32
Jun-03 1 The Design of a Charge Integrating, Modified Floating Point ADC Chip for Calorimeters Tom Zimmerman

The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 1

The Design of a ChargeIntegrating, Modified Floating

Point ADC Chip forCalorimeters

Tom Zimmerman

Page 2: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 2

Outline

• The problem• QIE (Charge Integrator and Encoder) concept• Previous QIE chip designs• New QIE8 design for CMS (HF and HCAL)• Practical stuff -- some important practical tips

for obtaining the best performance fromsensitive mixed mode designs of this type

Page 3: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 3

Energy E (log scale)

Res

olut

ion

(log

scal

e)

Calorimeter Resolution

(noise, …)EE1ασ

EE1ασ (statistics)

.constE

=σ (errors, non-uniformities)

The problem: digitizing photodetector charge pulses1) over wide dynamic range (typically 13-18 bits)2) with negligible quantization error3) at high rate (typically around 50 MHz)

Uniform ADCquantization error

(increasing precisionat higher energies).

Inefficient!

This precision issufficient!

(Constant precisionat higher energies)

Page 4: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 4

A solution: a floating point systemMulti-ranging concept:• Signal feeds multiple ranges with different gains• Select one range to route to an ADC• ADC output: Mantissa, digital range code: Exponent• “Floating point” output achieves more constant precision

CustomRanging

Chip

CommercialADC

Input fromphotodetector

Range

Exponent

MantissaAnalogOutput

A1

A2

A3

A4

Examples:• CARE Chip (Babar)• FPPA/MGPA Chip (CMS)• Previous QIE5-7 Chips

(KTEV, CDF, MINOS)

All are multi-rangingchips which feed acommercial ADC.

Page 5: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 5

The QIE Concept

• 1) Input current pulses are divided intoweighted fractions by a current splitter

Iin

I1 I2 I3

Splitter

• 2) Each splitter range output feeds acharge integrator. The current fractions areintegrated simultaneously on all ranges.

C1 C2 C3

• 5) The range code forms the exponent. RangeCode

• 4) For a given input charge, oneappropriate range output is selected anddigitized by an ADC, forming the mantissa.

ADC

Mantissa

Range Selector

• 3) Splitter ratios and integration C ratiosare chosen to achieve range-to-range scalingof the transfer gain (I/C) by factor A.

1

1

CI

12

1

CAI

1

1

ACI

Page 6: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 6

Transfer CharacteristicM

ANTI

SSA

QQ Q = A (Q )2A (Q )

R = 2R = 1R = 0

IN

(A = Range Scaling Factor)

R = 3

00 1

(R = Range # = Exponent)

0 0Q =2

If range integrators not offset:all ranges intersect at the origin

A = 2: standard floating point(All ranges except the lowest

use half the ADC span)

Multiple ranges, scaled by factor A:

MAN

TISS

A

QQ Q Q

A (Q )2A (Q )

R = 2R = 1R = 0

IN

(A = Range Scaling Factor)

R = 3

00 1 2

(R = Range # = Exponent)

0 0

QIE scheme:Range integrators are offset

“Modified” floating point formatMore efficient: each rangeuses the full ADC span)

Page 7: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 7

Modified Floating Point Analysis

MA

NTIS

SA

QQ Q Q

A (Q )2A (Q )

R = 2R = 1R = 0

IN

(A = Range Scaling Factor)

R = 3

00 1 2

(R = Range # = Exponent)

0 0

Most important specs:Least count input charge (QLSB)Maximum input charge (QMAX)Relative quantization error (eqr)

The range scaling factor A is a design parameter,optimized for a given application. For arbitrary A:

Relative quantization error eqr =IN

LSBR

QQA

amplitudeinputsizebin

12)(12/)( =

Page 8: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 8

A > 2

A = 2

# of ranges# of ADC bits (N)A

max2 12

1logqre

N ≥

max

2

2 )1(12log

qreAAN+

≥LSB

NMAX

A QAAQ

2)1(log

+

LSBN

MAX

QQ

2log2

In general, for a given A:• The required precision (max. relative quantization error)

determines the number of ADC bits, N.• Once N is set, the dynamic range determines the necessarynumber of scaled ranges.• With a larger range scaling factor A, fewer ranges are requiredbut more ADC bits are needed to achieve a given precision.

