21
Speaker: Ke An Advisor: Jun Zhu A Brief Insight into the Bridged- and Non-bridged Osmanaphthalene and the Osmaazulene Isomers [M] [M] [M] [M]

Speaker: Ke An Advisor: Jun Zhu 2013.05.03

  • Upload
    obert

  • View
    55

  • Download
    0

Embed Size (px)

DESCRIPTION

A Brief Insight into the Bridged- and Non-bridged Osmanaphthalene and the Osmaazulene Isomers. Speaker: Ke An Advisor: Jun Zhu 2013.05.03. Introduction. Motivation. Results and Discussion. Conclusion. Introduction. 1. The first metallapentalyne has been successfully synthesized. 1. - PowerPoint PPT Presentation

Citation preview

Page 1: Speaker: Ke  An Advisor: Jun Zhu 2013.05.03

Speaker: Ke AnAdvisor: Jun Zhu 2013.05.03

A Brief Insight into the Bridged- and Non-bridged Osmanaphthalene and the

Osmaazulene Isomers[M]

[M] [M] [M]

Page 2: Speaker: Ke  An Advisor: Jun Zhu 2013.05.03

Conclusion

Results and Discussion

Introduction

Motivation

Page 3: Speaker: Ke  An Advisor: Jun Zhu 2013.05.03

Introduction

1. C. Zhu; S. Li; M. Luo; X. Zhou; Y. Niu; M. Lin; J. Zhu; Z. Cao; X. Lu; T. Wen; Z. Xie; P. v. R. Schleyer; H. Xia. Nat. Chem. 2013. accepted.

1. The first metallapentalyne has been successfully synthesized.1

pentalyne戊搭炔 metallapentalyne

Antiaromatic Aromatic

[M]

Page 4: Speaker: Ke  An Advisor: Jun Zhu 2013.05.03

Introduction

2. In 2003, the first non-bridged-iridanaphthalene was reported. 2,3

2. J. Chen, G. Jia, Coord. Chem. Rev. (2013), http://dx.doi.org/10.1016/j.ccr.2013.01.014.3. M. Paneque, C. M. Posadas, M. L. Poveda, N. Rendón, V. Salazar, E. O˜nate, K. Mereiter, J. Am. Chem. Soc. 2003, 125, 9898.

R = COOMe

N

N

O

N

N

NN

B

Me

Me

Me

Me

Me

Me

H

Ir

R

O

R R

R

Page 5: Speaker: Ke  An Advisor: Jun Zhu 2013.05.03

Introduction

3. In 2007, the first non-bridged-osmanaphthalyne from zinc reduction of vinylcarbyne complex.

4. In 2009, selective synthesis of osmanaphthalene and osmanaphthalyne by C-H activation.

Z. Lin and G. Jia, Angew. Chem., Int. Ed. 2007, 46, 9065.

Os

PPh3

PPh3

PPh3

Cl

ClOs

Cl

Cl

PPh3

Os

Ph3PCl

PPh3

CC

OsCl

H

Cl

C

PPh3

PPh3

H

PPh3 PPh3BF4

BF4 BF4H

H84oC/ O2

acid84oC/ N2

ClCH2CH2Cl72%

PPh3 /

88%

Z. Cao and H. Xia, Angew. Chem., Int. Ed. 2009, 48, 5461.

OsPh3P

Ph3PCl

Zn

ZnCl2

Os

PPh3

ClPPh3

ClPPh3 HC C C OH

Cl

Cl

++

Cl Cl

Os

Cl

Ph3P

PPh3

Cl

Cl

Page 6: Speaker: Ke  An Advisor: Jun Zhu 2013.05.03

Motivation

[M][M][M] [M]

Page 7: Speaker: Ke  An Advisor: Jun Zhu 2013.05.03

Results and Discussion

The ISE value shows that naphthalene is more stable than azulene. All energies(kcal/mol) were calculated at B3LYP/6-31G* level, zero-point energy were applied.

E = -32.8

1. The comparison between azulene( 薁 ) and naphthalene.

Page 8: Speaker: Ke  An Advisor: Jun Zhu 2013.05.03

Results and Discussion

1. The comparison between azulene and naphthalene.

NICS4(0) -17.4 -5.6 -8.5 -8.8

NICS(1) -17.8 -7.6 -10.4 -10.7

NICS(-1) -17.8 -7.6 -10.4 -10.7

BLA(Angstrom)

0.095 0.108 0.057 0.057

A B1.498

1.4051.403

1.390 1.396

1.396

C2v

A BD2h

1.415

1.374 1.420

1.431

Ring A

Ring A

Ring B Ring B

4. P. v. R. Schleyer; C. Maerker; A. Dransfeld; H. Jiao; N. J. R. v. E. Hommes. J. Am. Chem. Soc. 1996, 118, 6317.

Result 1: Azulene and naphthalene are both aromatic, which can be reflected by the negative NICS values and the BLA result.

