57
17 May 2004 ICASSP Tutorial II-1 Sensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks Brian M. Sadler Richard J. Kozick 17 May 2004

Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-1

Sensor Networks, Aeroacoustics,

and Signal Processing

Part II: Aeroacoustic Sensor Networks

Brian M. SadlerRichard J. Kozick

17 May 2004

Page 2: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-2

Heterogeneous Network of Acoustic Sensors

CentralNode?

Source

One mic.

Sensorarray

10’s to 100’s of mrangeIssues:

•Centralized versusdistributed processing

•Minimize comms., energy•Triangulation, TDOA?•Effects of acoustic prop.•(Node localization, sensor layout & density,Classification, tracking)

Page 3: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-3

Acoustic Source & Propagation

SPECTROGRAM OF SENSOR 1 (dB)

TIME (sec)

FREQ

UEN

CY

(Hz)

120 125 130 135 140 145 150 155

0

50

100

150

200

250

Source Turbulence scatters wavefronts

Signalat sensor(mic.)

Source:•Loud•Spectral lines

One sensor:•Detection•Doppler estimation•Harmonic signature

DSP

Page 4: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-4

More Sophisticated Node:Sensor Array

DSP1 m apertureor (much) less

Issues:•Array size/baseline

Coherence decreases with larger spacing•AOA estimation accuracy with turbulent scattering•What can we do with a hockey-puck sensor?

Small, covert, easily deployablePerformance?

Page 5: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-5

Why Acoustics?• Advantages:

– Mature sensor technology (microphones)– Low data bandwidth: ~[30, 250] Hz

Sophisticated, real-time signal proc.– Loud sources, difficult to hide: vehicles, aircraft, ballistics

• Challenges:– Ultra-wideband regime: 157% fractional BW– λ in [1.3, 11] m Small array baselines– Propagation: turbulence, weather, (multipath)– Minimize network communications

• We bound the space of useful system design and performance [Kozick2004a]

– with respect to SNR, range, frequency, bandwidth, observation time, propagation conditions (weather), sensor layout, source motion/track

– evaluate performance of algorithms (simulated & measured data)

Distinct fromRF arrays

Page 6: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-6

Brief History of Acoustics in Military [Namorato2000]

• Trumpeting down walls of Jericho• Chinese, Roman (B.C.)• Civil War: Generals used guns to

signal attacks• World War 1:

– Science of acoustics developed– Air & underwater acoustic systems

• World War 2: Mine actuating, submarine detection

• Many developments …• Army Research Laboratory, 1991-

present [Srour1995]– Hardware and software for

detection, localization, tracking, and classification

– Extensive field testing in various environments with many vehicle types

Page 7: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-7

• A little more background:– Source characteristics– Sound propagation through turbulent atmosphere

• Detection of sources (Saturation, Ω)• Array processing

– Coherence loss from turbulence (Coherence, γ)– Array size: 2 sensors source AOA– Array of arrays source localization

Distributed processing? Data to transmit?Triangulation/TDOA Minimize comms.

Remainder of Tutorial

Experimentallyvalidatedmodels

Page 8: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-8

Source Characteristics• Ground vehicles (tanks, trucks), aircraft (rotary,

jet), commercial vehicles, elephant herdsLOUD

• Main contributors to source sound:– Rotating machinery: Engines, aircraft blades– Tires and “tread slap” (spectral lines)– Vibrating surfaces

• Internal combustion engines: Sum-of-harmonics due to cylinder firing

• Turbine engines: Broadband “whine”• Key features: Spectral lines and high SNR

Distinct fromunderwater

Page 9: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-9

+/- 350 m from Closest Point of Approach (CPA)

TIME (sec)

HighSNR

Page 10: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-10

SPECTROGRAM OF SENSOR 1 (dB)

TIME (sec)

FRE

QU

EN

CY

(Hz)

60 65 70 75 80 85 90 95

0

50

100

150

200

250

+/- 85 m from CPA

CPA = 5 m15 km/hr

Time

Freq

uenc

y

-20 -15 -10 -5 0 5 10 15 2013

13.5

14

14.5

15

15.5

16Gv2c1007: FUNDAMENTAL FREQUENCY ESTIMATE

FRE

Q. (

Hz)

