance and Raorsquos speed in the liquid mixturesAmong all the empirical theories van Dael and Vangeelsrelation gives better estimate of experimental values of soundspeed in all the systems In the present binary systems thedifference between experimental and theoretical speeds isgreater where themole fraction of CH varies in the region 03to 06 Hence it can be qualitatively inferred that the strengthof interaction in the binary mixtures is more in this range ofcomposition of CH with isomers of butanol liquid system

10 Journal of Applied Chemistry

5 Conclusion

(i) Ultrasonic speeds 119906 and densities 120588 of mixtures ofcyclohexanone with 119899-butanol or sec-butanol or tert-butanol over the entire composition range have beenmeasured at 119879 = 30815K

(ii) The values of 119881119864119898 Δ119896119904 119871119864119891 119911119864 and Δ119906 are calculated

from experimental data of density and ultrasonicspeed The excess and deviation properties have beenfitted to Redlich-Kister type polynomial and corre-sponding standard deviations have been evaluatedThe observed positive values of 119881119864

119898 Δ119896119904 and 119871119864

119891and

negative values of 119911119864 Δ119906 for all the liquid mixturesstudied clearly indicate the presence of weak inter-actions such as rupturing of hydrogen bond or reduc-tion in H-bond strength of butanol or breaking ofthe structure of one or both of the components in asolution

(iii) The deviationexcess properties have been fitted toRedlich-Kister type polynomial and the correspond-ing standard deviations have been calculated

(iv) The calculated values of partial molar volumes havealso been examined The observed higher partialmolar volumes in the liquid mixture when comparedto the respective molar volumes of pure componentsindicate weak interactions present in the systems

(v) The strength of interaction in themixtures follows theorder CH + tert-butanol gt sec-butanol gt 119899-butanol

(vi) FT-IR spectra for the present binary mixture alsosupport the conclusions drawn from the 119881119864

119898 119871119864119891 Δ119896119904

Δ119906 and 119911119864(vii) Further theoretical values of sound speed in the mix-

tures have been evaluated using various theories andhave been compared with experimental sound speedsto verify the applicability of such theories to the sys-tems studied

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

One of the authors SkMdNayeem is thankful to UGC NewDelhi Government of India for the financial grants towardsMRP (MRP-467114C (SERO-UGC))

References

[1] T B Thoe D K Aspinwall and M L H Wise ldquoReview onultrasonic machiningrdquo International Journal of Machine Toolsand Manufacture vol 38 no 4 pp 239ndash255 1998

[2] G Thomas Chemistry for Pharmacy and the Life SciencesPrentice Hall London UK 1996

[3] A M Ababneh C C Large and S Georghiou ldquoSolvation ofnucleosides in aqueous mixtures of organic solvents relevanceto dna open basepairsrdquo Biophysical Journal vol 85 no 2 pp1111ndash1127 2003

[4] R E Treybal Mass Transfer Operations McGraw Hill Singa-pore 3rd edition 1981

[5] PM Krishna B R Kumar B Sathyanarayana K S Kumar andN Satyanarayana ldquoDensities and speeds of sound for binaryliquid mixtures of thiolane-11-dioxide with butanone pentan-2-one pentan-3-one and 4-methyl-pentan-2-one atT = (30315or 30815 or 31315) Krdquo Journal of Chemical and EngineeringData vol 54 no 6 pp 1947ndash1950 2009

[6] PGnanaKumari PVenkatesuMV PrabhakaraRaoM-J Leeand H-M Lin ldquoExcess molar volumes and ultrasonic studiesof 119873-methyl-2-pyrrolidone with ketones at 119879 = 30315 Krdquo TheJournal of ChemicalThermodynamics vol 41 no 5 pp 586ndash5902009

[7] M Sreenivasulu and P R Naidu ldquoExcess volumes and adiabaticcompressibility of binary mixtures of butyl amine and cyclicketonesrdquo Australian Journal of Chemistry vol 32 no 8 pp1649ndash1652 1979

