18
Study of magnetic properties of a new vanadate Cu 13 Fe 4 V 10 O 44 Janusz Typek Institute of Physics, West Pomeranian University of Technology, Szczecin, Poland

Study of magnetic properties of a new vanadate Cu 13 Fe 4 V 10 O 44 Janusz Typek Institute of Physics, West Pomeranian University of Technology, Szczecin,

Embed Size (px)

Citation preview

Page 1: Study of magnetic properties of a new vanadate Cu 13 Fe 4 V 10 O 44 Janusz Typek Institute of Physics, West Pomeranian University of Technology, Szczecin,

Study of magnetic properties of a new vanadate

Cu13Fe4V10O44

Janusz TypekInstitute of Physics West Pomeranian University of Technology

Szczecin Poland

Outline

bull Why new vanadate Cu13Fe4V10O44 bull Sample preparation and chemistry bull Measuring methods dc magnetometry and EPRbull Results of dc magnetization measurementsbull Results of EPR measurementsbull Conclusions about magnetic structure

Why to study Cu13Fe4V10O44

bull Similar compounds from the same system of vanadates have important catalytic propertiesbull Defect structure and grain surface play an important role in catalysisbull Knowledge of magnetic defects and ions may lead to better understanding of the mechanism of the catalytic processes

Sample preparation

025 050 075 100

025

050

075

100

025

050

075

100

mol

of CuO

mol

o

f V2

O 5

mol of Fe2O3

Fe2O3

CuO

V2O5

13 CuO + 5 V2O5 + 2 Fe2O3 rarr Cu13Fe4V10O44

A Blonska-Tabero J Therm Anal Calorim 110 (2012) 161

Structure ndash possible types

Lyonsite -Cu3Fe4(VO4)6 a new iron-copper vanadate mineral

six isolated VO4 tetrahedraFeO6 octahedra

square-planar CuO4 groups

HowardewansiteMineral NaCuFe2(VO4)3

In figure Mn3Fe4(VO4)6

VO4 FeO6 MnO5 MnO4 polyhedra

EPR and dc magnetometry

Magnetic resonance spectrometerX-band Bruker E 500 (1997)

Magnetic Property Measurements SystemMPMS XL-7 Quantum Design (2011)

Dynamics τ~10-10 s Static τ~1 s

dc magnetization susceptibility study

0 50 100 150 200 250 30020x10-5

40x10-5

60x10-5

80x10-5

10x10-4

12x10-4

2 4 6 8 10 12 14 16 18 2080x10-5

90x10-5

10x10-4

11x10-4

[e

muO

e-1g

-1]

Temperature [K]

01 kOe 1 kOe 10 kOe 70 kOe

[e

muO

e-1g

-1]

Temperature [K]

0 40 80 120 160 200 240 2800

1

2

3

4

5 01 kOe 1 kOe 10 kOe 70 kOe

0 10 20 30 40 5008

10

12

14

16

18

1

[104

em

u-1O

eg

]

Temperature [K]

1

[104

emu

-1O

eg

]

Temperature [K]

dc magnetization reciprocal susceptibility

dc magnetization Curie-Weiss law

CWTT

CT

)(

Fe3+ 3d5 high-spin S=52 L=0 J=52 for g=2 μ=59 μB )1( JJgB

220 240 260 280 300

00

05

10

15

20

25

exp

-C

W [

10-6

em

u(g

Oe)

]

Temperature [K]

H=100 Oe

H=1 000 Oe

ZFC

H=10 000 Oe

dc magnetization high-temperature range

energynon-magnetic

magnetic

dc magnetization in an external field

0 10 20 30 40 50 60 70

00

02

04

06

08

00

05

10

15

20

25 10 20 30 40 50 60

Magnetic field [kOe]

250 K

200 K

Ma

gn

etiz

atio

n [ B

fu

]

2 K

5 K

HCHJg

kTkT

HJgJgHM H

B

B

coth)(

T [K] g JCH

[μBfumiddotOe]

2 115(2) 300(3)middot10-5

5 201(3) 200(5)middot10-5

200 9655(6) 0

250 9949(2) 0

Modified Langevin

AFM clusters

0 1 2 3 4 5 6 7 8 9

-4

-3

-2

-1

0

1

2

3

4

EP

R a

mpl

itude

[arb

uni

ts]

Magnetic field B [kG]

290 K260 K

230 K

4 K

170 K

70 K

40 K

255 K148 K

EPR spectra and fitting

0 1 2 3 4 5 6 7 8-15

-10

-5

0

5

10

EP

R a

mpl

itude

[ar

b u

nits

]Magnetic field B [kG]

T=305 K

220)(BBB

BABA

r

Lorentzian lineshape

Br - resonance fieldΔB -linewidth

20int BAI

Iint ndash integrated intensity

0 50 100 150 200 250 300195

200

205

210

215

220

225

g-fa

ctor

Temperature [K]

EPR g-factor

rBBgh

0 50 100 150 200 250 300

3000

3050

3100

3150

3200

3250

3300

3350

3400

Res

onan

ce f

ield

[G

]

Temperature [K]

0 50 100 150 200 250 30006

08

10

12

14

16

18

20

22

24

26

Line

wid

th [

kG]

Temperature [K]

nEPRNTTCBTB

10)(

EPR linewidth

000 002 004 006 008 01070

75

80

85

90

Ln(

H [

G])

Temperature-1 [1K]

12 K

60 K

)5(880

)5(72

n

KT EPRN

3335 3340 3345 3350146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

300 305 310 315 320 325 330 335 34010

15

20

25

30

35

40

45

50

Line

wid

th [k

G]

Resonance field [kG]

290K

280K

270K

260K

250K

240K

230K220K

190K 180K

170K160K

150K

140K

130K

120K

110 K

Line

wid

th [

kG]

Resonance field [kG]

8 K 10 K

122 K

148 K

173 K

199 K

255 K305K

EPR linewidth vs resonance field

0 50 100 150 200 250 30015

20

25

30

35

40

45

50

EP

R in

tegr

ated

inte

nsity

[ar

b u

nits

]

Temperature [K]0 50 100 150 200 250 300

0

1

2

3

4

5

6

7

EPR

arb

un

its

Temperature [K]

I0=53731010 C2=1131012

TCW=-602 K

CWTT

CITI

2

0int )(

EPR integrated intensity

140 160 180 200 220 240 260 280 30000

02

04

06

08

10

12

14

Inte

grat

ed in

tens

ity [

arb

uni

ts]

Temperature [K]

AFM clusters

General picture of the magnetic state of Cu13Fe4V10O44

0 50 100 150 200 250 300Temperature [K]

PARAMAGNETICAFM

TN=27 K

C-W STATEAFM CLUSTERS

CLUSTERS

ISING CHAINSAFM PHASE SEEDS

THE END

Thank you

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
Page 2: Study of magnetic properties of a new vanadate Cu 13 Fe 4 V 10 O 44 Janusz Typek Institute of Physics, West Pomeranian University of Technology, Szczecin,

Outline

bull Why new vanadate Cu13Fe4V10O44 bull Sample preparation and chemistry bull Measuring methods dc magnetometry and EPRbull Results of dc magnetization measurementsbull Results of EPR measurementsbull Conclusions about magnetic structure

Why to study Cu13Fe4V10O44

bull Similar compounds from the same system of vanadates have important catalytic propertiesbull Defect structure and grain surface play an important role in catalysisbull Knowledge of magnetic defects and ions may lead to better understanding of the mechanism of the catalytic processes

Sample preparation

025 050 075 100

025

050

075

100

025

050

075

100

mol

of CuO

mol

o

f V2

O 5

mol of Fe2O3

Fe2O3

CuO

V2O5

13 CuO + 5 V2O5 + 2 Fe2O3 rarr Cu13Fe4V10O44

A Blonska-Tabero J Therm Anal Calorim 110 (2012) 161

Structure ndash possible types

Lyonsite -Cu3Fe4(VO4)6 a new iron-copper vanadate mineral

six isolated VO4 tetrahedraFeO6 octahedra

square-planar CuO4 groups

HowardewansiteMineral NaCuFe2(VO4)3

In figure Mn3Fe4(VO4)6

VO4 FeO6 MnO5 MnO4 polyhedra

EPR and dc magnetometry

Magnetic resonance spectrometerX-band Bruker E 500 (1997)

