47
Charge-Trap NAND Flash Memory Charge Trap NAND Flash Memory Souvik Mahapatra E E Dept, IIT Bombay, India C t ib ti S d CP Si hS G t K hitij A l k Contributions: Sandya C, Pawan Singh, Suyog Gupta, Kshitij Auluck, Piyush Dak, Sandeep Kasliwal, Udayan Ganguly, Dipankar Saha, Gautam Mukhopadhyay, Juzer Vasi 1 Support: Applied Materials, Intel Corporation, SRC/GRC

Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

Embed Size (px)

Citation preview

Page 1: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

Charge-Trap NAND Flash MemoryCharge Trap NAND Flash Memory

Souvik Mahapatrap

E E Dept, IIT Bombay, India

C t ib ti S d C P Si h S G t K hitij A l kContributions: Sandya C, Pawan Singh, Suyog Gupta, Kshitij Auluck, Piyush Dak, Sandeep Kasliwal, Udayan Ganguly, Dipankar Saha, Gautam Mukhopadhyay, Juzer Vasi

1Support: Applied Materials, Intel Corporation, SRC/GRC

Page 2: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

Outline

FG NAND Flash scaling challenges

SiN based charge trap flash – material dependence

P/E simulation of SiN Flash

Metal nanodot Flash

Scalability simulation of m-ND Flash

2

Page 3: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

NAND Flash Background

BL DSL CG

CD 15nm ells

WL

CD 15nm

FG 50nm No.

of c

Figure: SamsungSL SSL

TO 9nm

L=35nm Memory stateSL

•Electron transfer between substrate & FG define memory state (write & erase)state (write & erase)

•FG surrounded by TO & CD acts as electron storage well (non-volatility, need 10yrs), though leak out occurs over time (retention loss)

3•Repeated Write/Erase (10-100K needed) causes memory wear out (cycling endurance)

Page 4: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

NAND Flash Scaling•More memory, faster access, reduced cost

•Guideline (ITRS roadmap): L=35nm (2009)

CG

CD 15nm •Guideline (ITRS roadmap): L=35nm (2009), 28nm (2010/11), 22nm (2013/14)…

SLC (1bit/ ll) MLC (2 3 bit / ll) f hi hTO 9nmFG 50nm

•SLC (1bit/cell), MLC (2 or 3 bits/cell) for higher density, higher reliability issuesL=35nm

Scaling penalty:(1) Loss of CG – FG coupling (2) C ll t ll t lk

Solution: Discrete trap-based charge storage

(2) Cell to cell cross talk (3) Non-scaling of TO, FG and CD thickness

CG

CD, 12nmCD thickness (4) Non-scaling of operating voltage TO, 6nm

CD, 12nmSiN, 6nm

4(5) Higher reliability concern

Page 5: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

Planer CTF

Devices & test chip demonstrated (Samsung)

•Memory window•Memory window close down with W/E cyclingcycling

•Data keeps leaking out (worse than FG!)out (worse than FG!)

•Loss of memory ti

5operation

CTF reliability worse than FG, no product yet

Page 6: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

Retention Issue

Lateral or Vertical charge migrationg g

Trap depth of SiN is key to control charge migration6

Trap depth of SiN is key to control charge migrationSolution – to cut SiN above STI (Samsung, 2007)

Page 7: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

NAND 3D Memory

3D CTF proposed as a way to move forward below p p y20nm node: BiCs (Toshiba), TCAT (Samsung)

7

Page 8: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

Motivation

CTF reliability improvement needs:y p

Understanding impact of device processing on g p p gmaterial and electrical properties

Proper device design (structure, composition)

Detailed electrical characterization & modeling –feedback for intelligent manufacturingg g

8

Page 9: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

SANOS Device Structure

Trap parameters:

ΦEc

Trap parameters:Nt,elec, Φt,elecNt,hole, Φt,hole

Gate

m)

Gate

m)

GateGate

m)12 nm

Φt,elec

Φ

c

Si+ N+

Al2O3

stan

ce (n

m

Si+ N+

Al2O3

stan

ce (n

m

Si+ N+

Al2O3Al2O3

stan

ce (n

m15 nm20 nm

Al2O3

SixNy SiO2

Φt,hole

EvTrap dist

Dis

Si+N+SixNy

Trap dist

Dis

Si+N+

Trap dist

Dis

Si+N+SixNy

3-6 nm6 nm

TOTrap dist.

