47
29.7.2004 Fracture Mechanics of solid rocket propellants 1 Fracture Mechanics – Presentation of the course report The application of fracture mechanics to the structural assessment of solid propellant rocket motors Giuseppe Tussiwand SP Lab, Politecnico di Milano (aerospace, energetics)

The application of fracture mechanics to the structural ...civil.colorado.edu/~saouma/FM/fracture-in-solid-rocket-propellants.pdf · The application of fracture mechanics to the

  • Upload
    ledat

  • View
    222

  • Download
    0

Embed Size (px)

Citation preview

29.7.2004 Fracture Mechanics of solid rocket propellants

1

Fracture Mechanics – Presentation of the course report

The application of fracture mechanics to the structural assessment of solid propellant rocket motors

Giuseppe Tussiwand

SP Lab, Politecnico di Milano (aerospace, energetics)

29.7.2004 Fracture Mechanics of solid rocket propellants

2

Presentation outline

Introduction on Solid Rocket Technology, Effect of a crack in a motor

Material properties

Manufacturing problems

Literature Survey

Crack Deterioration Experiments

Subcritical Propagation, Fatigue and Service Life

Toughness Testing and unstable propagation limits

29.7.2004 Fracture Mechanics of solid rocket propellants

3

Solid Propellant Technology

Applications:

Mining

Solid Rocket Motors

Airbags

Gun propellant

Rescue Systems

29.7.2004 Fracture Mechanics of solid rocket propellants

4

Solid Rocket Motor Operation

motornozzlecombustion t

mmm∂∂=−

nb

solid aprdt

dx ==:

dtbb cAprA ⋅⋅=⋅⋅ρρ⋅⋅= bbcombustion Arm

dtnozzle cApm ⋅⋅=

pAcT tF ⋅⋅=

n

t

b

d AA

cap −

⎟⎟⎠

⎞⎜⎜⎝

⎛ ⋅= 11

ρ

casegrain

nozzleportigniter

29.7.2004 Fracture Mechanics of solid rocket propellants

5

The effect of a crack…

)1/(1 n

designb

crackedb

design

crackedA

Ap

p−

−⎟⎟⎠

⎞⎜⎜⎝

⎛=

• Increase of the motor’s equilibrium pressure:

• Too much thrust, loss of the mission

• Volume combustion and burn through

• Instantaneous or delayed burst of the case

• Deflagration to Detonation Transition with mass detonation

The pressure increase depends on the propellant combustion:

AP-HTPB – n=0.4; A = 110% p =117% ;

DB / HNF / Nitramines: n=0.8; A = 110% p =160% ;

29.7.2004 Fracture Mechanics of solid rocket propellants

6

Solid Rocket Propellant – Material Properties

Secondary explosive, ignitable by friction and shock

Heterogeneous: 80-90 % solid particles, 10%-15% binder

Other constituents: catalyzers, stabilizers, curing agent, bonding agent, plasticizer

29.7.2004 Fracture Mechanics of solid rocket propellants

7

Solid Rocket Propellant – Material Properties

A filled elastomer with:

Time Dependence: Temperature Dependent Viscoelasticity

Plastic effects: softening; damage, healing, aging

Glass Transition

Pressure dependence; Pre-Strain Dependence

Poisson’s Ratio variation with strain

Stiffness dependence on strain (Payne-Effect,Mullins-Effect…)

29.7.2004 Fracture Mechanics of solid rocket propellants

8

Solid Rocket Propellant – Material Properties

( ) ( ) ττετσ dtEt

t

rel ∂∂−= ∫

0

Relaxation

εησ = stress = elastic +viscous component

29.7.2004 Fracture Mechanics of solid rocket propellants

9

Tref

T1 < Tref

Log time

E(t)

log(aT) for T1 vs.Tref

Solid Rocket Propellant – Material Properties

Tatt =*

Definition of a material time

29.7.2004 Fracture Mechanics of solid rocket propellants

10

Modelling of the shift factor with the WLF equation

( )ref

refT TTC

TTCTa

−+−

−=2

1 )()(log

29.7.2004 Fracture Mechanics of solid rocket propellants

11

Solid Rocket Propellant – Material Properties

Failure by:

• Disentanglement

• Chain scission

• Shear yielding

• Crazing

• Dewetting

29.7.2004 Fracture Mechanics of solid rocket propellants

12

( ) ∑=

−∞ +=

n

k

t

krel keEEtE1

τ

Linear, temperature dependent viscoelasticity:

( ) ( ) ττετσ dtEt

t

rel ∂∂−= ∫

0

Shapery’s principle of correspondence:

⎟⎟⎟

⎜⎜⎜

⎛−−= ∑

=

−n

k

t

k keEEtE1

0 )1(~1)( τ

( )∫ −=t

effective dtEt1 E

0*** ττ virtual strain history – the same stresses

)( Treleffective aE E ⋅= ε

The method of reduced variables:

Valid for: E,σmax, ε

29.7.2004 Fracture Mechanics of solid rocket propellants

13

Load cases for a motor

Thermal Cycling due to different CTE for case and propellant (high strains in the bore – low-medium number of cycles)

Vibrations (Transport,Handling, Captive Carriage…-moderate stresses, but a lot of cycles)

Ignition pressurization (very high stresses, low strains, just once)

If there is a crack, even microscopic…

how fast does it propagate with cycling? (subcritical propagation)

How big can it be ? (ballistics,critical propagation,structural-ballistic coupling)

29.7.2004 Fracture Mechanics of solid rocket propellants

14

Manufacturing Flaws

• Mixing of the ingredients

• Casting (different methods)

• Curing at 60+ °C

• Cooling

• Extraction of the mandrel …troubles!

29.7.2004 Fracture Mechanics of solid rocket propellants

15

Manufacturing Flaws

The extraction might cause microcracks at the bore: significant service life reduction;

29.7.2004 Fracture Mechanics of solid rocket propellants

16

Cracks in the bore of the motor!

29.7.2004 Fracture Mechanics of solid rocket propellants

17

Cracks in the bore of the motor

29.7.2004 Fracture Mechanics of solid rocket propellants

18

Manufacturing Damage

29.7.2004 Fracture Mechanics of solid rocket propellants

19

Solid Propellant Fracture, Literature Survey

Essentially: course material, Anderson, viscoelastic fracture, exact solutions.

Application and development of the work of Shapery & students allowed many predictions:

- qualitative and quantitative predictions on the P-E parameters, the toughness, the general behaviour

- scaling rules

- revision of the ASTM standard for toughness

These predictions were checked experimentally

29.7.2004 Fracture Mechanics of solid rocket propellants

20

Solid Propellant Fracture, Literature Survey

∫Γ

⎟⎟⎠

⎞⎜⎜⎝

∂∂−= ds

xundyJ

ei

jijev σω

αGka =

0.20167n

IC

IC

K

K =

⎟⎟⎠

⎞⎜⎜⎝

⎛=

1

2

1

2

εε

ε

ε

mCa *γ=

Shapery: LEFM valid for a linear viscoelastic material

Shapery: continuous FPZ advancement if the crack is loaded (even a little) – creep

Scaling law for toughness at different strain rates

29.7.2004 Fracture Mechanics of solid rocket propellants

21

Solid Propellant Fracture Deterioration Analysis

29.7.2004 Fracture Mechanics of solid rocket propellants

22

Solid Propellant Fracture Deterioration Analysis

Microcracks and partialdewetting spotsFPZ: Damage

zone /microcrack zone

FPZ: bridging zone

True crack

Similarities to non-reinforced concrete!

29.7.2004 Fracture Mechanics of solid rocket propellants

23

Solid Propellant Fracture Deterioration Analysis

End of the FPZ

σfailure, chain scission

σdewetting

σ

w1 w2 COD

Cohesive Crack; Analogy to Hilleborg.

29.7.2004 Fracture Mechanics of solid rocket propellants

24

Solid Propellant Testing – specimen reqs

- ease, accuracy and safety of manufacturing

- safety issues during test (the material is a secondary explosive)

- plane strain conditions

2a

B

2W

Standard MT geometry:

2 scales, 2 crack lengths

3 geometries

29.7.2004 Fracture Mechanics of solid rocket propellants

25

Solid Propellant Testing – tabbed MT specimen

resin

Aluminium alloy

Cracked propellant sample

29.7.2004 Fracture Mechanics of solid rocket propellants

26

Solid Propellant Testing – tabbed MT specimen

29.7.2004 Fracture Mechanics of solid rocket propellants

27

Solid Propellant Testing – tabbed MT specimen

29.7.2004 Fracture Mechanics of solid rocket propellants

28

Solid Propellant Testing – tabbed MT specimen

Shape imperfection:

Misalignement of the crack: since

Non-constant crack length across the thickness:

Cracking at a large oxidiser grain: inserting the blade, a different crack edge radius

The crack is not perfectly straight because the notching blades (being very thin) bend with use

The crack advanced at the specimen surface because the sample was manipulated and it bent a bit.

Sources of dispersion

29.7.2004 Fracture Mechanics of solid rocket propellants

29

Solid Propellant Testing, Fatigue test procedure

• Digital measurement of the crack length before testing under an optical microscope

• Insertion of the sample in the machine and application of a very small pre-load (0.5 N) to make sure the specimen was rigidly fixed in the grips.

• Cycling between a maximum and a minimum load previously chosen, at a frequency of about 0.4-0.5 Hz.

• Extraction of the sample after the application of the cycles, and digital crack length measurement with the same optical microscope.