BLOCK FROM CPA

Doppler shift:0.5 Hz @ 14.5 Hz

3 Hz @ 87 Hz

Harmonic lines

Page 11: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-11

Overview of Propagation Issues• “Long” propagation time: 1 s per 330 m• Additive noise: Thermal, Gaussian

(also wind and directional interference)• Scattering from random inhomogeneities

(turbulence) temporal & spatial correl.– Random fluctuations in amplitude: Ω– Spatial coherence loss (>1 sensor): γ

• Transmission loss: Attenuation by spherical spreading and other factors

Page 12: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-12

Transmission Loss• Energy is diminished from Sref (at 1 m

from source) to S at sensor:– Spherical spreading– Refraction (wind, temp. gradients)– Ground interactions– Molecular absorption

• We model S as a deterministic parameter:

Average signal energy

LowPassFilter

0

5

10

15

0

5

10

15

20

25

1300

1400

1500

easting (km)northing (km)

he

igh

t (m

)

Tra

nsm

issi

on

Lo

ss (

dB

)

50

60

70

80

90

100

110

120

NumericalSolution[Wilson2002]

+/- 125 m from CPA

[Embleton1996]

Page 13: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-13

Measured Aeroacoustic Data

Page 14: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-14

Fluctuations due to turbulence

Measured SNR vs. Range & Frequency

Aspect dependence

SNR ~ 50 dBat CPA

Time

dB

Page 15: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-15

Outline

• Detection of sources– Saturation, Ω– Detection performance

• Array processing – Coherence loss from

turbulence, γ– Array size: 2 sensors

Source AOA– Array of arrays:

Source localization

Triangulation/TDOA, minimize comms.

Sinusoidal signal emitted by moving source:

( )χπ += tfSts o2cos)( refref

)()()( twtstz +−= τSignal at the sensor:

1. Propagation delay, τ2. Additive noise 3. Transmission loss4. Turbulent scattering

Page 16: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-16

Sensor Signal: No Scattering• Sensor signal with transmission

loss,propagation delay, and AWG noise:

• Complex envelope at frequency fo– Spectrum at fo shifted to 0 Hz– FFT amplitude at fo

( )( ) n timepropagatio ,2cos)(

),()(

=+=

+≤≤+−=

τχπ

τ

tfSts

Tttttwtstz

o

oo

( )[ ][ ] )(~exp

)(~exp)(~

twjS

twjStz o

+=

+−=

θ

τωχ

Page 17: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-17

Sensor Signal: With Scattering• A fraction, Ω, of the signal energy is scattered

from a pure sinusoid into a zero-mean, narrowband, Gaussian random process, :

• Saturation parameter, Ω in [0, 1] – Varies w/ source range, frequency, and

meteorological conditions (sunny, windy)– Based on physical modeling of sound propagation

through random, inhomogeneous medium• Easier to see scattering effect with a picture:

( ) [ ] [ ] )(~exp)(~exp1)(~ twjtvSjStz +Ω+Ω−= θθ

)(~ tv

[Norris2001, Wilson2002a]

Page 18: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-18

AWGN, 2No

-B/2 B/20

(1- Ω)S

Bv

Area= ΩS

-B/2 B/20

(1- Ω)S

Bv

ΩS

• Study detection of source, w/ respect to– Saturation, Ω (analogous to Rayleigh/Rician fading in comms.)– Processing bandwidth, B, and observation time, T– SNR = S / (2 No B)– Scattering bandwidth, Bv < 1 Hz (correlation time ~ 1/Bv > 1 sec)– Number of independent samples ~ (T Bv) often small

• Scattering (Ω > 0) causes signal energy fluctuations

Weak Scattering: Ω ~ 0 Strong Scattering: Ω ~ 1

Freq.

Power SpectralDensity (PSD)

Page 19: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-19

Probability Distributions• Complex amplitude

has complex Gaussian PDF with non-zero mean:

• Energy has non-central χ-squared PDF with 2 d.o.f.

