28
Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Rose R. Zillmer INFN, Sezione di Firenze Reduction of the Hodgkin-Huxley model The FitzHugh-Nagumo model Phase plane analysis Excitability (threshold-like behavior), periodic spiking (Hopf bifurcation) The Hindmarsh-Rose model for bursting neurons

Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

Simple Neuron Models:

FitzHugh-Nagumo and Hindmarsh-Rose

R. ZillmerINFN, Sezione di Firenze

• Reduction of the Hodgkin-Huxley model• The FitzHugh-Nagumo model• Phase plane analysis• Excitability (threshold-like behavior), periodic spiking (Hopf bifurcation)• The Hindmarsh-Rose model for bursting neurons

Page 2: Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

Neuron models (sketch)

Single Neurons

Hodgkin−Huxley, 1952− current based

detailed, specific models− compartmental (structure)− more currents− adaptive (state−dep. prop.)

low−dimensional models− FitzHugh−Nagumo, 1960’s− Hindmarsh−Rose, 1980’s

Networks* effective numerical simulation* allow for most common features − excitability − spiking, different time scales

integrate−and−fire modelsstochastic models

Hopfield network, 1980’s− on−off neuron, learning, stat. physics

experiments

reduction

simplification

abstraction

1

Page 3: Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

Hodgkin-Huxley model

• neuronal signals are short electrical pulses: spikes or action potentials on msecscale

• intracellular: incoming spike modifies membran potential

Hodgkin-Huxley (1952): Semirealistic 4-dimensional model for the dynamics of themembran potential by taking into account Na+, K+, and a leak current. Dynamics of ionchannels highly nonlinear ⇒ emergence of chaotic evolution.

membran potential:dVdt

= CNam3h(ENa−V)+CK n4(EK−V)+Cleak(Vrest−V)+ Iinj(t)

sodium INa, fast:dmdt

= αm(V)(1−m)−βm(V)m

slow:dhdt

= αh(V)(1−h)−βh(V)h

potassium IK , slow:dndt

= αn(V)(1−n)−βn(V)n

2

Page 4: Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

Dynamics of currents m, h, n

General form:dxdt

=− 1τ(V)

[x−xs(V)]

Solution for constant V : x(t) = (x0−xs)exp(−t/τ)+xs

⇒ exponential relaxation to steady state value xs

For varying V(t) : x(t) follows varying steady state value xs(t)

small τ : fast relaxation ⇒ x(t) ≈ xs(t)large τ : slow dynamics

3

Page 5: Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

Reduction to two-dimensional model

fast sodium dynamics:

approximate by steady state value: m(t) ≈ ms(V)

similar dynamics of slow sodium and potassium:

replace h(t) , n(t) by one effective current w(t)

⇒ two equations for temporal evolution of V(t) and w(t)

4

Page 6: Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

FitzHugh-Nagumo model

FitzHugh (1961) and Nagumo, Arimoto, Yoshizawa (1962) derived 2-dimensional modelfor an excitable neuron:

membran potential:dvdt

= v− v3

3−w+ I

current variable:dwdt

=1τ(v+a−bw)

typical values: a = 0.7, b = 0.8, τ = 13

⇒ vw∼ 10 ⇒ w slow , v fast

For constant input I = constno chaotic evolution

5

Page 7: Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

Phase plane analysis

Two-dimensional flow field:

~F(v,w) =ddt

(vw

)=

(v− v3

3 −w+ I1τ(v+a−bw)

)

(numerical) solution:(

v(t)w(t)

)⇒ trajectory in 2-D plane

Characteristics:

• trajectories cannot cross (uniqueness of solutions)• nullclines define lines in the 2-D plane:

v = 0 ⇒ w = v− v3

3 + I

w = 0 ⇒ w = (v+a)/b

• crossings of the nullclines correspond to fixed points (stable for I = 0)

6

Page 8: Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

Phase plane portrait of FitzHugh-Nagumo model for I = 0

arrows indicate flow field (v, w)

-3 -2 -1 0 1 2v

-0,5

0

0,5

1

wv=0w=0

. .

7

Page 9: Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

Subthreshold pulse injection

injection of weak pulse I(t) = I0δ(t− t0) : fast return to FP

-3 -2 -1 0 1 2v

-0,5

0

0,5

1

wv=0w=0

. .

8

Page 10: Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

Subthreshold pulse injection

no action potential

0 10 20 30 40 50t

-1,2

-1

-0,8

-0,6

-1,2 -1 -0,8-0,63

-0,6

-0,57

-0,54

v

w

9

Page 11: Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

Suprathreshold pulse injection

stronger pulses: large excursion in phase plane

-3 -2 -1 0 1 2v

0

wv=0w=0

. .