Magnetic Property Measurements SystemMPMS XL-7 Quantum Design (2011)

Dynamics τ~10-10 s Static τ~1 s

dc magnetization susceptibility study

0 50 100 150 200 250 30020x10-5

40x10-5

60x10-5

80x10-5

10x10-4

12x10-4

2 4 6 8 10 12 14 16 18 2080x10-5

90x10-5

10x10-4

11x10-4

[e

muO

e-1g

-1]

Temperature [K]

01 kOe 1 kOe 10 kOe 70 kOe

[e

muO

e-1g

-1]

Temperature [K]

0 40 80 120 160 200 240 2800

1

2

3

4

5 01 kOe 1 kOe 10 kOe 70 kOe

0 10 20 30 40 5008

10

12

14

16

18

1

[104

em

u-1O

eg

]

Temperature [K]

1

[104

emu

-1O

eg

]

Temperature [K]

dc magnetization reciprocal susceptibility

dc magnetization Curie-Weiss law

CWTT

CT

)(

Fe3+ 3d5 high-spin S=52 L=0 J=52 for g=2 μ=59 μB )1( JJgB

220 240 260 280 300

00

05

10

15

20

25

exp

-C

W [

10-6

em

u(g

Oe)

]

Temperature [K]

H=100 Oe

H=1 000 Oe

ZFC

H=10 000 Oe

dc magnetization high-temperature range

energynon-magnetic

magnetic

dc magnetization in an external field

0 10 20 30 40 50 60 70

00

02

04

06

08

00

05

10

15

20

25 10 20 30 40 50 60

Magnetic field [kOe]

250 K

200 K

Ma

gn

etiz

atio

n [ B

fu

]

2 K

5 K

HCHJg

kTkT

HJgJgHM H

B

B

coth)(

T [K] g JCH

[μBfumiddotOe]

2 115(2) 300(3)middot10-5

5 201(3) 200(5)middot10-5

200 9655(6) 0

250 9949(2) 0

Modified Langevin

AFM clusters

0 1 2 3 4 5 6 7 8 9

-4

-3

-2

-1

0

1

2

3

4

EP

R a

mpl

itude

[arb

uni

ts]

Magnetic field B [kG]

290 K260 K

230 K

4 K

170 K

70 K

40 K

255 K148 K

EPR spectra and fitting

0 1 2 3 4 5 6 7 8-15

-10

-5

0

5

10

EP

R a

mpl

itude

[ar

b u

nits

]Magnetic field B [kG]

T=305 K

220)(BBB

BABA

r

Lorentzian lineshape

Br - resonance fieldΔB -linewidth

20int BAI

Iint ndash integrated intensity

0 50 100 150 200 250 300195

200

205

210

215

220

225

g-fa

ctor

Temperature [K]

EPR g-factor

rBBgh

0 50 100 150 200 250 300

3000

3050

3100

3150

3200

3250

3300

3350

3400

Res

onan

ce f

ield

[G

]

Temperature [K]

0 50 100 150 200 250 30006

08

10

12

14

16

18

20

22

24

26

Line

wid

th [

kG]

Temperature [K]

nEPRNTTCBTB

10)(

EPR linewidth

000 002 004 006 008 01070

75

80

85

90

Ln(

H [

G])

Temperature-1 [1K]

12 K

60 K

)5(880

)5(72

n

KT EPRN

3335 3340 3345 3350146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

300 305 310 315 320 325 330 335 34010

15

20

25

30

35

40

45

50

Line

wid

th [k

G]

Resonance field [kG]

290K

280K

270K

260K

250K

240K

230K220K

190K 180K

170K160K

150K

140K

130K

120K

110 K

Line

wid

th [

kG]

Resonance field [kG]

8 K 10 K

122 K

148 K

173 K

199 K

255 K305K

EPR linewidth vs resonance field

0 50 100 150 200 250 30015

20

25

30

35

40

45

50

EP

R in

tegr

ated

inte

nsity

[ar

b u

nits

]

Temperature [K]0 50 100 150 200 250 300

0

1

2

3

4

5

6

7

EPR

arb

un

its

Temperature [K]

I0=53731010 C2=1131012

TCW=-602 K

CWTT

CITI

2

0int )(

EPR integrated intensity

140 160 180 200 220 240 260 280 30000

02

04

06

08

10

12

14

Inte

grat

ed in

tens

ity [

arb

uni

ts]

Temperature [K]

AFM clusters

General picture of the magnetic state of Cu13Fe4V10O44

0 50 100 150 200 250 300Temperature [K]

PARAMAGNETICAFM

TN=27 K

C-W STATEAFM CLUSTERS

CLUSTERS

ISING CHAINSAFM PHASE SEEDS

THE END

Thank you

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
Page 3: Study of magnetic properties of a new vanadate Cu 13 Fe 4 V 10 O 44 Janusz Typek Institute of Physics, West Pomeranian University of Technology, Szczecin,

Why to study Cu13Fe4V10O44

bull Similar compounds from the same system of vanadates have important catalytic propertiesbull Defect structure and grain surface play an important role in catalysisbull Knowledge of magnetic defects and ions may lead to better understanding of the mechanism of the catalytic processes

Sample preparation

025 050 075 100

025

050

075

100

025

050

075

100

mol

of CuO

mol

o

f V2

O 5

mol of Fe2O3

Fe2O3

CuO

V2O5

13 CuO + 5 V2O5 + 2 Fe2O3 rarr Cu13Fe4V10O44

A Blonska-Tabero J Therm Anal Calorim 110 (2012) 161

Structure ndash possible types

Lyonsite -Cu3Fe4(VO4)6 a new iron-copper vanadate mineral

six isolated VO4 tetrahedraFeO6 octahedra

square-planar CuO4 groups

HowardewansiteMineral NaCuFe2(VO4)3

In figure Mn3Fe4(VO4)6

VO4 FeO6 MnO5 MnO4 polyhedra

EPR and dc magnetometry

Magnetic resonance spectrometerX-band Bruker E 500 (1997)

Magnetic Property Measurements SystemMPMS XL-7 Quantum Design (2011)

Dynamics τ~10-10 s Static τ~1 s

dc magnetization susceptibility study

0 50 100 150 200 250 30020x10-5

40x10-5

60x10-5

80x10-5

10x10-4

12x10-4

2 4 6 8 10 12 14 16 18 2080x10-5

90x10-5

10x10-4

11x10-4

[e

muO

e-1g

-1]

Temperature [K]

01 kOe 1 kOe 10 kOe 70 kOe

[e

muO

e-1g

-1]

Temperature [K]

0 40 80 120 160 200 240 2800

1

2

3

4

5 01 kOe 1 kOe 10 kOe 70 kOe

0 10 20 30 40 5008

10

12

14

16

18

1

[104

em

u-1O

eg

]

Temperature [K]

1

[104

emu

-1O

eg

]

Temperature [K]

dc magnetization reciprocal susceptibility

dc magnetization Curie-Weiss law

CWTT

CT

)(

Fe3+ 3d5 high-spin S=52 L=0 J=52 for g=2 μ=59 μB )1( JJgB

220 240 260 280 300

00

05

10

15

20

25

exp

-C

W [

10-6

em

u(g

Oe)

]

Temperature [K]

H=100 Oe

H=1 000 Oe

ZFC

H=10 000 Oe

dc magnetization high-temperature range

energynon-magnetic

magnetic

dc magnetization in an external field

0 10 20 30 40 50 60 70

00

02

04

06

08

00

05

10

15

20

25 10 20 30 40 50 60

Magnetic field [kOe]

250 K

200 K

Ma

gn

etiz

atio

n [ B

fu

]

2 K

5 K

HCHJg

kTkT

HJgJgHM H

B

B

coth)(

T [K] g JCH

[μBfumiddotOe]

2 115(2) 300(3)middot10-5

5 201(3) 200(5)middot10-5

200 9655(6) 0

250 9949(2) 0

Modified Langevin

AFM clusters

0 1 2 3 4 5 6 7 8 9

-4

-3

-2

-1

0

1

2

3

4

EP

R a

mpl

itude

[arb

uni

ts]