29.7.2004 Fracture Mechanics of solid rocket propellants

30

Solid Propellant Testing, Fatigue

Load input

29.7.2004 Fracture Mechanics of solid rocket propellants

31

Solid Propellant Testing, Fatigue

Load input

29.7.2004 Fracture Mechanics of solid rocket propellants

32

Fatigue, crack length measurements

29.7.2004 Fracture Mechanics of solid rocket propellants

33

After the test…

29.7.2004 Fracture Mechanics of solid rocket propellants

34

subcritical crack growth

solid propellantAP-HTPB-Al

high burning rate

R 0.1

da/dN = 0.0809(∆Κ)7.5011

R2 = 0.9533

0

0,05

0,1

0,15

0,2

0,25

0,3

0 0,2 0,4 0,6 0,8 1 1,2 1,4

∆Κ, MPa*mm0.5

da/d

N, m

m/c

ycle

Experimental results

29.7.2004 Fracture Mechanics of solid rocket propellants

35

Fatigue, service life computations

Thermal cycling

Initial crack length Number of sustained loads

0.1 mm 863

0.2 mm 132

0.4 mm 22

0.6 mm 9

Computation of the induced stress

Application of exact solutions (2-4)

Propagation until a = a critical, pressurisation

29.7.2004 Fracture Mechanics of solid rocket propellants

36

Fatigue, service life computations

29.7.2004 Fracture Mechanics of solid rocket propellants

37

Solid Propellant Testing, Toughness

Initial crack length

Number of sustained loads

Hours of life

0.1 mm 1.096 e9 6087 hrs

0.2 mm 162’810’000 904.5 hrs

0.4 mm 24’131’000 134.1 hrs

0.6 mm 7'869’000 43.7 hrs

0.8 mm 3'530’400 19.6 hrs

Vibrations, (monochromatic, 50 Hz)

29.7.2004 Fracture Mechanics of solid rocket propellants

38

Solid Propellant Testing, Toughness

ASTM E 399 – D 5045 91a

Pmax

5% secant

P5%=PQ

displacement

load

29.7.2004 Fracture Mechanics of solid rocket propellants

39

Solid Propellant Testing, Toughness

( ) ( ) ( ) ( ) ττεττεσ dtEttdtEt

t

rel

t

rel ∫∫ −=−=00

( )

( ) 0100

0 10

1lim

11lim

EdteEdtEt

tE

EeEt

dtEt

tE

n

k

t

k

t

t

t n

k

t

k

t

t

k

k

=⎟⎟⎟

⎜⎜⎜

⎛+=

=+=

∑∫

∫∑∫

=

−∞

∞=

−∞

∞→

τ

τ

Viscoelastic stiffness drop

29.7.2004 Fracture Mechanics of solid rocket propellants

40

Solid Propellant Testing, Toughness

ε

σ

E0Max. stress,Pmax

ε @ max. stress

PQ’

Average stiffness computed with the viscoelastic model.

PQ

At low temperatures and/or high strain rates

29.7.2004 Fracture Mechanics of solid rocket propellants

41

Temperature Strain Rate Initial Stiffness Maximum stress

71 °C 0.01 mm/min. 2.9 MPa 0.54 MPa

-30 °C 50 mm/min. 15.77 MPa 2.09 MPa

Simulated Toughness test at –30°C and 50 mm/min.

29.7.2004 Fracture Mechanics of solid rocket propellants

42

Toughness, new data analysis methodology

29.7.2004 Fracture Mechanics of solid rocket propellants

43

Tested strain rates: 50 mm/min. 2000 mm/min.

Tested temperatures: 71°C, 20°C, -30°C

2 different geometries; values at Tg close to PVC/PC KIC vs r e d u ce d s tr ain r ate

y = 0,2488x 2 - 0,3894x + 1,3433R2 = 0,9944

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7

lo g (e 'aT)

K IC

29.7.2004 Fracture Mechanics of solid rocket propellants

44

KIC, temperature dependence

0

1

2

3

4

5

6

-40 -20 0 20 40 60 80

T, °C

K IC, M

Pa m

m0.

5

Temperature dependence

29.7.2004 Fracture Mechanics of solid rocket propellants

45

Kic, strain rate dependence

0

1

2

3

4

5

6

7

8

9

10

-3 -2 -1 0 1 2 3 4

log(strain rate)

K IC, M

Pa m

m0.

5

Strain rate dependence

29.7.2004 Fracture Mechanics of solid rocket propellants

46

Cooling and Ignition - ComputationCombustion gases under pressure

Flame front; propellant ballistics (burning rate vs.pressure) is known

LEFM crack tip, orNLFM FPZ (using acohesive crack model like Hilleborg’s)

3 solutions:

ac = 2.4 – 3.4 mm

29.7.2004 Fracture Mechanics of solid rocket propellants

47

Conclusions

• Fracture mechanics explains many structural failures

• It can be applied to constitutive and failure modelling of thematerial

• LEFM gives sensible results, FE Analysis with NLFM cohesive elements required

• In Europe we have a similar situation to the one with metals before FM and with Woehler curves / Goodman diagrams

• Application is badly required to reduce testing, improve safety and increase the performance of motors!