[8] K Rajagopal and S Chenthilnath ldquoExcess thermodynamicstudies of binary liquid mixtures of 2-methyl-2-propanol withketonesrdquo Indian Journal of Pure amp Applied Physics vol 48 no5 pp 326ndash333 2010

[9] R K Bachu M K Patwari S Boodida and S Nallani ldquoVol-umetric and transport properties of binary liquid mixtures ofaliphatic ketones with phenylacetonitrile at T = 30815 Krdquo Jour-nal of Chemical amp Engineering Data vol 53 no 10 pp 2403ndash2407 2008

[10] N G Tsierkezos I E Molinou and A C Filippou ldquoThermo-dynamic properties of binary mixtures of cyclohexanone with119899-alkanols (C

1-C5) at 29315 Krdquo Journal of Solution Chemistry

vol 34 no 12 pp 1371ndash1386 2005[11] M Sri Lakshmi R R Raju C Rambabu G V R Rao and

K Narendra ldquoStudy of molecular interactions in binary liquidmixtures containing higher alcohols at different temperaturesrdquoResearchampReviews Journal of Chemistry vol 2 no 1 pp 12ndash242013

[12] A I Vogel Text Book of Practical Organic Chemistry LongmanLondon UK 5th edition 1989

[13] J A Riddick W Bunger and T K Sakano Techniques of Chem-istry Organic Solvents Physical Properties andMethods of Purifi-cation Wiley Interscience New York NY USA 4th edition1987

[14] R K Bachu andM K Patwari ldquoDensities viscosities and speedof sound of binary mixtures of phenylacetonitrile with somealiphatic alcohols at 30815 Krdquo Indian Journal of Chemistry Avol 47 no 7 pp 1026ndash1031 2008

[15] H C Parker and E W Parker ldquoDensities of certain aque-ous potassium chloride solutions as determined with a newpyknometerrdquo Journal of Physical Chemistry vol 29 pp 130ndash1371925

[16] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification solutionsrdquoIndustrial and Engineering Chemistry vol 40 no 2 pp 345ndash348 1948

[17] R Vijaya Kumar S Viswanathan and M Anand Rao ldquoExcessvolumes speeds of sound and isentropic compressibilitiesof 2-propyn-1-ol + 12-dichloroethane +111-trichloroe thane+1122-tetrachloroethane and +trichloroethylene at 30315Krdquo

Journal of Applied Chemistry 11

Journal of Chemical and EngineeringData vol 41 no 4 pp 755ndash757 1996

[18] J S Matos and J L Trenzado ldquoVolumetric properties and vis-cosities of the methyl butanoate+n-heptane+n-octane ternarysystem and its binary constitutions in the temperature rangefrom 28315K to 31315Krdquo Fluid Phase Equilibria vol 186 pp207ndash234 2001

[19] O Kiyohara and G C Benson ldquoUltrasonic speeds and isen-tropic compressibilities of n-alkanol + n-heptane mixtures at29815 KrdquoThe Journal of Chemical Thermodynamics vol 11 no9 pp 861ndash873 1979

[20] R J Fort and W R Moore ldquoAdiabatic compressibilities ofbinary liquidmixturesrdquo Transactions of the Faraday Society vol61 pp 2102ndash2111 1965

[21] A Ali A K Nain V K Sharma and S Ahmed ldquoUltrasonicstudies in binary liquid mixturesrdquo Indian Journal of Physics Bvol 75 no 6 pp 519ndash525 2001

[22] M Gowrisankar S Sivarambabu P Venkateswarlu and K SKumar ldquoExcess volumes speeds of sound isentropic compress-ibilities and viscosities of binary mixtures of 119873-ethyl anilinewith some aromatic ketones at 30315 Krdquo Bulletin of the KoreanChemical Society vol 33 no 5 pp 1686ndash1692 2012

[23] T Karunakar andCH Srinivas ldquoThermo acoustic and infraredstudy of molecular interactions in binary mixture aniline+1-butanolrdquo Research amp Reviews Journal of Pure and AppliedPhysics vol 1 no 1 pp 5ndash10 2013

[24] O Nomoto ldquoEmpirical formula for sound velocity in liquidmixturesrdquo Journal of the Physical Society of Japan vol 13 no12 pp 1528ndash1532 1958