Magnetic field B [kG]

290 K260 K

230 K

4 K

170 K

70 K

40 K

255 K148 K

EPR spectra and fitting

0 1 2 3 4 5 6 7 8-15

-10

-5

0

5

10

EP

R a

mpl

itude

[ar

b u

nits

]Magnetic field B [kG]

T=305 K

220)(BBB

BABA

r

Lorentzian lineshape

Br - resonance fieldΔB -linewidth

20int BAI

Iint ndash integrated intensity

0 50 100 150 200 250 300195

200

205

210

215

220

225

g-fa

ctor

Temperature [K]

EPR g-factor

rBBgh

0 50 100 150 200 250 300

3000

3050

3100

3150

3200

3250

3300

3350

3400

Res

onan

ce f

ield

[G

]

Temperature [K]

0 50 100 150 200 250 30006

08

10

12

14

16

18

20

22

24

26

Line

wid

th [

kG]

Temperature [K]

nEPRNTTCBTB

10)(

EPR linewidth

000 002 004 006 008 01070

75

80

85

90

Ln(

H [

G])

Temperature-1 [1K]

12 K

60 K

)5(880

)5(72

n

KT EPRN

3335 3340 3345 3350146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

300 305 310 315 320 325 330 335 34010

15

20

25

30

35

40

45

50

Line

wid

th [k

G]

Resonance field [kG]

290K

280K

270K

260K

250K

240K

230K220K

190K 180K

170K160K

150K

140K

130K

120K

110 K

Line

wid

th [

kG]

Resonance field [kG]

8 K 10 K

122 K

148 K

173 K

199 K

255 K305K

EPR linewidth vs resonance field

0 50 100 150 200 250 30015

20

25

30

35

40

45

50

EP

R in

tegr

ated

inte

nsity

[ar

b u

nits

]

Temperature [K]0 50 100 150 200 250 300

0

1

2

3

4

5

6

7

EPR

arb

un

its

Temperature [K]

I0=53731010 C2=1131012

TCW=-602 K

CWTT

CITI

2

0int )(

EPR integrated intensity

140 160 180 200 220 240 260 280 30000

02

04

06

08

10

12

14

Inte

grat

ed in

tens

ity [

arb

uni

ts]

Temperature [K]

AFM clusters

General picture of the magnetic state of Cu13Fe4V10O44

0 50 100 150 200 250 300Temperature [K]

PARAMAGNETICAFM

TN=27 K

C-W STATEAFM CLUSTERS

CLUSTERS

ISING CHAINSAFM PHASE SEEDS

THE END

Thank you

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
Page 4: Study of magnetic properties of a new vanadate Cu 13 Fe 4 V 10 O 44 Janusz Typek Institute of Physics, West Pomeranian University of Technology, Szczecin,

Sample preparation

025 050 075 100

025

050

075

100

025

050

075

100

mol

of CuO

mol

o

f V2

O 5

mol of Fe2O3

Fe2O3

CuO

V2O5

13 CuO + 5 V2O5 + 2 Fe2O3 rarr Cu13Fe4V10O44

A Blonska-Tabero J Therm Anal Calorim 110 (2012) 161

Structure ndash possible types

Lyonsite -Cu3Fe4(VO4)6 a new iron-copper vanadate mineral

six isolated VO4 tetrahedraFeO6 octahedra

square-planar CuO4 groups

HowardewansiteMineral NaCuFe2(VO4)3

In figure Mn3Fe4(VO4)6

VO4 FeO6 MnO5 MnO4 polyhedra

EPR and dc magnetometry

Magnetic resonance spectrometerX-band Bruker E 500 (1997)

Magnetic Property Measurements SystemMPMS XL-7 Quantum Design (2011)

Dynamics τ~10-10 s Static τ~1 s

dc magnetization susceptibility study

0 50 100 150 200 250 30020x10-5

40x10-5

60x10-5

80x10-5

10x10-4

12x10-4

2 4 6 8 10 12 14 16 18 2080x10-5

90x10-5

10x10-4

11x10-4

[e

muO

e-1g

-1]

Temperature [K]

01 kOe 1 kOe 10 kOe 70 kOe

[e

muO

e-1g

-1]

Temperature [K]

0 40 80 120 160 200 240 2800

1

2

3

4

5 01 kOe 1 kOe 10 kOe 70 kOe

0 10 20 30 40 5008

10

12

14

16

18

1

[104

em

u-1O

eg

]

Temperature [K]

1

[104

emu

-1O

eg

]

Temperature [K]

dc magnetization reciprocal susceptibility

dc magnetization Curie-Weiss law

CWTT

CT

)(

Fe3+ 3d5 high-spin S=52 L=0 J=52 for g=2 μ=59 μB )1( JJgB

220 240 260 280 300

00

05

10

15

20

25

exp

-C

W [

10-6

em

u(g

Oe)

]

Temperature [K]

H=100 Oe

H=1 000 Oe

ZFC

H=10 000 Oe

dc magnetization high-temperature range

energynon-magnetic

magnetic

dc magnetization in an external field

0 10 20 30 40 50 60 70

00

02

04

06

08

00

05

10

15

20

25 10 20 30 40 50 60

Magnetic field [kOe]

250 K

200 K

Ma

gn

etiz

atio

n [ B

fu

]

2 K

5 K

HCHJg

kTkT

HJgJgHM H

B

B

coth)(

T [K] g JCH

[μBfumiddotOe]

2 115(2) 300(3)middot10-5

5 201(3) 200(5)middot10-5

200 9655(6) 0

250 9949(2) 0

Modified Langevin

AFM clusters

0 1 2 3 4 5 6 7 8 9

-4

-3

-2

-1

0

1

2

3

4

EP

R a

mpl

itude

[arb

uni

ts]

Magnetic field B [kG]

290 K260 K

230 K

4 K

170 K

70 K

40 K

255 K148 K

EPR spectra and fitting

0 1 2 3 4 5 6 7 8-15

-10

-5

0

5

10

EP

R a

mpl

itude

[ar

b u

nits

]Magnetic field B [kG]

T=305 K

220)(BBB

BABA

r

Lorentzian lineshape

Br - resonance fieldΔB -linewidth

20int BAI

Iint ndash integrated intensity

0 50 100 150 200 250 300195

200

205

210

215

220

225

g-fa

ctor

Temperature [K]

EPR g-factor

rBBgh

0 50 100 150 200 250 300

3000

3050

3100

3150

3200

3250

3300

3350

3400

Res

onan

ce f

ield

[G

]

Temperature [K]

0 50 100 150 200 250 30006

08

10

12

14

16

18

20

22

24

26

Line

wid

th [

kG]

Temperature [K]

nEPRNTTCBTB

10)(

EPR linewidth

000 002 004 006 008 01070

75

80

85

90

Ln(

H [

G])

Temperature-1 [1K]

12 K

60 K

)5(880

)5(72

n

KT EPRN

3335 3340 3345 3350146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

300 305 310 315 320 325 330 335 34010

15

20

25

30

35

40

45

50

Line

wid

th [k

G]

Resonance field [kG]

290K

280K

270K

260K

250K

240K

230K220K

190K 180K

170K160K

150K

140K

130K

120K

110 K

Line

wid

th [

kG]

Resonance field [kG]

8 K 10 K

122 K

148 K

173 K

199 K

255 K305K

EPR linewidth vs resonance field

0 50 100 150 200 250 30015

20

25

30

35

40

45

50

EP

R in

tegr

ated

inte

nsity

[ar

b u

nits

]

Temperature [K]0 50 100 150 200 250 300

0

1

2

3

4

5

6

7

EPR

arb

un

its

Temperature [K]

I0=53731010 C2=1131012

TCW=-602 K

CWTT

CITI

2

0int )(

EPR integrated intensity

140 160 180 200 220 240 260 280 30000

02

04

06

08

10

12

14

Inte

grat

ed in

tens

ity [

arb

uni

ts]

Temperature [K]

AFM clusters

General picture of the magnetic state of Cu13Fe4V10O44

0 50 100 150 200 250 300Temperature [K]