(A.U.)Channel Trap dist. (A.U.)Channel Trap dist. (A.U.)ChannelChannel

Charge tunnel from substrate to SiN via TO, Al O used for leakage blocking

9

Al2O3 used for leakage blocking

Page 10: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

P/E Transients

6

8 P/E at +18V/-18V10

12 P E Total memory window

Refr

R.I.

4

6

(V) N-rich

Si-rich6

8

dow

(V)

ractive Ind

0

2

ΔVFB

Si rich

0

2

4

W11 W2 W3 W6 W8 1 95P/E

Win

d

N1 N2 N3 N4N0

dex (R.I.) N+ Si+

10-8 10-5 10-2 101-4

-2

-4

-2

0 W11 W2 W3 W6 W8

2.152.102.052.001.95

P

10 10 10 10Time (s)

W11 W2 W3 W6 W8

SplitsHigh-k blocking dielectric:

Better coupling to channelLarger memory windows

10P / E state (memory window) depend on SiN composition

Page 11: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

ISPP and ISPE

67

N0 56

N0N1N+ N+

456 N1

N2 N3 N4V) 2

34

N1 N2 N3 N4V)

123

V FB(V

101

V FB(VSi+ Si+

10 15 20 25-101

-3-2-1

N+ SiN

10 15 20 25Vg (V) 0 -5 -10 -15 -20 -25

-4

Vg (V)

Higher electron trapping efficiency Poor erase characteristics

Si+ SiN11

Si+ SiNLow P saturation levelsHigher erase efficiency

Page 12: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

Charge loss (Retention)

5 0

5.5

0.8

0 4

0.5

E state lossP state loss

N+

4.5

5.0

FB (V

) N1 N2N3 0 4

0.6

0.3

0.4

ΔVFB(V

)

Si+N+

Si+

-1.9-1.8-1.7-1.6

V F N3 N4

0.2

0.4

0.1

0.2

(V)

ΔVFB

SiNN+

102 103 104-2.1-2.0

Time (s)1.95 2.00 2.05 2.10 2.150.0 0.0

0.1

R I

Si+

N+ SiNDeep electron traps - shallow hole traps

Si SiN

Time (s) R.I.

Si+ SiNShallow electron traps - deep hole traps

12P/E state retention dependent on SiN composition

Page 13: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

Tunnel oxide thickness dependence

5 5

5.0

5.5

V)

2.5 3/6/12 5/6/12

VFB

(V

2.00.04

4/6/12 6/6/12

VFB= 2.5VV)

1 2 3 4-0.04

0.00FB

ΔV

FB (V

101 102 103 104

Time (s)

13Thinner TO Increased electron tunnel out from SiN

Page 14: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

Retention – T dependence

0.0

VFB = 5.5V

1043

-0.4

ΔVFB

(V)

1033

1038

10 N1:Ea = 1.88 eV N2:Ea = 1.38 eV N3:Ea = 1.01 eV

0.0

-0.8

Δ

1023

1028

t r (s)

-0.4

VFB

(V) VFB = 2.5V

8

1013

1018

101 102 103 104-0.8

25oC 125oC 150oC 180oC

ΔV

25 30 35 40103

108

1/kT( V-1)10 10 10 10Time (s)

1/kT(eV 1)

14Higher activation energy in N+ → Deeper electron traps

Page 15: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

Retention – E state TO thickness & T effect

0.425oC 125oC

E state retention loss

T independent 0.2

25oC 125oC 150oC 180oC

B(V

)