• has Rice PDF

( )( )2,-1CN~~ σθ +ΩΩ SSez j

-20 -15 -10 -5 0 5 100

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

ENERGY, 10 log10(P) (dB)

PR

OB

AB

ILIT

Y D

EN

SIT

Y

PDF OF RECEIVED ENERGY (S=1, SNR = 30 dB)

Ω = 0.02

0.04

0.08

0.20

0.50

1.00

2~zP =

( )( )2,-1CN~~ σθ +ΩΩ SSez j

P

(Experimental validation in[Daigle1983, Bass1991, Norris2001])

Page 20: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-20

Saturation vs. Frequency & Range• Saturation depends on [Ostashev2000]:

– Weather conditions (sunny/cloudy), but varies little with wind speed

– Source frequency ω and range do

( )

( )

( ) 21

27

27

weather

Hz]500,30[2

,cloudymostly ,

21042.1

sunnymostly ,2

1003.4

2exp1(rad/sec)frequency (m), source of range

ωκ

πω

πωπ

ω

ωµ

µω

⋅=

×

×

−−=Ω==

o

o

dd

Theoretical forms

Constants from numerical evaluation of particular conditions

Page 21: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-21

50 100 150 200 250 300 350 400 450 5000

0.5

1SA

TUR

ATI

ON

, ΩMOSTLY SUNNY

do = 10 m50 m

100 m

200 m500 m

50 100 150 200 250 300 350 400 450 5000.2

0.4

0.6

0.8

1

FREQUENCY (Hz)

SATU

RA

TIO

N, Ω

MOSTLY SUNNY

1 km2 km

5 km

10 km

50 100 150 200 250 300 350 400 450 5000

0.5

1

SATU

RA

TIO

N, Ω

MOSTLY CLOUDY

do = 10 m

50 m100 m200 m500 m

50 100 150 200 250 300 350 400 450 5000.2

0.4

0.6

0.8

1

FREQUENCY (Hz)

SATU

RA

TIO

N, Ω

MOSTLY CLOUDY

1 km

2 km

5 km

10 km

Turbulence effects are small only for very short range and low frequency

Fully scattered

Saturation variesover entire range[0, 1] for typicalrange & freq.values

Page 22: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-22

Detection Performance

-5 0 5 10 15 20 25 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

P D

PROBABILITY OF DETECTION, PFA = 0.01

Ω = 0Ω = 0.1Ω = 0.3Ω = 1

PD = probability of detectionPFA = probability of false alarm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.985

0.99

0.995

1

P D

PROBABILITY OF DETECTION, PFA = 0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.7

0.8

0.9

1

SATURATION, Ω

P D

SNR = 20 dBSNR = 15 dBSNR = 10 dB

SNR = 30 dBSNR = 25 dB

Noscattering

Fullscattering

Scattering beginsto limit performance

Page 23: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-23

102 103 1040

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RANGE (m)P D

PROB. OF DETECTION WITH SNR α 1/RANGE2

CLOUDY, 40 Hz SUNNY, 40 HzCLOUDY, 200 Hz SUNNY, 200 Hz

101 102 103 1040

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RANGE (m)

SATU

RA

TIO

N, Ω

SATURATION VARIATION WITH WEATHER AND FREQUENCY

CLOUDY, 40 Hz SUNNY, 40 HzCLOUDY, 200 Hz SUNNY, 200 Hz

200 Hz40 Hz

Lower frequenciesdetected at largerranges

Detection Performance with Range

SNR = 50 dB at 10 m rangeSNR ~ 1/(range)2

Saturation increases with•Range•Frequency•Temperature (sunny)

1 km

Page 24: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-24

Detection Extensions• Sensor networks: Detection queuing

(wake-up) of more sophisticated sensors• Multiple snapshots & frequencies

– Source motion & nonstationarities– Coherence time of scattering

• Multiple sensors with different SNR and Ω– Distributed detection, what to communicate?– Required sensor density for reliable detection– Source localization based on energy level at the

sensors [Pham2003]

Physical models for cross-freq coherenceand coherence timeare in preliminary stage[Norris2001, Havelock1998]

Page 25: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-25

Outline

• Detection of sources– Saturation, Ω– Detection performance

• Array processing – Coherence loss from

turbulence, γ– Array size: 2 sensors

Source AOA– Array of arrays:

Source localization

Triangulation/TDOA, minimize comms.