PARAMAGNETICAFM

TN=27 K

C-W STATEAFM CLUSTERS

CLUSTERS

ISING CHAINSAFM PHASE SEEDS

THE END

Thank you

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
Page 5: Study of magnetic properties of a new vanadate Cu 13 Fe 4 V 10 O 44 Janusz Typek Institute of Physics, West Pomeranian University of Technology, Szczecin,

Structure ndash possible types

Lyonsite -Cu3Fe4(VO4)6 a new iron-copper vanadate mineral

six isolated VO4 tetrahedraFeO6 octahedra

square-planar CuO4 groups

HowardewansiteMineral NaCuFe2(VO4)3

In figure Mn3Fe4(VO4)6

VO4 FeO6 MnO5 MnO4 polyhedra

EPR and dc magnetometry

Magnetic resonance spectrometerX-band Bruker E 500 (1997)

Magnetic Property Measurements SystemMPMS XL-7 Quantum Design (2011)

Dynamics τ~10-10 s Static τ~1 s

dc magnetization susceptibility study

0 50 100 150 200 250 30020x10-5

40x10-5

60x10-5

80x10-5

10x10-4

12x10-4

2 4 6 8 10 12 14 16 18 2080x10-5

90x10-5

10x10-4

11x10-4

[e

muO

e-1g

-1]

Temperature [K]

01 kOe 1 kOe 10 kOe 70 kOe

[e

muO

e-1g

-1]

Temperature [K]

0 40 80 120 160 200 240 2800

1

2

3

4

5 01 kOe 1 kOe 10 kOe 70 kOe

0 10 20 30 40 5008

10

12

14

16

18

1

[104

em

u-1O

eg

]

Temperature [K]

1

[104

emu

-1O

eg

]

Temperature [K]

dc magnetization reciprocal susceptibility

dc magnetization Curie-Weiss law

CWTT

CT

)(

Fe3+ 3d5 high-spin S=52 L=0 J=52 for g=2 μ=59 μB )1( JJgB

220 240 260 280 300

00

05

10

15

20

25

exp

-C

W [

10-6

em

u(g

Oe)

]

Temperature [K]

H=100 Oe

H=1 000 Oe

ZFC

H=10 000 Oe

dc magnetization high-temperature range

energynon-magnetic

magnetic

dc magnetization in an external field

0 10 20 30 40 50 60 70

00

02

04

06

08

00

05

10

15

20

25 10 20 30 40 50 60

Magnetic field [kOe]

250 K

200 K

Ma

gn

etiz

atio

n [ B

fu

]

2 K

5 K

HCHJg

kTkT

HJgJgHM H

B

B

coth)(

T [K] g JCH

[μBfumiddotOe]

2 115(2) 300(3)middot10-5

5 201(3) 200(5)middot10-5

200 9655(6) 0

250 9949(2) 0

Modified Langevin

AFM clusters

0 1 2 3 4 5 6 7 8 9

-4

-3

-2

-1

0

1

2

3

4

EP

R a

mpl

itude

[arb

uni

ts]

Magnetic field B [kG]

290 K260 K

230 K

4 K

170 K

70 K

40 K

255 K148 K

EPR spectra and fitting

0 1 2 3 4 5 6 7 8-15

-10

-5

0

5

10

EP

R a

mpl

itude

[ar

b u

nits

]Magnetic field B [kG]

T=305 K

220)(BBB

BABA

r

Lorentzian lineshape

Br - resonance fieldΔB -linewidth

20int BAI

Iint ndash integrated intensity

0 50 100 150 200 250 300195

200

205

210

215

220

225

g-fa

ctor

Temperature [K]

EPR g-factor

rBBgh

0 50 100 150 200 250 300

3000

3050

3100

3150

3200

3250

3300

3350

3400

Res

onan

ce f

ield

[G

]

Temperature [K]

0 50 100 150 200 250 30006

08

10

12

14

16

18

20

22

24

26

Line

wid

th [

kG]

Temperature [K]

nEPRNTTCBTB

10)(

EPR linewidth

000 002 004 006 008 01070

75

80

85

90

Ln(

H [

G])

Temperature-1 [1K]

12 K

60 K

)5(880

)5(72

n

KT EPRN

3335 3340 3345 3350146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

300 305 310 315 320 325 330 335 34010

15

20

25

30

35

40

45

50

Line

wid

th [k

G]

Resonance field [kG]

290K

280K

270K

260K

250K

240K

230K220K

190K 180K

170K160K

150K

140K

130K

120K

110 K

Line

wid

th [

kG]

Resonance field [kG]

8 K 10 K

122 K

148 K

173 K

199 K

255 K305K

EPR linewidth vs resonance field

0 50 100 150 200 250 30015

20

25

30

35

40

45

50

EP

R in

tegr

ated

inte

nsity

[ar

b u

nits

]

Temperature [K]0 50 100 150 200 250 300

0

1

2

3

4

5

6

7

EPR

arb

un

its

Temperature [K]

I0=53731010 C2=1131012

TCW=-602 K

CWTT

CITI

2

0int )(

EPR integrated intensity

140 160 180 200 220 240 260 280 30000

02

04

06

08

10

12

14

Inte

grat

ed in

tens

ity [

arb

uni

ts]

Temperature [K]

AFM clusters

General picture of the magnetic state of Cu13Fe4V10O44

0 50 100 150 200 250 300Temperature [K]

PARAMAGNETICAFM

TN=27 K

C-W STATEAFM CLUSTERS

CLUSTERS

ISING CHAINSAFM PHASE SEEDS

THE END

Thank you

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
Page 6: Study of magnetic properties of a new vanadate Cu 13 Fe 4 V 10 O 44 Janusz Typek Institute of Physics, West Pomeranian University of Technology, Szczecin,

EPR and dc magnetometry

Magnetic resonance spectrometerX-band Bruker E 500 (1997)

Magnetic Property Measurements SystemMPMS XL-7 Quantum Design (2011)

Dynamics τ~10-10 s Static τ~1 s

dc magnetization susceptibility study

0 50 100 150 200 250 30020x10-5

40x10-5

60x10-5

80x10-5

10x10-4

12x10-4

2 4 6 8 10 12 14 16 18 2080x10-5

90x10-5

10x10-4

11x10-4

[e

muO

e-1g

-1]

Temperature [K]

01 kOe 1 kOe 10 kOe 70 kOe

[e

muO

e-1g

-1]

Temperature [K]

0 40 80 120 160 200 240 2800

1

2

3

4

5 01 kOe 1 kOe 10 kOe 70 kOe

0 10 20 30 40 5008

10

12

14

16

18

1

[104

em

u-1O

eg

]

Temperature [K]

1

[104

emu

-1O

eg

]

Temperature [K]

dc magnetization reciprocal susceptibility

dc magnetization Curie-Weiss law

CWTT

CT

)(

Fe3+ 3d5 high-spin S=52 L=0 J=52 for g=2 μ=59 μB )1( JJgB

220 240 260 280 300

00

05

10

15

20

25

exp

-C

W [

10-6

em

u(g

Oe)

]

Temperature [K]

H=100 Oe

H=1 000 Oe

ZFC

H=10 000 Oe

dc magnetization high-temperature range

energynon-magnetic

magnetic

dc magnetization in an external field

0 10 20 30 40 50 60 70

00

02

04

06

08

00

05

10

15

20

25 10 20 30 40 50 60

Magnetic field [kOe]

250 K

200 K

Ma

gn

etiz

atio

n [ B

fu

]

2 K

5 K

HCHJg

kTkT

HJgJgHM H

B

B

coth)(

T [K] g JCH

[μBfumiddotOe]

2 115(2) 300(3)middot10-5

5 201(3) 200(5)middot10-5

200 9655(6) 0

250 9949(2) 0

Modified Langevin

AFM clusters

0 1 2 3 4 5 6 7 8 9

-4

-3

-2

-1

0

1

2

3

4

EP

R a

mpl

itude

[arb

uni

ts]

Magnetic field B [kG]

290 K260 K

230 K

4 K

170 K

70 K

40 K

255 K148 K

EPR spectra and fitting

0 1 2 3 4 5 6 7 8-15

-10

-5

0

5

10

EP

R a

mpl

itude

[ar

b u

nits

]Magnetic field B [kG]