[25] W van Dael Thermodynamic Properties and Velocity of SoundButterworth London UK 1975

[26] S Baluja and P H Parsania ldquoAcoustical properties of 3-120572-furylacrylic acid in protic and aprotic solventsrdquo Asian Journal ofChemistry vol 7 pp 417ndash423 1995

[27] K Sreekanth D S Kumar M Kondaiah and D Krishna RaoldquoStudy of molecular interactions in the mixtures of secondaryalcohols with equimolar mixture of ethanol + formamide fromacoustic and thermodynamic parametersrdquo Journal of Chemicaland Pharmaceutical Research vol 3 no 4 pp 29ndash41 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 9: Research Article Ultrasonic Investigations of Molecular ...downloads.hindawi.com/journals/jac/2014/741795.pdf · Research Article Ultrasonic Investigations of Molecular Interaction

Journal of Applied Chemistry 9

Table 6Theoretical values of ultrasonic speed from various equations and percentage error withmole fraction1199091of CH for all binary systems

at 30815 K

1199091

119880119873

119880119881

119880Imp 119880119877

119880119873

119880119881

119880Imp 119880119877

CH + 119899-butanol10000 136200 136200 136200 136200 000 000 000 00009121 135001 134547 135043 129806 143 109 146 24808854 134632 134060 134687 128317 177 133 181 30107211 132309 131199 132427 122196 305 218 314 48306687 131549 130334 131681 120973 322 227 332 50805232 129386 128042 129542 118502 333 226 346 53604752 128656 127319 128814 117871 317 210 330 54803231 126283 125129 126429 116393 261 168 273 54202112 124478 123609 124594 116166 196 125 205 48501313 123158 122567 123239 116883 135 086 142 38200000 120930 120930 120930 120930 000 000 000 000

CH + 119904119890119888-butanol10000 136200 136200 136200 136200 000 000 000 00009212 134836 134412 134936 128464 144 112 152 33508867 134234 133650 134375 125830 198 153 208 44107121 131130 129973 131435 117255 382 291 406 71606786 130524 129300 130852 116263 402 304 428 73505123 127465 126097 127860 113158 433 321 465 73804688 126650 125296 127049 112705 422 310 455 72603121 123666 122524 124027 112004 338 243 369 63702797 123039 121972 123381 112051 313 223 341 60801112 119722 119210 119901 113885 141 098 156 35300000 117480 117480 117480 117480 000 000 000 000

CH + 119905119890119903119905-butanol10000 136200 136200 136200 136200 000 000 000 00009221 134013 133538 134413 126923 209 173 240 33108895 133099 132456 133651 123600 283 233 325 45107012 127840 126544 129065 109588 561 454 663 94606814 127289 125953 128564 108550 578 467 684 98005112 122570 121104 124087 102359 633 506 764 112104777 121645 120195 123170 101661 627 501 761 111903321 117638 116400 119036 100406 548 437 674 99702635 115760 114696 117000 100794 480 384 592 87501323 112183 111575 112939 103339 289 233 358 52300000 108600 108600 108600 108600 000 000 000 000

are responsible for the deviations of theoretical values fromexperimental values Nomotorsquos theory proposes that the vol-ume does not change upon mixingTherefore no interactionbetween the components of liquid mixtures has been takeninto account Similarly the assumption for the formation ofideal mixing relation is that the ratios of specific heats of idealmixtures and the volumes are also equal Again no molecularinteractions are taken into account But upon mixing inter-actions between the molecules occur because of the presenceof various types of forces such as dispersion forces chargetransfer and hydrogen bonding dipole-dipole and dipole-induced dipole interactions Thus the observed deviationof theoretical values of speed from the experimental values

shows that the molecular interactions are taking placebetween the CH and isomers of butanol molecules Thedeviations of experimental values and values calculated fromimpedance relation and Raorsquos relation imply nonadditivity ofacoustic impedance and Raorsquos speed in the liquid mixturesAmong all the empirical theories van Dael and Vangeelsrelation gives better estimate of experimental values of soundspeed in all the systems In the present binary systems thedifference between experimental and theoretical speeds isgreater where themole fraction of CH varies in the region 03to 06 Hence it can be qualitatively inferred that the strengthof interaction in the binary mixtures is more in this range ofcomposition of CH with isomers of butanol liquid system