Coherence, γ, depends on

•Sensor separation, ρ•Source frequency, ω•Source range, do•Weather conditions:sunny/cloudy, wind speed

Page 26: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-26

Signal Model forTwo Sensors

( ) ( ) ( )( )

( )( )( )

[0,1] Coherence ,1

1[0,1] Saturation

sin)/(phasearcsinAOA

,exp

1

,-1CN~~~

~ 2

2

1

∈=

=

∈=Ω

====

=

+ΩΩ

=

γγ

γ

θρωφωρφθ

φ

σχ

Γ

a

IaaΓaz

o

o

Hj

cc

j

SSezz

o

ρ= sensor spacing < λ/2

θ = AOA

Turbulence effects

Perfect plane wave:Ω = 0 or 1γ = 1

Page 27: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-27

Model for Coherence, γ• Assume AOA θ = 0,

freq. in [30, 500] Hz• Recall saturation model:

• Coherence model [Ostashev2000]:

ρ= sensor spacing

θdo = range

( )[ ]od21 weather2exp1 ωκ−−=Ω

( )[ ] ( )

( )

+=

≤≤

<<Ω

Ω−−−=

2

2

2

2

22

3/522

322137.0weather

10

,1weatherexp

o

v

o

T

o

effo

cC

TC

c

Ld

κ

γ

ρρωκγ

Velocityfluctuations (wind)

Temperaturefluctuations

γ 0 with freq., sensorspacing, and range

Page 28: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-28

( )[ ] ( )

( )

+=

≤≤

<<Ω

Ω−−−=

2

2

2

2

22

3/522

322137.0weather

10

,1weatherexp

o

v

o

T

o

effo

cC

TC

c

Ld

κ

γ

ρρωκγ

Velocityfluctuations (wind)

Temperaturefluctuations

Depends on wind leveland sunny/cloudy

(From [Kozick2004a], based on[Ostashev2000, Wilson2000])

Page 29: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-29

Assumptions for Model Validity [Kozick2004a]• Line of sight propagation (no multipath)

appropriate for flat, open terrain• AWGN is independent from sensor to sensor

ignores wind noise, directional interference• Scattered process is complex, circular, Gaussian

[Daigle1983, Bass1991, Norris2001]• Wavefronts arrive at array aperture with near-normal incidence • Sensor spacing, ρ, resides in the inertial subrange of the

turbulence:

smallest turbulent eddies << ρ << largest turbulent eddies = Leff

( )[ ] ( )

( )[ ] ( ) effo

effo

Ld

Ld

>>Ω−→−

>>→Ω

Ω−−−=

ρρωκ

ρρωκγ

for 1weatherexp

for 01weatherexp

3/522

3/522

Page 30: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-30

50 100 150 200 250 300 350 400 450 5000.97

0.98

0.99

1

CO

HER

ENC

E, γ

MOSTLY SUNNY, MODERATE WIND

50 m100 m

200 m

500 m

50 100 150 200 250 300 350 400 450 5000.5

0.6

0.7

0.8

0.9

FREQUENCY (Hz)C

OH

EREN

CE,

γ

MOSTLY SUNNY, MODERATE WIND

do = 10 m

1 km2 km

5 km

10 km

50 100 150 200 250 300 350 400 450 5000.97

0.98

0.99

1

CO

HER

ENC

E, γ

MOSTLY CLOUDY, MODERATE WIND50 m

100 m200 m

500 m

50 100 150 200 250 300 350 400 450 500

0.7

0.8

0.9

1

FREQUENCY (Hz)

CO

HER

ENC

E, γ

MOSTLY CLOUDY, MODERATE WIND

do = 10 m

1 km2 km

5 km

10 km

Coherence, γ, versus frequencyand range forsensor spacingρ = 12 inches

γ> 0.99 for range < 100 m.Is this “good”?

Curves shiftup w/ less wind,down w/ more wind

Page 31: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-31

Outline

• Detection of sources– Saturation, Ω– Detection performance

• Array processing – Coherence loss from

turbulence, γ– Array size: 2 sensors

Source AOA– Array of arrays:

Source localization

Triangulation/TDOA, minimize comms.

SenTech HE01 acoustic sensor [Prado2002]

• Freq. in [30, 250] Hz λ in [1.3, 11] m

• Angle of arrival (AOA) accuracy w.r.t.– Array aperture size– Turbulence (Ω, γ)

• Small aperture:– Easier to deploy– More covert– Better coherence– How small can we go?