T independent No thermal emission of holes

0 0

0.2

ΔV

FB

VFB = -2.0V

TO independent for > 3nm

0.40.0

3/6/12 4/6/12 5/6/12 6/6/12)TO independent for > 3nm

No Trap to Band tunneling of holes

0.2

VFB = -2.0V

ΔV

FB(V

)101 102 103 104

0.0

Ti ( )

Δ

Different charge loss mechanisms15

Time (s)Different charge loss mechanismsfor electrons and holes

Page 16: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

Endurance – SiN Composition

5

V)

5

3

4

ow, V

FB(V

N1N23

4

V)

2

3

y W

indo

N2 N3 N42

3

N1 N2N3

V FB(V

P 16V 5ms

0

1

Mem

ory N+

0

1 N4P 16V 5msE -15V 1ms

100 101 102 103 1040

P/E Cycles

Si+100 101 102 103 104

0

P/E Cycles

Si rich devices cycle with negligible erase state degradationEndurance degradation SiN composition dependent

16

Si-rich devices cycle with negligible erase state degradation

Page 17: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

Summary

• Comparison of SiN Compositions

Parameter N+ Si+

Electron trap depth Deep Shallow

Hole trap depth Shallow DeepHole trap depth Shallow Deep

Hole trap density Very low High

Split window operation

Not possible

Possible

Endurance degradation

High Low

17

Page 18: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

P/E Simulation of SiN Flash

D l Si l ti f k bl f idi• Develop a Simulation framework capable of providing useful insight into the physics involved during Program /Erase (P/E) operations/Erase (P/E) operations.

• Accurately predicting P/E behavior of SANOS/SONOS y p gmemories

Si l ti t l ti i t t l bi• Simulation up to long time instants, large biases

• For different gate stack dimensions• For different gate stack dimensions

• For different Nitride Compositions18

p

Page 19: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

Simulation Methodology

•Set P/E bias•Compute Poisson throughout•Compute Poisson throughout gate stack•Assume TO and CD as pureAssume TO and CD as pure tunnel barriers, compute tunneling currents in and out of SiN•Compute transport, continuity and SRH (trapping detrapping)and SRH (trapping detrapping) in SiN•Compute trapped charges, Co pute t apped c a ges,update Poisson•Continue till end of P/E time

19

Page 20: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

Simulation Flow

20

Page 21: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

Key Models Incorporated

Tsu-Esaki tunneling formulation

Field dependent capture cross sectionp p

Poole Frenkel detrapping from traps

T t b d t liTrap to band tunneling

21

Page 22: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

P/E: Stack Energy Band Diagrams

22

Page 23: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

SANOS sample stack properties

Gate Stack

SiN type

Si2H6/N3

flow ratio

Dep. Temp RI

Gate Stack Dimensions

(nm)type flow ratio(°C)

TO SiN CD

N2 0 005 650 2 006 4 6 15N2 0.005 650 2.006 4 6 15N2 0.005 650 2.006 6 6 12N2 0 005 650 2 006 4 6 12N2 0.005 650 2.006 4 6 12

N0 0.01 800 1.987 4 6 12

N0 More N rich SiN; N2 More Si rich SiNDiff t t k di i d t h k b t

23Different stack dimensions used to check robustness

Page 24: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

ISPP Matching

Less than 1V change in VT (or VFB) for every 1V

6.5

7.5ExpField dep. σ (n = 3)σ = const (n = 0)

LowerVfb Shift

VT (or VFB) for every 1V increment in applied VG(ISPP slope <1V/V) 4.5

5.5

V)

σ = σ0/(1+(E/Esat)n)

Employing the field d d t bl

2.5

3.5

Δ V

fb (V

Lowerdependent σ enables accurate prediction of ISPP 0.5

1.5

LowerISPP Slope

ISPP

5 10 15 20-0.5

0.5

Vg (V)