(See Appendix A for more details)

Approximations for # of ADC bits, # of ranges

Page 9: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 9

Modified floating point with A = 2: 2x smaller error, 2x more range!

Modified floatingpoint

Standard floatingpoint

Example:A = 2N = 8QLSB = 1fC8 ranges

1max 2)12(1

−≈

Nqre

Nqre2)12(

1max ≈

Page 10: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 10

Previous QIE chip designs

Disadvantages of QIE5-7:• Commercial opamp and ADC required• Power: 700 mW + opamp + ADC = 1-2 W/channel• Not a true BiCMOS process• Dual supply required (infrastructure, sequencing)• Process reliability: problems with foundry and reliability

QIE5-7 (for KTEV, CDF, MINOS):• ORBIT 2u “pseudo” BiCMOS process• Range scaling by factor of 2, scaled by splitter ratios• 4-deep integrator pipeline for deadtimeless operation• Analog outputs, to drive external buffer/ADC• Pseudo-differential input/output configuration

Page 11: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 11

Newest QIE chip: QIE8• Designed for 2 applications (HCAL and HF) at CMS• AMS 0.8u BiCMOS process• Major changes from earlier QIEs – new design

Positive input fromHPD (for HCAL)

Ranging CustomADC

Exponent

Mantissa

Negative input fromPMT (for HF)

QIE8

Single chip solution: analog in, digital outSelectable input polaritySingle 5V supply

Page 12: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 12

QIE8 SpecificationsMax. relative error eqr (upper ranges) = 2%QMAX /QLSB = 10,000 (>13 bits)Beam crossing time = 25 nsADC DNL (low end) < 0.05 LSB

HPD (positive) inputQLSB = 1 fC (normal mode)QLSB = 0.33 fC (cal. mode)Input Impedance < 40 ohmsInput analog BW > 20 MHzENC (Cin = 30 pF) < 0.5 fC

PMT (negative) inputQLSB = 2.7 fC (normal mode)QLSB = 0.9 fC (cal. mode)Input Impedance = 50 or 93 ohmsInput analog BW > 40 MHzENC (5m, 50 ohm cables) < 2 fC

Page 13: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 13

QIE8 Design Challenges

• Very sensitive controlled impedance inputs(1 fC/LSB for HCAL)

• CAL mode: even higher sensitivity (1/3 fC/LSB)to track detector response shifts with known signalsource (200e/bucket from radioactive source)

• Custom ADC with very low DNL• Mixed mode single chip design• Must accept either input signal polarity• Single supply operation for simplicity

Page 14: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 14

QIE8 Design ApproachRequires sensitive, fast input minimize # of splitter NPNs!• Use fewer ranges (thus large range scaling factor A)• Scaling mostly with integration cap ratios instead of splitter ratios

6 bit ADC is not bad, but…• If A = 5, there is a factor of 5 variation in quantization erroracross any range – inefficient. Use non-uniform ADC!

Pick A = 5• For quantization error eqr = 2%, N = 6 ADC bits• For 10,000:1 dynamic range, 4 ranges are required• 4 splitter outputs in 5:1:1:1 ratio only 8 NPNs

Page 15: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 15

A Custom Non-uniform ADC

• Stabilized quantization error• 5 bit ADC sufficient (instead of 6 bit)

4 range QIE8 withnon-uniform ADC

Range 0 1 2 3

4 ranges

MAN

TISS

A

Q Q0

RRA

(Uniform ADC response)

Non-uniform ADC: 5 sectionswith integer weighted bin widths

One range

6 bits

5 bits

(A = 5)

1

23

4 5

5 ADC sectionsper range

Page 16: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 16

QIE8 Block Diagram

NON INVERTINGAMP/SPLITTER

(SIGNAL)

NON INVERTINGAMP/SPLITTER(REFERENCE)

INVERTINGAMP/SPLITTER

(SIGNAL)

INVERTINGAMP/SPLITTER(REFERENCE)