10 Journal of Applied Chemistry

5 Conclusion

(i) Ultrasonic speeds 119906 and densities 120588 of mixtures ofcyclohexanone with 119899-butanol or sec-butanol or tert-butanol over the entire composition range have beenmeasured at 119879 = 30815K

(ii) The values of 119881119864119898 Δ119896119904 119871119864119891 119911119864 and Δ119906 are calculated

from experimental data of density and ultrasonicspeed The excess and deviation properties have beenfitted to Redlich-Kister type polynomial and corre-sponding standard deviations have been evaluatedThe observed positive values of 119881119864

119898 Δ119896119904 and 119871119864

119891and

negative values of 119911119864 Δ119906 for all the liquid mixturesstudied clearly indicate the presence of weak inter-actions such as rupturing of hydrogen bond or reduc-tion in H-bond strength of butanol or breaking ofthe structure of one or both of the components in asolution

(iii) The deviationexcess properties have been fitted toRedlich-Kister type polynomial and the correspond-ing standard deviations have been calculated

(iv) The calculated values of partial molar volumes havealso been examined The observed higher partialmolar volumes in the liquid mixture when comparedto the respective molar volumes of pure componentsindicate weak interactions present in the systems

(v) The strength of interaction in themixtures follows theorder CH + tert-butanol gt sec-butanol gt 119899-butanol

(vi) FT-IR spectra for the present binary mixture alsosupport the conclusions drawn from the 119881119864

119898 119871119864119891 Δ119896119904

Δ119906 and 119911119864(vii) Further theoretical values of sound speed in the mix-

tures have been evaluated using various theories andhave been compared with experimental sound speedsto verify the applicability of such theories to the sys-tems studied

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

One of the authors SkMdNayeem is thankful to UGC NewDelhi Government of India for the financial grants towardsMRP (MRP-467114C (SERO-UGC))

References

[1] T B Thoe D K Aspinwall and M L H Wise ldquoReview onultrasonic machiningrdquo International Journal of Machine Toolsand Manufacture vol 38 no 4 pp 239ndash255 1998

[2] G Thomas Chemistry for Pharmacy and the Life SciencesPrentice Hall London UK 1996

[3] A M Ababneh C C Large and S Georghiou ldquoSolvation ofnucleosides in aqueous mixtures of organic solvents relevanceto dna open basepairsrdquo Biophysical Journal vol 85 no 2 pp1111ndash1127 2003

[4] R E Treybal Mass Transfer Operations McGraw Hill Singa-pore 3rd edition 1981

[5] PM Krishna B R Kumar B Sathyanarayana K S Kumar andN Satyanarayana ldquoDensities and speeds of sound for binaryliquid mixtures of thiolane-11-dioxide with butanone pentan-2-one pentan-3-one and 4-methyl-pentan-2-one atT = (30315or 30815 or 31315) Krdquo Journal of Chemical and EngineeringData vol 54 no 6 pp 1947ndash1950 2009

[6] PGnanaKumari PVenkatesuMV PrabhakaraRaoM-J Leeand H-M Lin ldquoExcess molar volumes and ultrasonic studiesof 119873-methyl-2-pyrrolidone with ketones at 119879 = 30315 Krdquo TheJournal of ChemicalThermodynamics vol 41 no 5 pp 586ndash5902009

[7] M Sreenivasulu and P R Naidu ldquoExcess volumes and adiabaticcompressibility of binary mixtures of butyl amine and cyclicketonesrdquo Australian Journal of Chemistry vol 32 no 8 pp1649ndash1652 1979

[8] K Rajagopal and S Chenthilnath ldquoExcess thermodynamicstudies of binary liquid mixtures of 2-methyl-2-propanol withketonesrdquo Indian Journal of Pure amp Applied Physics vol 48 no5 pp 326ndash333 2010