Page 32: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-32

Impact on AOA Estimation

• How does the turbulence (Ω, γ) affect AOA estimation accuracy? [Sadler2004]

– Cramer-Rao lower bound (CRB), simulated RMSE– Achievable accuracy with small arrays?

( ) ( ) ( )

( )[ ]( )( )[ ] 1-2

2

2

22

SNR-1SNR2-1-1SNR2

-1SNR2SNR1-1SNR2

12

ˆCRBˆCRB,1ˆCRB

+⋅Ω+⋅ΩΩΩ⋅⋅+

⋅Ω+⋅Ω+Ω⋅=

==

γγ

γ

φρωλ

πρ

φθφ

φφ

φφ

J

cJoLarger sensor

spacing, ρ:DESIRABLE

BAD!

( )( )( )

phasearcsinAOA

exp1

===

=

φωρφθ

φ

ocj

a

Page 33: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-33

Special Cases of CRB• No scattering (ideal plane wave model):

• High SNR, with scattering:

SNR2 ⋅=φφJ

( )( )( )

SNR21 and 1 SNRfor -1

1-1

2

-1-1-12

-1SNR2-12

22

2

2

2

22

−<>>+

Ω⋅→

⋅ΩΩ⋅+

⋅Ω+ΩΩ⋅=

γγ

γ

γγ

γφφJ

SNR-limitedperformance

Coherence-limitedperformance

If SNR = 30 dB, then γ < 0.9989995 limits performance!

Page 34: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-34

Phase CRB with Scattering ( Ω, γ)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

1.5

2

2.5

3

COHERENCE, γ

sqrt

[CR

B( φ

)] (r

ad)

SNR = 30 dB

Ω = 00.05

0.25

0.5

0.75

0.9

0.95

1.0

Idealplanewave

Coherence lossγ < 1 is significantwhen saturationΩ > 0.1

Page 35: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-35

50 100 150 200 250 300 350 400 450 5000

5

10

15

20

25

30

35

40

FREQUENCY (Hz)

sqrt

[CR

B( θ

)] (d

eg)

MOSTLY SUNNY, STRONG WIND

do = 10 m100 m

500 m

1 km

2 km

5 km

10 km

CRB on AOA EstimationSNR = 30 dB for all ranges

Sensor spacing ρ = 12 in.

Increasingrange (fixed SNR)

Aperture-limitedat low frequency

Ideal plane wave modelis accurate for very shortranges ~ 10 m

Coherence-limited at larger ranges

Page 36: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-36

50 100 150 200 250 300 350 400 450 5000

2

4

6

8

10

12

14

16

18

20

FREQUENCY (Hz)

sqrt

[CR

B( θ

)] (d

eg)

MOSTLY CLOUDY, LIGHT WIND

do = 10 m 100 m500 m1 km

2 km

5 km

10 km

Cloudy and Less WindSNR = 30 dB for all ranges

Sensor spacing ρ = 12 in.

Aperture-limitedat low frequency

Atmospheric conditionshave a large impact onAOA CRBs

Plane wave model isaccurate to 100 m range

Page 37: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-37

Coherence vs. Sensor Spacing

100 101 1020.995

0.9955

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

SENSOR SPACING, ρ (in.)

CO

HER

ENC

E, γ

SOURCE FREQ. = 100 Hz, RANGE = 200 m, SNR = 30 dB

Omega = 0.80, SUNNY

Omega = 0.43, CLOUDY

MOSTLY SUNNY, LIGHT WIND MOSTLY SUNNY, MODERATE WIND MOSTLY SUNNY, STRONG WIND MOSTLY CLOUDY, LIGHT WIND MOSTLY CLOUDY, MODERATE WINDMOSTLY CLOUDY, STRONG WIND

Lightwind

Strongwind

γ = 0 for ρ ~ 1,000 in = 25 m

Page 38: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-38

CRB on AOA vs. Sensor Spacing

101 1020

5

10

15

SENSOR SPACING, ρ (in.)

sqrt

[CR

B( θ

)] (d

eg)

SOURCE FREQ. = 100 Hz, RANGE = 200 m, SNR = 30 dB

MOSTLY SUNNY, LIGHT WIND MOSTLY SUNNY, STRONG WIND MOSTLY CLOUDY, LIGHT WIND MOSTLY CLOUDY, STRONG WIND IDEAL PLANE WAVE (Ω = 0, γ = 1)

ρ = 5 inches

Page 39: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-39

Coherence vs. Sensor Spacing

100 101 102 1030.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

SENSOR SPACING, ρ (in.)