10

Page 12: Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

Suprathreshold pulse injection

spike response – action potential generation

0 10 20 30 40 50 60 70t

-2

-1

0

1

2

-2 -1 0 1 2

-0,5

0

0,5

1

v

w

11

Page 13: Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

Refractory period

Immediately after spike the neuron is indifferent to further input

0 10 20 30 40 50 60 70t-3

-2

-1

0

1

2

v(t)

-2 -1 0 1 2

-0,5

0

0,5

1

refractory period

12

Page 14: Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

FitzHugh-Nagumo model for constant I > 0

Phase plane analysis:I shifts nullcline of v, nullcline of w unaffected

v = 0 : w = v− v3

3+ I , w = 0 : w = (v+a)/b

⇒ for large enough I > 0.33 the fixed point, v = w = 0, becomes unstable

⇒ Onset of sustained oscillations (Hopf-bifurcation)

13

Page 15: Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

Nullclines for constant I > 0

v - nullcline shifted ⇒ for I > 0.33 the fixed point becomes unstable

-2 -1 0 1 2v

-2

-1

0

1

2

3

w

I=0.4I=0

v=0

w=0.

.

14

Page 16: Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

Below the bifurcation, I = 0.3

Fixed point remains stable ⇒ small damped oscillations

-2 -1,5 -1 -0,5 0v

-1

-0,5

0

0,5

1

w

v=0

w=0.

.

15

Page 17: Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

Below the bifurcation, I = 0.3

Fixed point remains stable ⇒ small damped oscillations

0 25 50 75 100t

-1,4

-1,2

-1

-0,8

v(t)

16

Page 18: Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

Above the bifurcation, I = 0.4

Fixed point unstable ⇒ Hopf-bifurcation to sustained oscillations on limit cycle

-3 -2 -1 0 1 2v

-1

0

1

2

w

v=0

w=0.

.

17

Page 19: Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

Above the bifurcation, I = 0.4

Fixed point unstable ⇒ periodic spiking

0 50 100t

-2

-1

0

1

2

v(t)

18

Page 20: Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

FitzHugh-Nagumo model for varying I(t)

Recapitulation:

• For I = const> 0.33 onset of stable oscillations with Frequency Ω(I)• Refractory period where system is rather indifferent to external signals

Time dependent input:

• periodic signals: resonance effects• noisy signals: coherence resonance

19

Page 21: Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

Summary FitzHugh-Nagumo

• two dimensional model that can be derived from Hodgkin-Huxley via reduction ofvariables

• allows effective phase plane analysis• ecitable: spike response to suprathreshold input pulse• refractory period• with increasing input current Hopf-bifurcation to sustained periodic spiking

• reduction of complexity: no self-sustained chaotic dynamics• no bursting• few parameters: difficult to adapt to neurons with specific properties

20

Page 22: Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

The Hindmarsh-Rose model

Developed 1982-1984 by J. L. Hindmarsh and R. M. Rose to allow for rapid firing orbursting

Idea:Allow for triggered firing, i.e., switch between a stable rest state and a stable limit cycle(rapid periodic firing)⇒ more than one fixed points required: can be achieved by deformation of the null-clines (nonlinear “current” equation)

Basic equations:

dxdt

= 3x2−x3−y+ I ,dydt

= 5x2−1−y

Nullclines:

x = 0 : y = 3x2−x3+ I , y = 0 : y = 5x2−1

21

Page 23: Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

Phase portrait of Hindmarsh-Rose model

3 Fixed points ⇒ coexistence of rest state and limit cycle

-2 -1 0 1 2x

0

4

8

12

16

20

y

dx/dt=0dy/dt=0

stable

saddle

unstable

22

Page 24: Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

Adaption variable

Termination of firing via additional adaption variable z that should:

• lower the effective current when neuron is firing• return to zero when x has reached its rest state value xr

Complete equations:

dxdt

= 3x2−x3−y+ I −z ,dydt

= 5x2−1−y ,dzdt

= r [s(x−xr)−z]

23

Page 25: Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

Bursting of Hindmarsh-Rose model

After repeated firing the dynamics returns to the stable fixed point

-2 -1 0 1 2x

0

4

8

12

y

24

Page 26: Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

Bursting of Hindmarsh-Rose model

Several spikes with varying interspike-interval (ISI)

0 25 50 75 100t-2

-1

0

1

2

x(t)

25

Page 27: Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

Features of the Hindmarsh-Rose model

3-D model for neuron with rapid firing

Suitable choice of parameters allows for

• regular bursting• chaotic bursting

Suitable choice of parameters ? ⇐⇒ ? real neurons

26

Page 28: Simple Neuron Models: FitzHugh-Nagumo and Hindmarsh-Roseatorcini/ARTICOLI/lezione4-zillmer.pdf · 4 8 12 16 20 y dx/dt=0 dy/dt=0 stable saddle unstable 22. Adaption variable Termination

Further reading

• W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single Neurons, Popula-tions, Plasticity,http://diwww.epfl.ch/ gerstner/SPNM/SPNM.html .

• C. Koch, Biophysics of Computation: Information Processing in Single Neurons(Computational Neuroscience), Oxford University Press.

• J. Hindmarsh and P. Cornelius, The Development of the Hindmarsh-Rose modelfor bursting,www.worldscibooks.com/lifesci/etextbook/5944/5944−chap1.pdf .

27