24

Vg (V)

Page 25: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

ISPP Matching

Good matching with ISPP data for varying 7 5

8.5

9.5 Exp: N2 (4/6/15nm)Exp: N2 (4/6/20nm)Exp: N0 (4/6/12nm)ISPP data for varying

gate stack thickness and nitride 5.5

6.5

7.5

V)

σ = σ0/(1+(E/Esat)3)

N2

compositions

S t3.5

4.5

Δ V

fb (V

Same parameter values used during P/E transient matching (to 0 5

1.5

2.5

Symbol : Exp

N0

transient matching (to follow)

4 6 8 10 12 14 16 18 20 22-0.5

0.5

Normalized Vg (V)

Symbol : ExpLine : Sim

25

g ( )

Page 26: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

P/E MatchingP/E Matching

5.5Symbol: ExpLine: Sim 5

6

3.5

4.5

(V)

Line: Sim

3

4

5

(V)

1.5

2.5

Δ V

fb (

Vg : 12V-16V1

2Δ V

fb

Vg : -17V - -12V

10-6

10-5

10-4

10-3

10-2

10-1

100

-0.5

0.5

10-6

10-5

10-4

10-3

10-2

10-1

100

-1

0

Time (s)

Symbol: ExpLine: Sim

Time (s) Time (s)

Program and Erase transients (N2-4/6/12 nm SANOS)26

g ( )

Page 27: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

P/E Matching (Change in TO)

5.5Symbol: ExpLine: Sim

6

3.5

4.5

V)

Line: Sim

3

4

5

V)

1.5

2.5

Δ V

fb (

1

2

3

Δ V

fb (V

Vg : -18V - -13V

10-6

10-5

10-4

10-3

10-2

10-1

100

-0.5

0.5Vg : 12V-17V

10-6

10-5

10-4

10-3

10-2

10-1

100

-1

0 Symbol: ExpLine: Sim

Time (s) 10 10 10 10 10 10 10Time (s)

Program and Erase transients (N2 6/6/12 nm SANOS)27

Program and Erase transients (N2-6/6/12 nm SANOS)

Page 28: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

P/E Matching (Change in CD)

6.5Symbol: Exp

7

3 5

4.5

5.5

V)

Line: Sim

4

5

6

V)

1.5

2.5

3.5

Δ V

fb (V

1

2

3

Δ V

fb (V

Vg : -18V - -13V

10-6

10-5

10-4

10-3

10-2

10-1

100

-0.5

0.5Vg : 13V-18V

10-6

10-5

10-4

10-3

10-2

10-1

100

-1

0

1

Symbol: ExpLine: Sim

10 10 10 10 10 10 10Time (s)

10 10 10 10 10 10 10Time (s)

Program and Erase transients (N2 4/6/15 nm SANOS)28

Program and Erase transients (N2-4/6/15 nm SANOS)

Page 29: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

P/E Matching (Change in SiN)

6.5

7.5Symbol: ExpLine: Sim 6

7

3 5

4.5

5.5

b (V

)

3

4

5

Vfb

(V)

1.5

2.5

3.5

Δ V

fb

Vg : 12V-17V

1

2Δ V

Vg : -17V - -13V

S b l E

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

-0.5

0.5

Time (s)

Vg : 12V 17V

10-6

10-5

10-4

10-3

10-2

10-1

100

-1

0

Time (s)

Symbol: ExpLine: Sim

N0-4/6/12nm

( )

Program and Erase transients (N0-4/6/12 nm SANOS) 29

g ( )

Page 30: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

Extracted parameters (SiN dependence)

Parameter N0 N2 Parameter N0 N2Parameter N0 N2 Parameter N0 N2

Electron trap depth (eV)

1.8 1.63 Hole Trap Depth (eV) 1.73 1.95( )

Electron trap density (1019cm-3)