CO

HER

ENC

E, γ

SOURCE FREQ. = 100 Hz, RANGE = 1,000 m, SNR = 20 dB

Omega = 1.00, SUNNYOmega = 0.94, CLOUDY

MOSTLY SUNNY, LIGHT WIND MOSTLY SUNNY, MODERATE WIND MOSTLY SUNNY, STRONG WIND MOSTLY CLOUDY, LIGHT WIND MOSTLY CLOUDY, MODERATE WINDMOSTLY CLOUDY, STRONG WIND

Page 40: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-40

CRB on AOA vs. Sensor Spacing

101 102 1030

5

10

15

20

25

30

SENSOR SPACING, ρ (in.)

sqrt

[CR

B( θ

)] (d

eg)

SOURCE FREQ. = 100 Hz, RANGE = 1,000 m, SNR = 20 dB

MOSTLY SUNNY, LIGHT WIND MOSTLY SUNNY, STRONG WIND MOSTLY CLOUDY, LIGHT WIND MOSTLY CLOUDY, STRONG WIND IDEAL PLANE WAVE (Ω = 0, γ = 1)

Coherence lossesdegrade AOA perf.for ρ > 8 feet

Ideal planewave modelis optimistic(poor weather)

Plane waveis OK for good weather

(First noted in[Wilson1998],[Wilson1999])

λ/2

Page 41: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-41

CRB Achievability

50 100 150 200 250 300 350 400 450 5000

0.5

1

FREQUENCY (Hz)

SATU

RA

TIO

N, Ω

SNR = 40 dB, ρ = 3 in, RANGE = 50 m

50 100 150 200 250 300 350 400 450 5000.9997

0.9998

0.9999

1

FREQUENCY (Hz)

CO

HER

ENC

E, γ

50 100 150 200 250 300 350 400 450 5000

5

10

15

FREQUENCY (Hz)

RM

SE &

sqr

t[CR

B] O

N A

OA

, θ (d

eg)

SNR = 40 dB, ρ = 3 in, RANGE = 50 m

PD ESTIMATEML ESTIMATECRB

Coherence is high: γ > 0.999

Saturation Ω issignificant for most offrequency range

AOA estimators break away from CRB approx.when Ω > 0.1

Aperture-limited

Phase difference estimator:

=

∠−∠=

PDo

PD

PD

c

zz

φωρ

θ

φ

ˆarcsinˆ :AOA

ˆ :Phase 12

Turbulence prevents performance gain from larger aperture

Scenario:Small Sensor Spacing: ρ = 3 in., SNR = 40 dB, Range = 50 m

Page 42: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-42

AOA Estimation for Harmonic Source

20 40 60 80 100 120 140 160 180 2000

5

10

15

20

25

30

35

AO

A (d

eg)

COMBINED AOA ESTIMATES AT FREQS. 50, 100, 150 Hz

RANGE (m)

RMSE, ρ = 6 insqrt[CRB], ρ = 6 inRMSE, ρ = 3 insqrt[CRB], ρ = 3 in

Equal-strength harmonicsat 50, 100, 150 Hz

SNR = 40 dB at 20 mrange, SNR ~ 1/(range)2

(simple TL)

Sensor spacingρ = 3 in. and 6 in.

Mostly sunny,moderate wind

One snapshot

ρ = 6 in.

ρ = 3 in.

RMSE

CRB

Achievable AOA accuracy ~ 10’s of degrees for this case

Page 43: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-43

Turbulence Conditions for Three-Harmonic Example

Coherence is ~ 1,but still limits performance.

Strongscattering

Page 44: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-44

Summary of AOA Estimation• CRB analysis of AOA estimation

– Tradeoff: larger aperture vs. coherence loss– Ideal plane wave model is overly optimistic for

longer source ranges– Performance varies significantly with weather cond.– Important to consider turbulence effects

• AOA algorithms do not achieve the CRB in turbulence (Ω > 0.1) with one snapshot

• Similar results obtained for circular arrays with > 2 sensors [Sadler2004]

Page 45: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-45

Outline

• Detection of sources– Saturation, Ω– Detection performance

• Array processing – Coherence loss from

turbulence, γ– Array size: 2 sensors

Source AOA– Array of arrays:

Source localization

Triangulation/TDOA, minimize comms.