[9] R K Bachu M K Patwari S Boodida and S Nallani ldquoVol-umetric and transport properties of binary liquid mixtures ofaliphatic ketones with phenylacetonitrile at T = 30815 Krdquo Jour-nal of Chemical amp Engineering Data vol 53 no 10 pp 2403ndash2407 2008

[10] N G Tsierkezos I E Molinou and A C Filippou ldquoThermo-dynamic properties of binary mixtures of cyclohexanone with119899-alkanols (C

1-C5) at 29315 Krdquo Journal of Solution Chemistry

vol 34 no 12 pp 1371ndash1386 2005[11] M Sri Lakshmi R R Raju C Rambabu G V R Rao and

K Narendra ldquoStudy of molecular interactions in binary liquidmixtures containing higher alcohols at different temperaturesrdquoResearchampReviews Journal of Chemistry vol 2 no 1 pp 12ndash242013

[12] A I Vogel Text Book of Practical Organic Chemistry LongmanLondon UK 5th edition 1989

[13] J A Riddick W Bunger and T K Sakano Techniques of Chem-istry Organic Solvents Physical Properties andMethods of Purifi-cation Wiley Interscience New York NY USA 4th edition1987

[14] R K Bachu andM K Patwari ldquoDensities viscosities and speedof sound of binary mixtures of phenylacetonitrile with somealiphatic alcohols at 30815 Krdquo Indian Journal of Chemistry Avol 47 no 7 pp 1026ndash1031 2008

[15] H C Parker and E W Parker ldquoDensities of certain aque-ous potassium chloride solutions as determined with a newpyknometerrdquo Journal of Physical Chemistry vol 29 pp 130ndash1371925

[16] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification solutionsrdquoIndustrial and Engineering Chemistry vol 40 no 2 pp 345ndash348 1948

[17] R Vijaya Kumar S Viswanathan and M Anand Rao ldquoExcessvolumes speeds of sound and isentropic compressibilitiesof 2-propyn-1-ol + 12-dichloroethane +111-trichloroe thane+1122-tetrachloroethane and +trichloroethylene at 30315Krdquo

Journal of Applied Chemistry 11

Journal of Chemical and EngineeringData vol 41 no 4 pp 755ndash757 1996

[18] J S Matos and J L Trenzado ldquoVolumetric properties and vis-cosities of the methyl butanoate+n-heptane+n-octane ternarysystem and its binary constitutions in the temperature rangefrom 28315K to 31315Krdquo Fluid Phase Equilibria vol 186 pp207ndash234 2001

[19] O Kiyohara and G C Benson ldquoUltrasonic speeds and isen-tropic compressibilities of n-alkanol + n-heptane mixtures at29815 KrdquoThe Journal of Chemical Thermodynamics vol 11 no9 pp 861ndash873 1979

[20] R J Fort and W R Moore ldquoAdiabatic compressibilities ofbinary liquidmixturesrdquo Transactions of the Faraday Society vol61 pp 2102ndash2111 1965

[21] A Ali A K Nain V K Sharma and S Ahmed ldquoUltrasonicstudies in binary liquid mixturesrdquo Indian Journal of Physics Bvol 75 no 6 pp 519ndash525 2001

[22] M Gowrisankar S Sivarambabu P Venkateswarlu and K SKumar ldquoExcess volumes speeds of sound isentropic compress-ibilities and viscosities of binary mixtures of 119873-ethyl anilinewith some aromatic ketones at 30315 Krdquo Bulletin of the KoreanChemical Society vol 33 no 5 pp 1686ndash1692 2012

[23] T Karunakar andCH Srinivas ldquoThermo acoustic and infraredstudy of molecular interactions in binary mixture aniline+1-butanolrdquo Research amp Reviews Journal of Pure and AppliedPhysics vol 1 no 1 pp 5ndash10 2013

[24] O Nomoto ldquoEmpirical formula for sound velocity in liquidmixturesrdquo Journal of the Physical Society of Japan vol 13 no12 pp 1528ndash1532 1958