3.3 3.9Hole Trap Density

(1019cm-3)1.6 2.6

Electron σ const. , σ-0

(10-12 cm2)5.7 5.7

Hole σ const. , σ-0

(10-10 cm2)8 8

(10 cm ) (10 cm )

Trap-band emission f (1013 1)

4 4Saturation electric field

E (105 V/ )6.25 6.25

freq. υ-tbt(1013 s-1) Esat (105 V/cm)

Values of carrier effective masses band gaps and30

Values of carrier effective masses, band gaps and dielectric constants taken from published literature

Page 31: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

Summary

N d l f l t i fi ld d d t t• New models for electric field dependent capture cross section has been proposed which gives excellent agreement with experimental resultsexcellent agreement with experimental results

• The robustness of the simulator is verified across different stack thicknesses and different nitride compositions to accurately predict the P/E and ISPP transients

31

Page 32: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

Metal Nanodot (m-ND) Flash: Motivation• Floating Gate Cell

– poly-Si storage gateNanodot Cell

discrete nanodots as– poly-Si storage gate – discrete nanodots as storage node

C t l Di l t iControl Gate

Floating GateNanodots

Control Dielectric

e e e e e

Source DrainCh l

e e e e e e e Tunnel Dielectric

Source DrainCh l

e e e e e

Defect in Tunnel OxideComplete charge loss Only part of stored

Channel Channel

Charge storage in discrete nanodots increases

Complete charge loss y pcharge is lost

32immunity to tunnel oxide defects

Page 33: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

m-ND Flash Process Flow

SL DLSL DLWafer CleanTunnel Oxide 40ǺMetal DepositionAnneal

ILD deposition

--

ILD depositionMetal

Deposition Si SiAnneal

Control Oxide: 120Ǻ Al2O3Post Deposition Anneal Si l L (SL) D l L (DL)Post Deposition AnnealMetallization: 1000Ǻ Pt

Single Layer (SL) Dual Layer (DL)

33

Page 34: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

Pt Nanodot formation

500oC 700oC 900oC

Initial Deposited Thickness

10Å10Å

Anneal Temperature

Optimization of deposition and annealing processes results in large density( 12 2) ( ) ( %)

34(~4x1012cm-2), small size (~3nm) and large area coverage (~30%)

Page 35: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

Cross-Section TEM

CD

ILD

CD

ILD

TOTO

Si

TO

Discrete SL and DL nanodot formation clearly visible35

y

Page 36: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

SL Memory Window

8 +18V -> +20V 7 SL-S1

4

6

(V) 5

6

ow (V

)

SL S1 SL-S3

T = 10ms

0

2

4

V FB

Virgin VFB

2

3

4

ory

Win

do

10-5 10-4 10-3 10-2 10-1

-2

0

INT

-18V -> -20V

0

1

2

Mem

o

10 10 10 10 10

INTTime (s)

17 18 190

Gate Voltage (V)

Large Memory window & significant over erase (split window possibility)

36

( p p y)

Page 37: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

Memory Window: SL vs. DL

4

6 12nm(b) SL

810

)

2

4

n V FB

(V) 17nm

Improvement :A hi d 38%

Improvement in i

468 DL

V FB (V

)

-2

0

atur

atio

n Achieved: 38%Expected: 42%

memory window over SL

202

urat

ion

16 17 18 19 20 21 22-6

-4Sa

Thick CD SplitT =10ms

17 18 19 20 21 22-4-2

Satu

• 90% improvement in DL window over SL due to

16 17 18 19 20 21 22Eq. Gate Voltage (V)

17 18 19 20 21 22Eq. Gate Voltage (V) (w.r.t SL)

• 90% improvement in DL window over SL due to increased CD thickness and charge storage in 2nd layer

• Memory window improvement only with thick CD: 38%, 37

y p y ,expected (40%)

Page 38: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

High Temperature Retention

9 8 0 4

678

6

8

o

DL0.00.20.4

(V)