T=305 K

220)(BBB

BABA

r

Lorentzian lineshape

Br - resonance fieldΔB -linewidth

20int BAI

Iint ndash integrated intensity

0 50 100 150 200 250 300195

200

205

210

215

220

225

g-fa

ctor

Temperature [K]

EPR g-factor

rBBgh

0 50 100 150 200 250 300

3000

3050

3100

3150

3200

3250

3300

3350

3400

Res

onan

ce f

ield

[G

]

Temperature [K]

0 50 100 150 200 250 30006

08

10

12

14

16

18

20

22

24

26

Line

wid

th [

kG]

Temperature [K]

nEPRNTTCBTB

10)(

EPR linewidth

000 002 004 006 008 01070

75

80

85

90

Ln(

H [

G])

Temperature-1 [1K]

12 K

60 K

)5(880

)5(72

n

KT EPRN

3335 3340 3345 3350146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

300 305 310 315 320 325 330 335 34010

15

20

25

30

35

40

45

50

Line

wid

th [k

G]

Resonance field [kG]

290K

280K

270K

260K

250K

240K

230K220K

190K 180K

170K160K

150K

140K

130K

120K

110 K

Line

wid

th [

kG]

Resonance field [kG]

8 K 10 K

122 K

148 K

173 K

199 K

255 K305K

EPR linewidth vs resonance field

0 50 100 150 200 250 30015

20

25

30

35

40

45

50

EP

R in

tegr

ated

inte

nsity

[ar

b u

nits

]

Temperature [K]0 50 100 150 200 250 300

0

1

2

3

4

5

6

7

EPR

arb

un

its

Temperature [K]

I0=53731010 C2=1131012

TCW=-602 K

CWTT

CITI

2

0int )(

EPR integrated intensity

140 160 180 200 220 240 260 280 30000

02

04

06

08

10

12

14

Inte

grat

ed in

tens

ity [

arb

uni

ts]

Temperature [K]

AFM clusters

General picture of the magnetic state of Cu13Fe4V10O44

0 50 100 150 200 250 300Temperature [K]

PARAMAGNETICAFM

TN=27 K

C-W STATEAFM CLUSTERS

CLUSTERS

ISING CHAINSAFM PHASE SEEDS

THE END

Thank you

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
Page 7: Study of magnetic properties of a new vanadate Cu 13 Fe 4 V 10 O 44 Janusz Typek Institute of Physics, West Pomeranian University of Technology, Szczecin,

dc magnetization susceptibility study

0 50 100 150 200 250 30020x10-5

40x10-5

60x10-5

80x10-5

10x10-4

12x10-4

2 4 6 8 10 12 14 16 18 2080x10-5

90x10-5

10x10-4

11x10-4

[e

muO

e-1g

-1]

Temperature [K]

01 kOe 1 kOe 10 kOe 70 kOe

[e

muO

e-1g

-1]

Temperature [K]

0 40 80 120 160 200 240 2800

1

2

3

4

5 01 kOe 1 kOe 10 kOe 70 kOe

0 10 20 30 40 5008

10

12

14

16

18

1

[104

em

u-1O

eg

]

Temperature [K]

1

[104

emu

-1O

eg

]

Temperature [K]

dc magnetization reciprocal susceptibility

dc magnetization Curie-Weiss law

CWTT

CT

)(

Fe3+ 3d5 high-spin S=52 L=0 J=52 for g=2 μ=59 μB )1( JJgB

220 240 260 280 300

00

05

10

15

20

25

exp

-C

W [

10-6

em

u(g

Oe)

]

Temperature [K]

H=100 Oe

H=1 000 Oe

ZFC

H=10 000 Oe

dc magnetization high-temperature range

energynon-magnetic

magnetic

dc magnetization in an external field

0 10 20 30 40 50 60 70

00

02

04

06

08

00

05

10

15

20

25 10 20 30 40 50 60

Magnetic field [kOe]

250 K

200 K

Ma

gn

etiz

atio

n [ B

fu

]

2 K

5 K

HCHJg

kTkT

HJgJgHM H

B

B

coth)(

T [K] g JCH

[μBfumiddotOe]

2 115(2) 300(3)middot10-5

5 201(3) 200(5)middot10-5

200 9655(6) 0

250 9949(2) 0

Modified Langevin

AFM clusters

0 1 2 3 4 5 6 7 8 9

-4

-3

-2

-1

0

1

2

3

4

EP

R a

mpl

itude

[arb

uni

ts]

Magnetic field B [kG]

290 K260 K

230 K

4 K

170 K

70 K

40 K

255 K148 K

EPR spectra and fitting

0 1 2 3 4 5 6 7 8-15

-10

-5

0

5

10

EP

R a

mpl

itude

[ar

b u

nits

]Magnetic field B [kG]

T=305 K

220)(BBB

BABA

r

Lorentzian lineshape

Br - resonance fieldΔB -linewidth

20int BAI

Iint ndash integrated intensity

0 50 100 150 200 250 300195

200

205

210

215

220

225

g-fa

ctor

Temperature [K]

EPR g-factor

rBBgh

0 50 100 150 200 250 300

3000

3050

3100

3150

3200

3250

3300

3350

3400

Res

onan

ce f

ield

[G

]

Temperature [K]

0 50 100 150 200 250 30006

08

10

12

14

16

18

20

22

24

26

Line

wid

th [

kG]

Temperature [K]

nEPRNTTCBTB

10)(

EPR linewidth

000 002 004 006 008 01070

75

80

85

90

Ln(

H [

G])

Temperature-1 [1K]

12 K

60 K

)5(880

)5(72

n

KT EPRN

3335 3340 3345 3350146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

300 305 310 315 320 325 330 335 34010

15

20

25

30

35

40

45

50

Line

wid

th [k

G]

Resonance field [kG]

290K

280K

270K

260K

250K

240K

230K220K

190K 180K

170K160K

150K

140K

130K

120K

110 K

Line

wid

th [

kG]

Resonance field [kG]

8 K 10 K

122 K

148 K

173 K

199 K

255 K305K

EPR linewidth vs resonance field

0 50 100 150 200 250 30015

20

25

30

35

40

45

50

EP

R in

tegr

ated

inte

nsity

[ar

b u

nits

]

Temperature [K]0 50 100 150 200 250 300

0

1

2

3

4

5

6

7

EPR

arb

un

its

Temperature [K]

I0=53731010 C2=1131012

TCW=-602 K

CWTT

CITI

2

0int )(

EPR integrated intensity

140 160 180 200 220 240 260 280 30000

02

04

06

08

10

12

14

Inte

grat

ed in

tens

ity [

arb

uni

ts]

Temperature [K]

AFM clusters

General picture of the magnetic state of Cu13Fe4V10O44

0 50 100 150 200 250 300Temperature [K]

PARAMAGNETICAFM

TN=27 K

C-W STATEAFM CLUSTERS

CLUSTERS

ISING CHAINSAFM PHASE SEEDS

THE END

Thank you

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
Page 8: Study of magnetic properties of a new vanadate Cu 13 Fe 4 V 10 O 44 Janusz Typek Institute of Physics, West Pomeranian University of Technology, Szczecin,

0 40 80 120 160 200 240 2800

1

2

3

4

5 01 kOe 1 kOe 10 kOe 70 kOe

0 10 20 30 40 5008

10

12

14

16

18

1

[104

em

u-1O

eg

]

Temperature [K]

1

[104

emu

-1O

eg

]

Temperature [K]

dc magnetization reciprocal susceptibility

dc magnetization Curie-Weiss law

CWTT

CT

)(

Fe3+ 3d5 high-spin S=52 L=0 J=52 for g=2 μ=59 μB )1( JJgB

220 240 260 280 300

00

05

10

15

20

25

exp

-C

W [

10-6

em

u(g

Oe)

]

Temperature [K]

H=100 Oe

H=1 000 Oe

ZFC

H=10 000 Oe

dc magnetization high-temperature range

energynon-magnetic

magnetic

dc magnetization in an external field

0 10 20 30 40 50 60 70

00

02

04

06

08

00

05

10

15

20

25 10 20 30 40 50 60

Magnetic field [kOe]

250 K

200 K

Ma

gn

etiz

atio

n [ B

fu

]