[25] W van Dael Thermodynamic Properties and Velocity of SoundButterworth London UK 1975

[26] S Baluja and P H Parsania ldquoAcoustical properties of 3-120572-furylacrylic acid in protic and aprotic solventsrdquo Asian Journal ofChemistry vol 7 pp 417ndash423 1995

[27] K Sreekanth D S Kumar M Kondaiah and D Krishna RaoldquoStudy of molecular interactions in the mixtures of secondaryalcohols with equimolar mixture of ethanol + formamide fromacoustic and thermodynamic parametersrdquo Journal of Chemicaland Pharmaceutical Research vol 3 no 4 pp 29ndash41 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 10: Research Article Ultrasonic Investigations of Molecular ...downloads.hindawi.com/journals/jac/2014/741795.pdf · Research Article Ultrasonic Investigations of Molecular Interaction

10 Journal of Applied Chemistry

5 Conclusion

(i) Ultrasonic speeds 119906 and densities 120588 of mixtures ofcyclohexanone with 119899-butanol or sec-butanol or tert-butanol over the entire composition range have beenmeasured at 119879 = 30815K

(ii) The values of 119881119864119898 Δ119896119904 119871119864119891 119911119864 and Δ119906 are calculated

from experimental data of density and ultrasonicspeed The excess and deviation properties have beenfitted to Redlich-Kister type polynomial and corre-sponding standard deviations have been evaluatedThe observed positive values of 119881119864

119898 Δ119896119904 and 119871119864

119891and

negative values of 119911119864 Δ119906 for all the liquid mixturesstudied clearly indicate the presence of weak inter-actions such as rupturing of hydrogen bond or reduc-tion in H-bond strength of butanol or breaking ofthe structure of one or both of the components in asolution

(iii) The deviationexcess properties have been fitted toRedlich-Kister type polynomial and the correspond-ing standard deviations have been calculated

(iv) The calculated values of partial molar volumes havealso been examined The observed higher partialmolar volumes in the liquid mixture when comparedto the respective molar volumes of pure componentsindicate weak interactions present in the systems

(v) The strength of interaction in themixtures follows theorder CH + tert-butanol gt sec-butanol gt 119899-butanol

(vi) FT-IR spectra for the present binary mixture alsosupport the conclusions drawn from the 119881119864

119898 119871119864119891 Δ119896119904

Δ119906 and 119911119864(vii) Further theoretical values of sound speed in the mix-

tures have been evaluated using various theories andhave been compared with experimental sound speedsto verify the applicability of such theories to the sys-tems studied

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

One of the authors SkMdNayeem is thankful to UGC NewDelhi Government of India for the financial grants towardsMRP (MRP-467114C (SERO-UGC))

References

[1] T B Thoe D K Aspinwall and M L H Wise ldquoReview onultrasonic machiningrdquo International Journal of Machine Toolsand Manufacture vol 38 no 4 pp 239ndash255 1998

[2] G Thomas Chemistry for Pharmacy and the Life SciencesPrentice Hall London UK 1996

[3] A M Ababneh C C Large and S Georghiou ldquoSolvation ofnucleosides in aqueous mixtures of organic solvents relevanceto dna open basepairsrdquo Biophysical Journal vol 85 no 2 pp1111ndash1127 2003

[4] R E Treybal Mass Transfer Operations McGraw Hill Singa-pore 3rd edition 1981

[5] PM Krishna B R Kumar B Sathyanarayana K S Kumar andN Satyanarayana ldquoDensities and speeds of sound for binaryliquid mixtures of thiolane-11-dioxide with butanone pentan-2-one pentan-3-one and 4-methyl-pentan-2-one atT = (30315or 30815 or 31315) Krdquo Journal of Chemical and EngineeringData vol 54 no 6 pp 1947ndash1950 2009

[6] PGnanaKumari PVenkatesuMV PrabhakaraRaoM-J Leeand H-M Lin ldquoExcess molar volumes and ultrasonic studiesof 119873-methyl-2-pyrrolidone with ketones at 119879 = 30315 Krdquo TheJournal of ChemicalThermodynamics vol 41 no 5 pp 586ndash5902009