• Issues:– Comm. bandwidth– Distributed processing– Exploit long baselines?– Time sync. among arrays

• Model assumptions:– Individual arrays:

* Perfect coherence* Far-field

– Between arrays:* Partial coherence* Different power spectra* Near-field

SOURCE(x_s, y_s)

x

y

ARRAY 1

ARRAY H

(x_1, y_1)

ARRAY 2(x_2, y_2)

(x_H, y_H)

FUSIONCENTER

Page 46: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-46

FusionNode

Source

AOAAOA

AOA

TransmitAOAs

Noncoherenttriangulationof AOAs

FusionNode

Source

Transmitraw data from all sensors

Optimum,coherentprocessing

FusionNode

Source

AOA &TDOA AOA &

TDOA

AOA

TransmitAOAs & TDOAs

Triangulationof AOAs andTDOAs

Transmit raw data from one sensorto other nodes

1) Triangulate AOAs:

•Comms.: Low•Distributed processing•Coarse time sync.

2) Fully centralized

•Comms.: High•Centralized processing•Fine time sync. req’d•Near-field w.r.t. arrays

3) AOAs & TDOAs:

•Comms.: Medium•Distributed processing•Fine time sync. req’d•Alt.: Each array xmitsraw data from 1 sensor

Three Localization Schemes

Page 47: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-47

1. Triangulation of AOAs Minimal comms.2. Fully centralized Maximum comms.3. #1 + time delay estimation (TDE) Raw data from 1 sensor

−50 0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

250

300

350

400

X AXIS (m)

Y A

XIS

(m

)

CRB ELLIPSES FOR COHERENCE 0, 0.5, 1.0 (JOINT PROCESSING)

TARGETARRAY •Schemes 2 & 3 have same CRB!

•Results are coherence sensitive:coherence improves CRB overAOA triangulation

•Are the CRBs achievable?

Localization Cramer-Rao Bounds [Kozick2004b]

140 160 180 200 220 240 260240

260

280

300

320

340

360

X AXIS (m)

Y A

XIS

(m

)

CRB ELLIPSES FOR COHERENCE 0, 0.5, 1.0 (BEARING + TD EST.)

AOAtriangulation

Parameters:3 arrays, 7 elements, 8 ft. diam.Narrowband (49.5 to 50.5 Hz)SNR = 16 dB at each sensor0.5 sec. observation time

Page 48: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-48

Ziv-Zakai Bound on TDEThreshold coherence to attain CRB:

•Function(SNR, % BW, TB product, coherence)•Extends [WeissWeinstein83] to TDE with

partially-coherent signals TB product

Fract BW

SNR

Page 49: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-49

Threshold Coherence Simulation

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10−4

10−3

10−2

10−1

RMS TDE (WIDEBAND): fo = 100 Hz, ∆ f = 30 Hz

COHERENCE

DE

LAY

(se

c)

THRESHOLD COHERENCE = 0.41

SIMULATIONCRB

0.7 0.75 0.8 0.85 0.9 0.95 1

10−4

10−3

10−2

10−1

RMS TDE (NARROWBAND):, fo = 40 Hz, ∆ f = 2 Hz

COHERENCE

DE

LAY

(se

c)

THRESHOLD COHERENCE > 1.0

Breakaway from CRB is accurately predictedby threshold coherence value

Page 50: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-50

Threshold Coherence

0 10 20 30 40 50 60 70 800.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BANDWIDTH (Hz), ∆ ω / (2 π)