2 K

5 K

HCHJg

kTkT

HJgJgHM H

B

B

coth)(

T [K] g JCH

[μBfumiddotOe]

2 115(2) 300(3)middot10-5

5 201(3) 200(5)middot10-5

200 9655(6) 0

250 9949(2) 0

Modified Langevin

AFM clusters

0 1 2 3 4 5 6 7 8 9

-4

-3

-2

-1

0

1

2

3

4

EP

R a

mpl

itude

[arb

uni

ts]

Magnetic field B [kG]

290 K260 K

230 K

4 K

170 K

70 K

40 K

255 K148 K

EPR spectra and fitting

0 1 2 3 4 5 6 7 8-15

-10

-5

0

5

10

EP

R a

mpl

itude

[ar

b u

nits

]Magnetic field B [kG]

T=305 K

220)(BBB

BABA

r

Lorentzian lineshape

Br - resonance fieldΔB -linewidth

20int BAI

Iint ndash integrated intensity

0 50 100 150 200 250 300195

200

205

210

215

220

225

g-fa

ctor

Temperature [K]

EPR g-factor

rBBgh

0 50 100 150 200 250 300

3000

3050

3100

3150

3200

3250

3300

3350

3400

Res

onan

ce f

ield

[G

]

Temperature [K]

0 50 100 150 200 250 30006

08

10

12

14

16

18

20

22

24

26

Line

wid

th [

kG]

Temperature [K]

nEPRNTTCBTB

10)(

EPR linewidth

000 002 004 006 008 01070

75

80

85

90

Ln(

H [

G])

Temperature-1 [1K]

12 K

60 K

)5(880

)5(72

n

KT EPRN

3335 3340 3345 3350146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

300 305 310 315 320 325 330 335 34010

15

20

25

30

35

40

45

50

Line

wid

th [k

G]

Resonance field [kG]

290K

280K

270K

260K

250K

240K

230K220K

190K 180K

170K160K

150K

140K

130K

120K

110 K

Line

wid

th [

kG]

Resonance field [kG]

8 K 10 K

122 K

148 K

173 K

199 K

255 K305K

EPR linewidth vs resonance field

0 50 100 150 200 250 30015

20

25

30

35

40

45

50

EP

R in

tegr

ated

inte

nsity

[ar

b u

nits

]

Temperature [K]0 50 100 150 200 250 300

0

1

2

3

4

5

6

7

EPR

arb

un

its

Temperature [K]

I0=53731010 C2=1131012

TCW=-602 K

CWTT

CITI

2

0int )(

EPR integrated intensity

140 160 180 200 220 240 260 280 30000

02

04

06

08

10

12

14

Inte

grat

ed in

tens

ity [

arb

uni

ts]

Temperature [K]

AFM clusters

General picture of the magnetic state of Cu13Fe4V10O44

0 50 100 150 200 250 300Temperature [K]

PARAMAGNETICAFM

TN=27 K

C-W STATEAFM CLUSTERS

CLUSTERS

ISING CHAINSAFM PHASE SEEDS

THE END

Thank you

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
Page 9: Study of magnetic properties of a new vanadate Cu 13 Fe 4 V 10 O 44 Janusz Typek Institute of Physics, West Pomeranian University of Technology, Szczecin,

dc magnetization Curie-Weiss law

CWTT

CT

)(

Fe3+ 3d5 high-spin S=52 L=0 J=52 for g=2 μ=59 μB )1( JJgB

220 240 260 280 300

00

05

10

15

20

25

exp

-C

W [

10-6

em

u(g

Oe)

]

Temperature [K]

H=100 Oe

H=1 000 Oe

ZFC

H=10 000 Oe

dc magnetization high-temperature range

energynon-magnetic

magnetic

dc magnetization in an external field

0 10 20 30 40 50 60 70

00

02

04

06

08

00

05

10

15

20

25 10 20 30 40 50 60

Magnetic field [kOe]

250 K

200 K

Ma

gn

etiz

atio

n [ B

fu

]

2 K

5 K

HCHJg

kTkT

HJgJgHM H

B

B

coth)(

T [K] g JCH

[μBfumiddotOe]

2 115(2) 300(3)middot10-5

5 201(3) 200(5)middot10-5

200 9655(6) 0

250 9949(2) 0

Modified Langevin

AFM clusters

0 1 2 3 4 5 6 7 8 9

-4

-3

-2

-1

0

1

2

3

4

EP

R a

mpl

itude

[arb

uni

ts]

Magnetic field B [kG]

290 K260 K

230 K

4 K

170 K

70 K

40 K

255 K148 K

EPR spectra and fitting

0 1 2 3 4 5 6 7 8-15

-10

-5

0

5

10

EP

R a

mpl

itude

[ar

b u

nits

]Magnetic field B [kG]

T=305 K

220)(BBB

BABA

r

Lorentzian lineshape

Br - resonance fieldΔB -linewidth

20int BAI

Iint ndash integrated intensity

0 50 100 150 200 250 300195

200

205

210

215

220

225

g-fa

ctor

Temperature [K]

EPR g-factor

rBBgh

0 50 100 150 200 250 300

3000

3050

3100

3150

3200

3250

3300

3350

3400

Res

onan

ce f

ield

[G

]

Temperature [K]

0 50 100 150 200 250 30006

08

10

12

14

16

18

20

22

24

26

Line

wid

th [

kG]

Temperature [K]

nEPRNTTCBTB

10)(

EPR linewidth

000 002 004 006 008 01070

75

80

85

90

Ln(

H [

G])

Temperature-1 [1K]

12 K

60 K

)5(880

)5(72

n

KT EPRN

3335 3340 3345 3350146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

300 305 310 315 320 325 330 335 34010

15

20

25

30

35

40

45

50

Line

wid

th [k

G]

Resonance field [kG]

290K

280K

270K

260K

250K

240K

230K220K

190K 180K

170K160K

150K

140K

130K

120K

110 K

Line

wid

th [

kG]

Resonance field [kG]

8 K 10 K

122 K

148 K

173 K

199 K

255 K305K

EPR linewidth vs resonance field

0 50 100 150 200 250 30015

20

25

30

35

40

45

50

EP

R in

tegr

ated

inte

nsity

[ar

b u

nits

]

Temperature [K]0 50 100 150 200 250 300

0

1

2

3

4

5

6

7

EPR

arb

un

its

Temperature [K]

I0=53731010 C2=1131012

TCW=-602 K

CWTT

CITI

2

0int )(

EPR integrated intensity

140 160 180 200 220 240 260 280 30000

02

04

06

08

10

12

14

Inte

grat

ed in

tens

ity [

arb

uni

ts]

Temperature [K]

AFM clusters

General picture of the magnetic state of Cu13Fe4V10O44

0 50 100 150 200 250 300Temperature [K]

PARAMAGNETICAFM

TN=27 K

C-W STATEAFM CLUSTERS

CLUSTERS

ISING CHAINSAFM PHASE SEEDS

THE END

Thank you

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
Page 10: Study of magnetic properties of a new vanadate Cu 13 Fe 4 V 10 O 44 Janusz Typek Institute of Physics, West Pomeranian University of Technology, Szczecin,

220 240 260 280 300

00

05

10

15

20

25

exp

-C

W [

10-6

em

u(g

Oe)

]

Temperature [K]

H=100 Oe

H=1 000 Oe

ZFC

H=10 000 Oe

dc magnetization high-temperature range

energynon-magnetic

magnetic

dc magnetization in an external field

0 10 20 30 40 50 60 70

00

02

04

06

08

00

05

10

15

20

25 10 20 30 40 50 60

Magnetic field [kOe]

250 K

200 K

Ma

gn

etiz

atio

n [ B

fu

]

2 K

5 K

HCHJg

kTkT

HJgJgHM H

B

B

coth)(

T [K] g JCH

[μBfumiddotOe]

2 115(2) 300(3)middot10-5

5 201(3) 200(5)middot10-5

200 9655(6) 0

250 9949(2) 0

Modified Langevin

AFM clusters

0 1 2 3 4 5 6 7 8 9

-4

-3

-2

-1

0

1

2

3

4

EP

R a

mpl

itude

[arb

uni

ts]

Magnetic field B [kG]