[7] M Sreenivasulu and P R Naidu ldquoExcess volumes and adiabaticcompressibility of binary mixtures of butyl amine and cyclicketonesrdquo Australian Journal of Chemistry vol 32 no 8 pp1649ndash1652 1979

[8] K Rajagopal and S Chenthilnath ldquoExcess thermodynamicstudies of binary liquid mixtures of 2-methyl-2-propanol withketonesrdquo Indian Journal of Pure amp Applied Physics vol 48 no5 pp 326ndash333 2010

[9] R K Bachu M K Patwari S Boodida and S Nallani ldquoVol-umetric and transport properties of binary liquid mixtures ofaliphatic ketones with phenylacetonitrile at T = 30815 Krdquo Jour-nal of Chemical amp Engineering Data vol 53 no 10 pp 2403ndash2407 2008

[10] N G Tsierkezos I E Molinou and A C Filippou ldquoThermo-dynamic properties of binary mixtures of cyclohexanone with119899-alkanols (C

1-C5) at 29315 Krdquo Journal of Solution Chemistry

vol 34 no 12 pp 1371ndash1386 2005[11] M Sri Lakshmi R R Raju C Rambabu G V R Rao and

K Narendra ldquoStudy of molecular interactions in binary liquidmixtures containing higher alcohols at different temperaturesrdquoResearchampReviews Journal of Chemistry vol 2 no 1 pp 12ndash242013

[12] A I Vogel Text Book of Practical Organic Chemistry LongmanLondon UK 5th edition 1989

[13] J A Riddick W Bunger and T K Sakano Techniques of Chem-istry Organic Solvents Physical Properties andMethods of Purifi-cation Wiley Interscience New York NY USA 4th edition1987

[14] R K Bachu andM K Patwari ldquoDensities viscosities and speedof sound of binary mixtures of phenylacetonitrile with somealiphatic alcohols at 30815 Krdquo Indian Journal of Chemistry Avol 47 no 7 pp 1026ndash1031 2008

[15] H C Parker and E W Parker ldquoDensities of certain aque-ous potassium chloride solutions as determined with a newpyknometerrdquo Journal of Physical Chemistry vol 29 pp 130ndash1371925

[16] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification solutionsrdquoIndustrial and Engineering Chemistry vol 40 no 2 pp 345ndash348 1948

[17] R Vijaya Kumar S Viswanathan and M Anand Rao ldquoExcessvolumes speeds of sound and isentropic compressibilitiesof 2-propyn-1-ol + 12-dichloroethane +111-trichloroe thane+1122-tetrachloroethane and +trichloroethylene at 30315Krdquo

Journal of Applied Chemistry 11

Journal of Chemical and EngineeringData vol 41 no 4 pp 755ndash757 1996

[18] J S Matos and J L Trenzado ldquoVolumetric properties and vis-cosities of the methyl butanoate+n-heptane+n-octane ternarysystem and its binary constitutions in the temperature rangefrom 28315K to 31315Krdquo Fluid Phase Equilibria vol 186 pp207ndash234 2001

[19] O Kiyohara and G C Benson ldquoUltrasonic speeds and isen-tropic compressibilities of n-alkanol + n-heptane mixtures at29815 KrdquoThe Journal of Chemical Thermodynamics vol 11 no9 pp 861ndash873 1979

[20] R J Fort and W R Moore ldquoAdiabatic compressibilities ofbinary liquidmixturesrdquo Transactions of the Faraday Society vol61 pp 2102ndash2111 1965

[21] A Ali A K Nain V K Sharma and S Ahmed ldquoUltrasonicstudies in binary liquid mixturesrdquo Indian Journal of Physics Bvol 75 no 6 pp 519ndash525 2001

[22] M Gowrisankar S Sivarambabu P Venkateswarlu and K SKumar ldquoExcess volumes speeds of sound isentropic compress-ibilities and viscosities of binary mixtures of 119873-ethyl anilinewith some aromatic ketones at 30315 Krdquo Bulletin of the KoreanChemical Society vol 33 no 5 pp 1686ndash1692 2012