NICS: Nucleus Independent Chemical Shift.BLA: Bond Length Alternation

Page 9: Speaker: Ke  An Advisor: Jun Zhu 2013.05.03

Results and Discussion

2. The comparison between bridged-osmaazulene and osmanaphthalene. [Os] [Os]ISE= -18.8(1). [Os] = OsCl(PH3)2

NICS(0) 0.9 3.6 3.1 3.1

NICS(1) 1.8 1.7 -1.6 0.6

NICS(-1) -5.9 2.0 0.2 -4.7

BLA(C-C) 0.075 0.075 0.066 0.065

Dihedral Angel

-6.4 -42.3 14.1 11.9

Ring A

Ring B

Ring A

Ring B

[Os]

A B[Os]

A B

Result 2: The NICS values indicate the nonaromaticity of both molecules, which means the transition metal destroys the aromaticity of azulene and naphthalene .

Page 10: Speaker: Ke  An Advisor: Jun Zhu 2013.05.03

Results and Discussion

[Os] [Os]ISE= -11.1(2). [Os] = OsCO(PH3)2

NICS(0) 29.0 24.3 19.4 18.5

NICS(1) 18.8 19.2 11.2 12.2

NICS(-1) 19.7 19.5 13.8 10.7

BLA(C-C) 0.036 0.081 0.045 0.070

Dihedral Angel

-1.6 -0.8 -8.4 -10.4

Ring A

Ring B

Ring A

Ring B

[Os]A B

[Os]

A B

2. The comparison between bridged-osmaazulene and osmanaphthalene.

Result 3: The NICS values indicate the antiaromaticity of both molecules, which means the transition metal reverses the aromaticity of azulene and naphthalene with the ligand influence.

Page 11: Speaker: Ke  An Advisor: Jun Zhu 2013.05.03

Results and Discussion

3. The comparison between bridged-osmaazulene and osmanaphthalene in T1 state.

NICS(0) 3.2 0.7 -1.1 -1.2

NICS(1) 0.9 -0.9 -1.1 -1.7

NICS(-1) -0.9 1.5 -1.7 -1.2

BLA(C-C) 0.048 0.064 0.068 0.068

Dihedral Angel

1.1 2.2 -0.4 -0.6

Ring A

Ring B

Ring A

Ring B

[Os]A B

[Os]

A B

(1). [Os] = OsCl(PH3)2

[Os] [Os]ISE= -10.1

Result 4: In T1 state, bridged-osmanaphthalene is more stable. And the NICS values indicate the nonaromaticity of both compounds.

Page 12: Speaker: Ke  An Advisor: Jun Zhu 2013.05.03

Results and Discussion

3. The comparison between bridged-osmaazulene and osmanaphthalene in T1 state.

(2). [Os] = OsCO(PH3)2

[Os] [Os]ISE= -7.4

NICS(0) -4.0 -5.0 -6.5 -6.5

NICS(1) -9.9 -6.8 -9.0 -9.2

NICS(-1) -9.2 -7.0 -9.2 -9.0

BLA(C-C) 0.028 0.020 0.020 0.020

Dihedral Angel

-0.3 -2.3 0 0.2

Ring A

Ring B

Ring A Ring B

[Os]

A B[Os]

A B

Result 5: The NICS values indicate the aromaticity of both molecules, which is just another demonstration of the antiaromaticity of the ground state.

Page 13: Speaker: Ke  An Advisor: Jun Zhu 2013.05.03

Results and Discussion

4.The comparison between bridged-osmaazulene and non-bridged-osmaazulene.

(1). [Os] = OsCl(PH3)2 / OsCl(PH3)2H

E(kcal/mol)

E(kcal/mol)

0 -7.7

-12.9 -18.3

-5.3 -11.0

[Os]

1

2

56

7

[Os]

[Os]

[Os]

[Os]

[Os]

Result 6: Non-bridged-osmaazulene with chloride ligand is more stable than bridged-osmaazulene. The isomer of 6-CH group substituted by osmium fragment has the most negative values.

Page 14: Speaker: Ke  An Advisor: Jun Zhu 2013.05.03

Results and Discussion

4.The comparison between bridged-osmaazulene and non-bridged-osmaazulene.

(1). [Os] = OsCl(PH3)2H

1 2 5 6 7

NICS(0) 4.0 0.1 -9.0 10.5 -4.0 -3.7 -8.3 -0.5 -4.6 -3.8

NICS(1) -5.2 -3.8 -18.3 6.2 -9.6 -7.1 -9.3 -3.6 -6.1 -5.9

NICS(-1)

-5.4 -3.7 -18.2 6.2 -10.0 -6.8 -8.9 -3.5 -6.4 -6.1

BLA(C-C)

0.106 0.109 0.105 0.123 0.114 0.123 0.089 0.096 0.125 0.132

Dihedral

-3.9 0.3 0.1 0.1 5.5 42.0 0.4 -32.2 1.7 5.9

[Os]

A B [Os] A B

[Os]

A B[Os]

A B [Os]A B

Explanation: The BLA result of the 6-subtituted isomer indicates result 6 again. The NICS values demonstrate the aromaticity of the non-bridged-osmaazulene isomers, except the seven-membered ring of the 2-substituted isomer.