290 K260 K

230 K

4 K

170 K

70 K

40 K

255 K148 K

EPR spectra and fitting

0 1 2 3 4 5 6 7 8-15

-10

-5

0

5

10

EP

R a

mpl

itude

[ar

b u

nits

]Magnetic field B [kG]

T=305 K

220)(BBB

BABA

r

Lorentzian lineshape

Br - resonance fieldΔB -linewidth

20int BAI

Iint ndash integrated intensity

0 50 100 150 200 250 300195

200

205

210

215

220

225

g-fa

ctor

Temperature [K]

EPR g-factor

rBBgh

0 50 100 150 200 250 300

3000

3050

3100

3150

3200

3250

3300

3350

3400

Res

onan

ce f

ield

[G

]

Temperature [K]

0 50 100 150 200 250 30006

08

10

12

14

16

18

20

22

24

26

Line

wid

th [

kG]

Temperature [K]

nEPRNTTCBTB

10)(

EPR linewidth

000 002 004 006 008 01070

75

80

85

90

Ln(

H [

G])

Temperature-1 [1K]

12 K

60 K

)5(880

)5(72

n

KT EPRN

3335 3340 3345 3350146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

300 305 310 315 320 325 330 335 34010

15

20

25

30

35

40

45

50

Line

wid

th [k

G]

Resonance field [kG]

290K

280K

270K

260K

250K

240K

230K220K

190K 180K

170K160K

150K

140K

130K

120K

110 K

Line

wid

th [

kG]

Resonance field [kG]

8 K 10 K

122 K

148 K

173 K

199 K

255 K305K

EPR linewidth vs resonance field

0 50 100 150 200 250 30015

20

25

30

35

40

45

50

EP

R in

tegr

ated

inte

nsity

[ar

b u

nits

]

Temperature [K]0 50 100 150 200 250 300

0

1

2

3

4

5

6

7

EPR

arb

un

its

Temperature [K]

I0=53731010 C2=1131012

TCW=-602 K

CWTT

CITI

2

0int )(

EPR integrated intensity

140 160 180 200 220 240 260 280 30000

02

04

06

08

10

12

14

Inte

grat

ed in

tens

ity [

arb

uni

ts]

Temperature [K]

AFM clusters

General picture of the magnetic state of Cu13Fe4V10O44

0 50 100 150 200 250 300Temperature [K]

PARAMAGNETICAFM

TN=27 K

C-W STATEAFM CLUSTERS

CLUSTERS

ISING CHAINSAFM PHASE SEEDS

THE END

Thank you

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
Page 11: Study of magnetic properties of a new vanadate Cu 13 Fe 4 V 10 O 44 Janusz Typek Institute of Physics, West Pomeranian University of Technology, Szczecin,

dc magnetization in an external field

0 10 20 30 40 50 60 70

00

02

04

06

08

00

05

10

15

20

25 10 20 30 40 50 60

Magnetic field [kOe]

250 K

200 K

Ma

gn

etiz

atio

n [ B

fu

]

2 K

5 K

HCHJg

kTkT

HJgJgHM H

B

B

coth)(

T [K] g JCH

[μBfumiddotOe]

2 115(2) 300(3)middot10-5

5 201(3) 200(5)middot10-5

200 9655(6) 0

250 9949(2) 0

Modified Langevin

AFM clusters

0 1 2 3 4 5 6 7 8 9

-4

-3

-2

-1

0

1

2

3

4

EP

R a

mpl

itude

[arb

uni

ts]

Magnetic field B [kG]

290 K260 K

230 K

4 K

170 K

70 K

40 K

255 K148 K

EPR spectra and fitting

0 1 2 3 4 5 6 7 8-15

-10

-5

0

5

10

EP

R a

mpl

itude

[ar

b u

nits

]Magnetic field B [kG]

T=305 K

220)(BBB

BABA

r

Lorentzian lineshape

Br - resonance fieldΔB -linewidth

20int BAI

Iint ndash integrated intensity

0 50 100 150 200 250 300195

200

205

210

215

220

225

g-fa

ctor

Temperature [K]

EPR g-factor

rBBgh

0 50 100 150 200 250 300

3000

3050

3100

3150

3200

3250

3300

3350

3400

Res

onan

ce f

ield

[G

]

Temperature [K]

0 50 100 150 200 250 30006

08

10

12

14

16

18

20

22

24

26

Line

wid

th [

kG]

Temperature [K]

nEPRNTTCBTB

10)(

EPR linewidth

000 002 004 006 008 01070

75

80

85

90

Ln(

H [

G])

Temperature-1 [1K]

12 K

60 K

)5(880

)5(72

n

KT EPRN

3335 3340 3345 3350146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

300 305 310 315 320 325 330 335 34010

15

20

25

30

35

40

45

50

Line

wid

th [k

G]

Resonance field [kG]

290K

280K

270K

260K

250K

240K

230K220K

190K 180K

170K160K

150K

140K

130K

120K

110 K

Line

wid

th [

kG]

Resonance field [kG]

8 K 10 K

122 K

148 K

173 K

199 K

255 K305K

EPR linewidth vs resonance field

0 50 100 150 200 250 30015

20

25

30

35

40

45

50

EP

R in

tegr

ated

inte

nsity

[ar

b u

nits

]

Temperature [K]0 50 100 150 200 250 300

0

1

2

3

4

5

6

7

EPR

arb

un

its

Temperature [K]

I0=53731010 C2=1131012

TCW=-602 K

CWTT

CITI

2

0int )(

EPR integrated intensity

140 160 180 200 220 240 260 280 30000

02

04

06

08

10

12

14

Inte

grat

ed in

tens

ity [

arb

uni

ts]

Temperature [K]

AFM clusters

General picture of the magnetic state of Cu13Fe4V10O44

0 50 100 150 200 250 300Temperature [K]

PARAMAGNETICAFM

TN=27 K

C-W STATEAFM CLUSTERS

CLUSTERS

ISING CHAINSAFM PHASE SEEDS

THE END

Thank you

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
Page 12: Study of magnetic properties of a new vanadate Cu 13 Fe 4 V 10 O 44 Janusz Typek Institute of Physics, West Pomeranian University of Technology, Szczecin,

0 1 2 3 4 5 6 7 8 9

-4

-3

-2

-1

0

1

2

3

4

EP

R a

mpl

itude

[arb

uni

ts]

Magnetic field B [kG]

290 K260 K

230 K

4 K

170 K

70 K

40 K

255 K148 K

EPR spectra and fitting

0 1 2 3 4 5 6 7 8-15

-10

-5

0

5

10

EP

R a

mpl

itude

[ar

b u

nits

]Magnetic field B [kG]

T=305 K

220)(BBB

BABA

r

Lorentzian lineshape

Br - resonance fieldΔB -linewidth

20int BAI

Iint ndash integrated intensity

0 50 100 150 200 250 300195

200

205

210

215

220

225

g-fa

ctor

Temperature [K]

EPR g-factor

rBBgh

0 50 100 150 200 250 300

3000

3050

3100

3150

3200

3250

3300

3350

3400

Res

onan

ce f

ield

[G

]

Temperature [K]

0 50 100 150 200 250 30006

08

10

12

14

16

18

20

22

24

26

Line

wid

th [

kG]

Temperature [K]

nEPRNTTCBTB

10)(

EPR linewidth

000 002 004 006 008 01070

75

80

85

90

Ln(

H [

G])

Temperature-1 [1K]

12 K

60 K

)5(880

)5(72

n

KT EPRN

3335 3340 3345 3350146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

300 305 310 315 320 325 330 335 34010

15

20

25

30

35

40

45

50

Line

wid

th [k

G]

Resonance field [kG]

290K

280K

270K

260K

250K

240K

230K220K

190K 180K

170K160K

150K

140K

130K

120K

110 K

Line

wid

th [

kG]

Resonance field [kG]

8 K 10 K

122 K

148 K

173 K

199 K

255 K305K

EPR linewidth vs resonance field

0 50 100 150 200 250 30015

20

25

30

35

40

45

50

EP

R in

tegr

ated

inte

nsity

[ar

b u

nits

]

Temperature [K]0 50 100 150 200 250 300

0

1

2

3

4

5

6

7

EPR

arb

un

its

Temperature [K]