[23] T Karunakar andCH Srinivas ldquoThermo acoustic and infraredstudy of molecular interactions in binary mixture aniline+1-butanolrdquo Research amp Reviews Journal of Pure and AppliedPhysics vol 1 no 1 pp 5ndash10 2013

[24] O Nomoto ldquoEmpirical formula for sound velocity in liquidmixturesrdquo Journal of the Physical Society of Japan vol 13 no12 pp 1528ndash1532 1958

[25] W van Dael Thermodynamic Properties and Velocity of SoundButterworth London UK 1975

[26] S Baluja and P H Parsania ldquoAcoustical properties of 3-120572-furylacrylic acid in protic and aprotic solventsrdquo Asian Journal ofChemistry vol 7 pp 417ndash423 1995

[27] K Sreekanth D S Kumar M Kondaiah and D Krishna RaoldquoStudy of molecular interactions in the mixtures of secondaryalcohols with equimolar mixture of ethanol + formamide fromacoustic and thermodynamic parametersrdquo Journal of Chemicaland Pharmaceutical Research vol 3 no 4 pp 29ndash41 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 11: Research Article Ultrasonic Investigations of Molecular ...downloads.hindawi.com/journals/jac/2014/741795.pdf · Research Article Ultrasonic Investigations of Molecular Interaction

Journal of Applied Chemistry 11

Journal of Chemical and EngineeringData vol 41 no 4 pp 755ndash757 1996

[18] J S Matos and J L Trenzado ldquoVolumetric properties and vis-cosities of the methyl butanoate+n-heptane+n-octane ternarysystem and its binary constitutions in the temperature rangefrom 28315K to 31315Krdquo Fluid Phase Equilibria vol 186 pp207ndash234 2001

[19] O Kiyohara and G C Benson ldquoUltrasonic speeds and isen-tropic compressibilities of n-alkanol + n-heptane mixtures at29815 KrdquoThe Journal of Chemical Thermodynamics vol 11 no9 pp 861ndash873 1979

[20] R J Fort and W R Moore ldquoAdiabatic compressibilities ofbinary liquidmixturesrdquo Transactions of the Faraday Society vol61 pp 2102ndash2111 1965

[21] A Ali A K Nain V K Sharma and S Ahmed ldquoUltrasonicstudies in binary liquid mixturesrdquo Indian Journal of Physics Bvol 75 no 6 pp 519ndash525 2001

[22] M Gowrisankar S Sivarambabu P Venkateswarlu and K SKumar ldquoExcess volumes speeds of sound isentropic compress-ibilities and viscosities of binary mixtures of 119873-ethyl anilinewith some aromatic ketones at 30315 Krdquo Bulletin of the KoreanChemical Society vol 33 no 5 pp 1686ndash1692 2012

[23] T Karunakar andCH Srinivas ldquoThermo acoustic and infraredstudy of molecular interactions in binary mixture aniline+1-butanolrdquo Research amp Reviews Journal of Pure and AppliedPhysics vol 1 no 1 pp 5ndash10 2013

[24] O Nomoto ldquoEmpirical formula for sound velocity in liquidmixturesrdquo Journal of the Physical Society of Japan vol 13 no12 pp 1528ndash1532 1958

[25] W van Dael Thermodynamic Properties and Velocity of SoundButterworth London UK 1975

[26] S Baluja and P H Parsania ldquoAcoustical properties of 3-120572-furylacrylic acid in protic and aprotic solventsrdquo Asian Journal ofChemistry vol 7 pp 417ndash423 1995

[27] K Sreekanth D S Kumar M Kondaiah and D Krishna RaoldquoStudy of molecular interactions in the mixtures of secondaryalcohols with equimolar mixture of ethanol + formamide fromacoustic and thermodynamic parametersrdquo Journal of Chemicaland Pharmaceutical Research vol 3 no 4 pp 29ndash41 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 12: Research Article Ultrasonic Investigations of Molecular ...downloads.hindawi.com/journals/jac/2014/741795.pdf · Research Article Ultrasonic Investigations of Molecular Interaction

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of