Page 15: Speaker: Ke  An Advisor: Jun Zhu 2013.05.03

Results and Discussion

4.The comparison between bridged-osmaazulene and non-bridged-osmaazulene.

(2). [Os] = OsCO(PH3)2 / OsCO(PH3)2H

E(kcal/mol)

E(kcal/mol)

0 6.1

-24.2 -9.4

-12.7 4.3

[Os]

[Os]

[Os]

[Os]

[Os]

[Os]

Result 7: Non-bridged-osmaazulene with CO ligand is more stable than bridged-osmaazulene except for 5- and 7-substituted isomers. The isomer of 1-CH group substituted by osmium fragment has the most negative values.

Page 16: Speaker: Ke  An Advisor: Jun Zhu 2013.05.03

Results and Discussion

4.The comparison between bridged-osmaazulene and non-bridged-osmaazulene.

(2). [Os] = OsCO(PH3)2H

NICS(0) 1.1 -2.1 -3.3 11.1 -1.7 4.7 -4.2 -2.2 4.7 0.5

NICS(1) -6.5 -5.2 -11.0 6.2 -5.9 0.6 -7.5 -2.1 0.6 -3.6

NICS(-1)

-7.1 -5.2 -11.0 6.2 -6.5 1.0 -7.4 -0.9 1.0 -1.2

BLA(C-C)

0.080 0.088 0.121 0.122 0.156 0.164 0.086 0.095 0.146 0.148

Dihedral

0 0 0 0 -1.0 -16.8 -1.9 15.1 0.9 -5.7

[Os]

A B [Os] A B

[Os]

A B

[Os]

A B [Os]A B

Explanation: The BLA result of the 1-subtituted isomer and the larger BLAs of 5- and 7-substituted indicate result 7 again. The NICS values demonstrate the aromaticity of the 1- and 6-substituted isomers, except the seven-membered ring of the 2- and 5-substituted isomers and the five-membered ring of 7-substituted isomer.

Page 17: Speaker: Ke  An Advisor: Jun Zhu 2013.05.03

Results and Discussion

4.The comparison between bridged-osmanaphthalene and non-bridged-osmanaphthalene.

(1). [Os] = OsCl(PH3)2 / OsCl(PH3)2H (2). [Os] = OsCO(PH3)2 / OsCO(PH3)2H

E(kcal/mol)

0

-19.3

-19.4

E(kcal/mol)

0

-27.2

-21.1

[Os]

1

2

[Os]

[Os]

[Os]

[Os]

[Os]

Result 8: Non-bridged-osmanaphthalene is more stable than bridged-osmaazulene. The isomer of 1-CH group substituted by osmium fragment with CO ligand has the most negative values.

Page 18: Speaker: Ke  An Advisor: Jun Zhu 2013.05.03

Results and Discussion

4.The comparison between bridged-osmanaphthalene and non-bridged-osmanaphthalene.

NICS(0) -6.9 -2.7 -6.6 -0.6

NICS(1) -9.8 -4.3 -8.3 -3.1

NICS(-1) -9.6 -8.1 -8.1 -6.6

BLA(C-C)

0.051 0.083 0.052 0.094

Dihedral

1.0 31.1 2.1 11.3

[Os]

A B[Os]

A B

(1). OsCl(PH3)2H (2). OsCO(PH3)2H

NICS(0) -6.2 1.2 -4.2 0.5

NICS(1) -9.3 -3.6 -7.0 -4.8

NICS(-1) -9.2 -3.4 -7.1 -5.4

BLA(C-C) 0.050 0.063 0.076 0.069

Dihedral 0.1 1.1 0.2 -1.7

[Os]

A B[Os]

A B

Explanation: The BLA results indicate result 8 again. The NICS values demonstrate the aromaticity and stabilization of the non-bridged-osmanaphthalene isomers.

Page 19: Speaker: Ke  An Advisor: Jun Zhu 2013.05.03

Conclusion

1. Azulene and naphthalene are both aromatic, and naphthalene is more stable than azulene.

2.Bridged-transition metal destroys the aromaticity of azulene and naphthalene. It’s nonaromatic with a chloride ligand and antiaromatic with CO ligand.

ISE = -32.8

[Os] [Os]

[Os] =OsCl(PH3)2Nonaromatic.

[Os]=OsCO(PH3)2Antiaromatic.

Page 20: Speaker: Ke  An Advisor: Jun Zhu 2013.05.03

Conclusion

3. In T1 state, bridged-osmaazulene and osmanaphthalene are nonaromatic with a chloride ligand and aromatic with CO ligand.

[Os] [Os]

[Os] =OsCl(PH3)2Nonaromatic.

[Os]=OsCO(PH3)2Aromatic.

4. Non-bridged-osmaazulene and osmanaphthalene are more stable than bridged one. Due to the influence of the ligand, here are the most stable structures of osmaazulene and osmanaphthalene.

[Os]

[Os][Os]

[Os] =OsCl(PH3)2H

[Os] =OsCO(PH3)2H

[Os]

Page 21: Speaker: Ke  An Advisor: Jun Zhu 2013.05.03