I0=53731010 C2=1131012

TCW=-602 K

CWTT

CITI

2

0int )(

EPR integrated intensity

140 160 180 200 220 240 260 280 30000

02

04

06

08

10

12

14

Inte

grat

ed in

tens

ity [

arb

uni

ts]

Temperature [K]

AFM clusters

General picture of the magnetic state of Cu13Fe4V10O44

0 50 100 150 200 250 300Temperature [K]

PARAMAGNETICAFM

TN=27 K

C-W STATEAFM CLUSTERS

CLUSTERS

ISING CHAINSAFM PHASE SEEDS

THE END

Thank you

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
Page 13: Study of magnetic properties of a new vanadate Cu 13 Fe 4 V 10 O 44 Janusz Typek Institute of Physics, West Pomeranian University of Technology, Szczecin,

0 50 100 150 200 250 300195

200

205

210

215

220

225

g-fa

ctor

Temperature [K]

EPR g-factor

rBBgh

0 50 100 150 200 250 300

3000

3050

3100

3150

3200

3250

3300

3350

3400

Res

onan

ce f

ield

[G

]

Temperature [K]

0 50 100 150 200 250 30006

08

10

12

14

16

18

20

22

24

26

Line

wid

th [

kG]

Temperature [K]

nEPRNTTCBTB

10)(

EPR linewidth

000 002 004 006 008 01070

75

80

85

90

Ln(

H [

G])

Temperature-1 [1K]

12 K

60 K

)5(880

)5(72

n

KT EPRN

3335 3340 3345 3350146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

300 305 310 315 320 325 330 335 34010

15

20

25

30

35

40

45

50

Line

wid

th [k

G]

Resonance field [kG]

290K

280K

270K

260K

250K

240K

230K220K

190K 180K

170K160K

150K

140K

130K

120K

110 K

Line

wid

th [

kG]

Resonance field [kG]

8 K 10 K

122 K

148 K

173 K

199 K

255 K305K

EPR linewidth vs resonance field

0 50 100 150 200 250 30015

20

25

30

35

40

45

50

EP

R in

tegr

ated

inte

nsity

[ar

b u

nits

]

Temperature [K]0 50 100 150 200 250 300

0

1

2

3

4

5

6

7

EPR

arb

un

its

Temperature [K]

I0=53731010 C2=1131012

TCW=-602 K

CWTT

CITI

2

0int )(

EPR integrated intensity

140 160 180 200 220 240 260 280 30000

02

04

06

08

10

12

14

Inte

grat

ed in

tens

ity [

arb

uni

ts]

Temperature [K]

AFM clusters

General picture of the magnetic state of Cu13Fe4V10O44

0 50 100 150 200 250 300Temperature [K]

PARAMAGNETICAFM

TN=27 K

C-W STATEAFM CLUSTERS

CLUSTERS

ISING CHAINSAFM PHASE SEEDS

THE END

Thank you

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
Page 14: Study of magnetic properties of a new vanadate Cu 13 Fe 4 V 10 O 44 Janusz Typek Institute of Physics, West Pomeranian University of Technology, Szczecin,

0 50 100 150 200 250 30006

08

10

12

14

16

18

20

22

24

26

Line

wid

th [

kG]

Temperature [K]

nEPRNTTCBTB

10)(

EPR linewidth

000 002 004 006 008 01070

75

80

85

90

Ln(

H [

G])

Temperature-1 [1K]

12 K

60 K

)5(880

)5(72

n

KT EPRN

3335 3340 3345 3350146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

300 305 310 315 320 325 330 335 34010

15

20

25

30

35

40

45

50

Line

wid

th [k

G]

Resonance field [kG]

290K

280K

270K

260K

250K

240K

230K220K

190K 180K

170K160K

150K

140K

130K

120K

110 K

Line

wid

th [

kG]

Resonance field [kG]

8 K 10 K

122 K

148 K

173 K

199 K

255 K305K

EPR linewidth vs resonance field

0 50 100 150 200 250 30015

20

25

30

35

40

45

50

EP

R in

tegr

ated

inte

nsity

[ar

b u

nits

]

Temperature [K]0 50 100 150 200 250 300

0

1

2

3

4

5

6

7

EPR

arb

un

its

Temperature [K]

I0=53731010 C2=1131012

TCW=-602 K

CWTT

CITI

2

0int )(

EPR integrated intensity

140 160 180 200 220 240 260 280 30000

02

04

06

08

10

12

14

Inte

grat

ed in

tens

ity [

arb

uni

ts]

Temperature [K]

AFM clusters

General picture of the magnetic state of Cu13Fe4V10O44

0 50 100 150 200 250 300Temperature [K]

PARAMAGNETICAFM

TN=27 K

C-W STATEAFM CLUSTERS

CLUSTERS

ISING CHAINSAFM PHASE SEEDS

THE END

Thank you

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
Page 15: Study of magnetic properties of a new vanadate Cu 13 Fe 4 V 10 O 44 Janusz Typek Institute of Physics, West Pomeranian University of Technology, Szczecin,

3335 3340 3345 3350146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

300 305 310 315 320 325 330 335 34010

15

20

25

30

35

40

45

50

Line

wid

th [k

G]

Resonance field [kG]

290K

280K

270K

260K

250K

240K

230K220K

190K 180K

170K160K

150K

140K

130K

120K

110 K

Line

wid

th [

kG]

Resonance field [kG]

8 K 10 K

122 K

148 K

173 K

199 K

255 K305K

EPR linewidth vs resonance field

0 50 100 150 200 250 30015

20

25

30

35

40

45

50

EP

R in

tegr

ated

inte

nsity

[ar

b u

nits

]

Temperature [K]0 50 100 150 200 250 300

0

1

2

3

4

5

6

7

EPR

arb

un

its

Temperature [K]

I0=53731010 C2=1131012

TCW=-602 K

CWTT

CITI

2

0int )(

EPR integrated intensity

140 160 180 200 220 240 260 280 30000

02

04

06

08

10

12

14

Inte

grat

ed in

tens

ity [

arb

uni

ts]

Temperature [K]

AFM clusters

General picture of the magnetic state of Cu13Fe4V10O44

0 50 100 150 200 250 300Temperature [K]

PARAMAGNETICAFM

TN=27 K

C-W STATEAFM CLUSTERS

CLUSTERS

ISING CHAINSAFM PHASE SEEDS

THE END

Thank you

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
Page 16: Study of magnetic properties of a new vanadate Cu 13 Fe 4 V 10 O 44 Janusz Typek Institute of Physics, West Pomeranian University of Technology, Szczecin,

0 50 100 150 200 250 30015

20

25

30

35

40

45

50

EP

R in

tegr

ated

inte

nsity

[ar

b u

nits

]

Temperature [K]0 50 100 150 200 250 300

0

1

2

3

4

5

6

7

EPR

arb

un

its

Temperature [K]

I0=53731010 C2=1131012

TCW=-602 K

CWTT

CITI

2

0int )(

EPR integrated intensity

140 160 180 200 220 240 260 280 30000

02

04

06

08

10

12

14

Inte

grat

ed in

tens

ity [

arb

uni

ts]

Temperature [K]

AFM clusters

General picture of the magnetic state of Cu13Fe4V10O44

0 50 100 150 200 250 300Temperature [K]

PARAMAGNETICAFM

TN=27 K

C-W STATEAFM CLUSTERS

CLUSTERS

ISING CHAINSAFM PHASE SEEDS

THE END

Thank you

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
Page 17: Study of magnetic properties of a new vanadate Cu 13 Fe 4 V 10 O 44 Janusz Typek Institute of Physics, West Pomeranian University of Technology, Szczecin,

General picture of the magnetic state of Cu13Fe4V10O44

0 50 100 150 200 250 300Temperature [K]

PARAMAGNETICAFM

TN=27 K

C-W STATEAFM CLUSTERS

CLUSTERS

ISING CHAINSAFM PHASE SEEDS

THE END

Thank you

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
Page 18: Study of magnetic properties of a new vanadate Cu 13 Fe 4 V 10 O 44 Janusz Typek Institute of Physics, West Pomeranian University of Technology, Szczecin,

THE END

Thank you

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18