E-stategain

345

2

4

V FB (V

) 25oC 80oC150oC SL

VFB

(V -0.4-0.2

ΔV FB

P-stateloss

012

2

0

V 150 C

V)

DL1 0

-0.8-0.6 DL-S1

DL-S2 DL-S3DL-S9

100 101 102 103 104 -2

Time (s)

-1.0150oC80oC

Retention Temperature (oC)25oC

DL S9

Insignificant retention loss Retention better than SiN memory due to deeper

38

Retention better than SiN memory due to deeper potential well for m-ND’s

Page 39: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

SL vs. DL P/E Endurance

6 6

345

4

5

6

) DL-S1

123

V FB (V

) Solid: SL-S1Open: SL-S3

2

3

V FB (V

) DL S1 DL-S2 DL-S3DL-S9

-101V

0

1DL-S9

100 101 102 103 104

# P/E Cycles100 101 102 103 104

# P/E Cycles

Better endurance for DL w.r.t SL

39No window closure till breakdown

Page 40: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

P/E Endurance (DL-S9)( )

68

45

4

6

V) 234

V) 6V

0

2

V FB (V 6V

012

V FB(V 75000

6V

100 101 102 103 104

-2

100 101 102 103 104 105

-10

• 104 cycles with 6V and 7V memory window, 2x103 cycles

10 10 10 10 10# P/E Cycles

10 10 10 10 10 10# P/E Cycles

0 cyc es t 6 a d e o y do , 0 cyc eswith 8V memory window

• Maximum endurance seen when P/E-states are within 40

+6V/-2V• No window closure till breakdown

Page 41: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

MLC Operation (DL-S9)

4 11 4

2

3

4

10VPASS= 6V

2

3 T = 80oC

0

1

2

01V FB(V

)

0

1

V FB(V

)

-2

-1

0

00 -2

-1

10-2 10-1 100 101 102 103

2

Disturb Time (s)100 101 102 103 104

2

Retention Time (s)

Excellent separation maintained between the P/E levels after read disturb and high-T retention stress

41

g

Page 42: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

Summary

• Single and dual layer Pt metal Nanodot memory gate stacks demonstrated

• Excellent memory window, cycling endurance (>10K ith 6V i d ) d t li(>10K with 6V window), pre- and post-cycling retention

• MLC capabilities• MLC capabilities• No fundamental reliability show stopper for metal

dots in gate stackdots in gate stack• Need feasibility demonstration in scaled (sub

20nm node) cells20nm node) cells

42

Page 43: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

Simulation of m-ND Flash

• To demonstrate viability of m-ND cells in sub 20nm cells (impact of cell size no of dots area coverage(impact of cell size, no. of dots, area coverage, fluctuations, missing dots, dot to dot leakage…..)

• Full 3D electrostatics and tunneling implementation

S l L l f t ti l & l t i fi ld i t t k• Solve Laplace for potential & electric field in gate stack

• Non-local tunneling implementation (Tsu-Esaki) forNon local tunneling implementation (Tsu Esaki) for charging of dots (substrate to dot, dot to gate, dot to dot)

• Calculate charges in iterative manner

P t d t h i i l t d i i l t d i43

• Port dot charges in equivalent device simulated using Sentaurus Device for VT calculation

Page 44: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

Potential, E-field, Tunnel current (2D cuts)

44

Page 45: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

Charge Transients

45

Page 46: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

Prediction….

Area coverage, Channel length, No. density, Missing dots…

46

Page 47: Souvik Mahapatra E E Dept, IIT Bombay, India · PDF fileFG NAND Flash scaling challenges SiN based charge trap flash – material dependence P/E simulation of SiN Flash Metal nanodot

Summary

• Full 3D electrostatics – tunneling framework to study m-ND Flash viability below 20nm node

Immunity to fluctuations (good)• Immunity to fluctuations (good)

• Memory window reduction with L scaling (issue)Memory window reduction with L scaling (issue)

• Cells becomes edge critical (issue)

47