TH

RE

SH

OLD

CO

HE

RE

NC

E, |

γs |

ω0 = 2 π 100 rad/sec, T = 1 sec

Gs / G

w = 0 dB

Gs / G

w = 10 dB

Gs / G

w → ∞

10−1

100

101

102

103

104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TIME × BANDWIDTHT

HR

ES

HO

LD C

OH

ER

EN

CE

, | γ

s |

Gs / G

w → ∞

FRAC. BW = 0.1 FRAC. BW = 0.25FRAC. BW = 0.5 FRAC. BW = 1.0

Narrowband sourcerequires perfect coherence

Doubling fractional BWtime-BW product reducedby factor of ~ 10

f0 = 50 Hz, ∆f = 5 Hz T>100 s

Page 51: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-51

TDE Experiment – Harmonic Source

7100 7200 7300 7400 7500 7600 7700 7800 7900 8000 8100

9200

9300

9400

9500

9600

9700

9800

9900

EAST (m)

NO

RT

H (

m)

GROUND VEHICLE PATH AND ARRAY LOCATIONS

1

3

4

5

VEHICLE PATH 10 SEC SEGMENTARRAY 1 ARRAY 3 ARRAY 4 ARRAY 5

0 50 100 150 200 250 3000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FREQUENCY (Hz)

CO

HE

RE

NC

E |γ

|

MEAN SHORT−TIME SPECTRAL COHERENCE, ARRAYS 1 & 3

0 50 100 150 200 250 300 350 400 450 5000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FREQUENCY (Hz)C

OH

ER

EN

CE

|γ|

MEAN SHORT−TIME SPECTRAL COHERENCE, ARRAY 1, SENSORS 1 & 5

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4−1

−0.5

0

0.5

1CROSS−CORRELATION: ARRAYS 1 AND 3

LAG (SEC)

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4−1

−0.5

0

0.5

1GENERALIZED CROSS−CORRELATION: ARRAYS 1 AND 3

LAG (SEC)−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1CROSS−CORRELATION: ARRAY1, SENSORS 1,5

LAG (SEC)

Moderate coherence,small bandwidth

TDE is not possible between arrays

TDE works within an array(sensor spacing < 8 feet)

Page 52: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-52

TDE Experiment – Wideband Source

Page 53: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-53

TDE Experiment – Wideband Source

Measured coherenceexceeds thresholdcoherence ~ 0.8 for this case

Accurate localization from TDEs

Page 54: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-54

Summary of Array of Arrays• Threshold coherence

analysis tells conditions when joint, coherent processing improves localization accuracy

• Pairwise TDE between arrays captures localization information

reduced comms.• Incoherent triangulation

of AOAs is optimum for narrowband, harmonic sources

SOURCE(x_s, y_s)

x

y

ARRAY 1

ARRAY H

(x_1, y_1)

ARRAY 2(x_2, y_2)

(x_H, y_H)

FUSIONCENTER

Page 55: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-55

Odds & EndsOther Sensing Approaches

• Infrasonics: f < 30 Hz, λ > 11 m [Bedard2000]– Over the horizon propagation via ducting from

temperature gradients– Wind noise is very high– Propagation models may be lacking

• Fuse acoustics with other low-BW sensor modalities

– Seismic has proven useful for heavy, loud vehicles and aircraft (also footsteps)

– Vector magnetic sensors are emerging

Page 56: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-56

Odds & EndsOther Processing

• Doppler estimation: [Kozick2004c]– Localize based on differential Doppler from multiple

sensors (combine with AOAs?)– Not sensitive to coherence– Simple, and exploits spectral lines in source– We have analyzed CRBs and algorithms

• Tracking of moving sources [see Biblio.]• Classification based on harmonic ampls. [see

Biblio.]– Harmonic amplitudes fluctuate– Exploit aspect angle differences of sources?

Page 57: Sensor Networks, Aeroacoustics, and Signal Processingkozick/acoustic/ic04/SadlerKozickPart2.pdfSensor Networks, Aeroacoustics, and Signal Processing Part II: Aeroacoustic Sensor Networks

17 May 2004 ICASSP Tutorial II-57

Summary

• Source characteristics:Spectral lines, ultra-wideband, high SNR

• Propagation: dominated by turbulent scattering

– Amplitude & phase fluctuations (saturation, Ω)

– Spatial coherence loss (coherence, γ)

– Depends on freq., range, weather, sensor spacing

• Signal processing:– Coherence losses limit AOA and

TDE performanceIdeal plane wave is overly

optimistic– Implications for detection and

array aperture size– Sensor network: comms. &

distributed processing

CentralNode?

Source

Provided a detailed case-study ofa particular sensor network.