33
© Dassault Systèmes | Confidential Information | 2/25/2021 | ref.: 3DS_Document_2020 Wind Turbine Aerodynamics and Aeroacoustics Dr. Wouter VAN DER VELDEN Industry Process Expert Specialist, Energy & Materials

Wind Turbine Aerodynamics and Aeroacoustics

  • Upload
    others

  • View
    18

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

Wind Turbine Aerodynamics

and Aeroacoustics

Dr. Wouter VAN DER VELDEN

Industry Process Expert Specialist, Energy & Materials

Page 2: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

2 https://showyourstripes.info/

Global Warming

Page 3: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

3

Trends

Noise

Increasing Turbine Size

Windfarm dBA max dBA/turbine #. of turbines

50 44 4

50 43 5

1dBA reduction = 25% more AEP

Challenges

CAPEX

Generate accurate load predictions

Reduce turbine cost

Lower noise

Minimize prototypes and testing

Decreasing R&D time and resources

Enable innovation

OPEX

Avoid risk

Maximize turbine output

Increase nighttime operation

Extend lifetime

Lowering Cost of Energy

Page 4: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

4

Wind Turbine Engineering

Page 5: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

5

Wind Turbine Aero and Acoustics

Lightning Strike

Load Calculations Trailing Edge Noise

Drivetrain Resonance Analysis

Extreme Load Case

Components

Hardware in the Loop

Foundation Design

Thermal

Cooling

Blade Aerodynamics

WT Aerodynamics and Acoustics

Blade Structural

Design

Control

Structural Noise

Antenna and Radar

Page 6: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

6

Wind Turbine Aero and Acoustics

Trailing Edge Noise

Thermal

Cooling

Blade Aerodynamics

WT Aerodynamics and Acoustics

SIMULIA

PowerFLOW™

• Wind farm and urban siting

• Wind Turbine aero, thermal & acoustics

• Ducted wind turbines

• Vortex generators

• Icing

• Dynamic stall

• Stall noise

• Tip noise

• Trailing edge noise

• …

Page 7: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

7

Low Numerical DissipationAccurate aeroacoustics near field direct predictions

Robust and streamlined meshingCut preparation time from weeks to days on fully detailed geometries

Complex flowsIdeal for full detailed geometries and off-design

Fast solver1-to-2 order of magnitude faster than LES for comparable

accuracy

Kinetic Theory of Flow MotionBoltzmann Equation

Discrete Solution on a Lattice Lattice Boltzmann Model

Inherently Unsteady & Scale-ResolvedLBM/VLES

Why PowerFLOW

Page 8: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

8

LBM/VLES Foundation in PowerFLOW

Unconventional LB momentum solver:

Low-dissipation and stable collision

operator

Transonic LB formulation

Accurate body representation (surfel

concept)

Porous media with interface effects

Very Large Eddy Simulation model:

Kinetic theory representation of a

gas of eddies best

establishment of the Boussinesq

hypothesis

Reynolds stresses consequences

of a modified dynamic equilibrium

Non-linear (far from equilibrium)

and memory effects of unresolved

turbulence scales inherently

accounted for

Page 9: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

9

Application overview

Page 10: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

10

Page 11: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

11

NREL 20kW turbine (1/3)

Wind turbine aero, thermal & acoustics

Inle

t (V

elo

cit

y)

Outlet (P

ressure

)

Wind Turbine

Floor (Friction Wall)

Ceiling (Frictionless Wall)

Wind DirectionComputational

Domain

AIAA 2012-2290

Page 12: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

12

NREL 20kW turbine (2/3)

Wind turbine aero, thermal & acoustics

AIAA 2012-2290

Page 13: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

13

NREL 20kW turbine (3/3)

Wind turbine aero, thermal & acoustics

Torque vs. inflow speed

(red: measurements)

Normal force coefficient

(dots: measurements)

AIAA 2012-2290

Page 14: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

14

NM80 2.3MW turbine (1/3)

Wind turbine aero, thermal & acoustics

AIAA 2019-2646

Pressure distribution

Transition location

Page 15: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

15

NM80 2.3MW turbine (2/3)

Wind turbine aero, thermal & acoustics

42 6

2

4

6

AIAA 2019-2646

Instantaneous velocity

Far-field noise above trailing edge

Pressure dilatation field

Page 16: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

16

NM80 2.3MW turbine (3/3)

Wind turbine aero, thermal & acoustics

10 m 100 m

IEC certification noise includes:

• Realistic noise sources

• Doppler effect

• Atmospheric effect

• Ground reflection

AIAA 2019-2646

Page 17: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

17

Automated workflow

Wind turbine aero, thermal & acoustics

Noise emission and directivity at residents location is automated

1. Input airfoil data and characteristics

2. 2.5D trailing edge noise PowerFLOW workflow run employed on SIMULIA Cloud™

(interactive cluster with +60k cores available)

3. Direct 2.5D output, such as pressure distribution, boundary layer development, near-

field and far-field noise

4. 2.5D to 3D noise mitigation tool

5. Residents noise prediction

Page 18: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

18

SANDIA / NREL 5MW turbine

Wind turbine aero, thermal & acoustics

0 0.5 1 1.5 2

Wat

t/m2

Revolution

Generator Heat Flux

TU Dresden

Page 19: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

19

Ducted wind turbinesDiffuser Augmented

Wind Turbines𝒓 =

𝑪𝒑𝒅𝒖𝒄𝒕𝒆𝒅𝑪𝒑𝒖𝒏𝒅𝒖𝒄𝒕𝒆𝒅

Rotational speed 370 RPM

Reynolds number 330,000

Inflow angle 0 & 7.5 deg

19

α = 7.5 degreesα = 0.0 degrees

Augmentation factor

Overall Sound Pressure Level

AIAA 2019-1294 / AIAA 2020-1424

Page 20: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

20

Backward facing ramp

Vortex generators

Experiment

PowerFLOW

Experiment

PowerFLOW

Sub

-bou

ndar

y la

yer

Con

vent

iona

l

AIAA 2012-2922

Page 21: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

21

MD30P30N high lift airfoil

Vortex generators

Re=5 000 000

AoA=8°

Baseline without VGs

With VGs

Page 22: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

22

IcingNASA ED1978 (1/2)

ED1978sED1978ED1974

SAE 2015

Wind Tunnel Oil Flow PowerFLOW skin friction lines

Page 23: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

23

NASA ED1978 (2/2)

Icing

Lift Drag

SAE 2015

Page 24: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

24

Dynamic stall

Reynolds number 750,000

Mean angle 8 deg

Oscillation angle +- 10 deg

Oscillation frequency 1.8 Hz

Page 25: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

25

Tip noise

AIAA 2015-2988 / AIAA 2015-2992

Flap side edge noise benchmark

• 18 scale Gulfstream aircraft

• 0.2 Mach

• 3.4 million Reynolds

Page 26: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

26

Page 27: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

27

NACA0018 (1/4)

Trailing edge noiseTrailing edge boundary layer characteristics

Far-field noise delta

JFM 2018-377 / JSV 2017-04-007

Page 28: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

28

NACA0018 (2/4)

Trailing edge noise

JFM 2018-377 / JSV 2017-04-007

CombedIronConventional

Destructive interference by source isolation

Mean spanwise velocity

Flow Induced Noise Detection

Page 29: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

29

NACA0018 (3/4)

Trailing edge noise

Diamond shaped TE

Noise spectra comparison

JFM 2020-363

Page 30: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

30

NACA0018 (4/4)

Trailing edge noise

Simplified representations

using equivalent fluid model

Noise spectra comparison

JFM 2020-363

Porous TE

Blocked TE

Page 31: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

31

NACA64618 DU96

Trailing edge noise

Free-transitional case

AIAA BANC / AIAA 2018-3129

Far-field directivity

Far-field noise absolute levels

Page 32: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

32

What have we learned? Detailed fluid portfolio with SIMULIA

PowerFLOW for wind turbine aerodynamics and aeroacoustics

Automated full wind turbine simulation workflows, covering aero, thermal and acoustic

Validated workflows for component level investigations

Vortex generator, icing, stall, tip, trailing edge design

Page 33: Wind Turbine Aerodynamics and Aeroacoustics

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n |

2/25

/202

1| r

ef.:

3DS

_Doc

umen

t_20

20

33