Phase 0Integrate andRange Select

EXP0SIG0REF0

EXP1 EXP2 EXP3SIG3SIG2SIG1

REF1 REF2 REF3

RSTCOMP0RSTCAP0INTEGRATE0

RSTCOMP1RSTCAP1INTEGRATE1

RSTCOMP2RSTCAP2INTEGRATE2

RSTCOMP3RSTCAP3INTEGRATE3

TIMING GENERATOR

INTE

GR

ATE

0-3

RST

CA

P0-3

RST

CO

MP0

-3

4 to 1DigitalMux

4 to 1Analog

Mux

4 to 1Analog

Mux

Pseudo-Differential

FlashADC

PHASE MUX

+

-

MANTISSA(4:0)

MU

X C

ON

TRO

L

FLA

SH C

LK

RES

ET

CLK

_IN

CAP_ID(1:0)

EXP0-3

SIG0-3

REF0-3

EXPONENT(1:0)

REFERENCEINPUT

SIGNALINPUT

NON INVERTINGMODE

INVERTINGMODE

Phase 1Integrate andRange Select

Phase 2Integrate andRange Select

Phase 3Integrate andRange Select

Isig

SIGNALINPUT

REFERENCEINPUT

Isig

Isig

/85I

sig/

8

Isig

/8Is

ig/8

Iref/8

5Ire

f/8

Iref/8

Iref/8

PMTinput

HPDinput

4 phasepipeline

Pseudo-differential QIE configuration:Signal applied between SIG input and ground,REF input is “dummy.” QIE insensitive tobias, temp, supply V, common mode noise

SIG

REF SIG

REF

Page 17: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 17

Separate input amps for PMT, HPD

Non-inverting InputAmplifier/Splitter

Inverting Input Amplifier/Splitter

I

+ X5 X1 X1 X1

5I/8 I/8 I/8 I/8

I

X3 X5 X1 X1 X1

5I/3 I/3 I/3 I/3

+

Negative input(PMT)

Positive input(HPD)(gain = -2.7)

4 range splitter:only 8 NPNs

Page 18: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 18

Integrate and Range Select CircuitsEXPONENT/RANGE ENCODER

C C C C 5C 5C 25C 25C

RANGE SELECTCOMPARATORS

INTEGRATORS

4 TO 1 ANALOG RANGE MUX

INTEGRATE

RESET_CAP

MUX CONTROL

MUX CONTROL

RESET_COMPARATORS

SIGNAL

REFERENCE

EXPONENT(1:0)

5Isi

g/8

5Ire

f/8

RANGE 0

Isig

/8

Iref/8

RANGE 1

Isig

/8

Iref/8

RANGE 2

Isig

/8

Iref/8

RANGE 3

Page 19: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 19

Custompseudo-differentialnon-uniform ADC

SIGinput

R R

R R

Preamps

Comparators

Averagingladder

2R

2R

2R

2R

3R

3R

3R

3R

I

REFinput

+ +

+ +

+ +

+ +

+ +

+ +

I

SelectableInterpolation(CalibrationMode Only)

Sections = 0

s = 1

s = 2

5 sections with integerweighted bin widths

Preamps with outputaveraging for low DNL

Page 20: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 20

QIE8 Results• Meets all specs• Runs at > 70 MHz• 2 constants (slope + offset)

required per range• Low DNL (< 0.05 LSB in

normal mode)• Power = 330 mW with a single

5.0V supply• Stable against shifts in bias,

temp, clock, Vdd, etc.• No digital coupling to inputs,

but ONLY if lots of things aredone right…

Radioactive source calibrationtest: each point is 500,000acquisitions (14 ms), averaged

180 e

Time0 7s

Page 21: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 21

Practical Stuff(“How to get good mixed mode performance

with very sensitive inputs,” OR, “You have to doeverything right to get the best performance.”)

• Chip level• Package level• Board level

(Some of these things were learned by themethod of “first not doing”)

Page 22: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 22

Chip Level

• Completely pseudo-differential design• Inputs and outputs on opposite sides• Low-level differential digital outputs• On-chip digital supply bypass cap (to limit

high frequency transients)• Substrate isolation between analog input

section and digital sections

Page 23: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 23Analog inputs (pseudo-diff.)

Digital outputs (low level differential)

Analogpower,bias

Digital power,control inputs

Digital bypass caps(650 pF total)

N collector implant(connect to +5V)

Substrate contact(dedicated gnd pin)

Analog/digitalsubstrate isolationtechnique:

Page 24: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 24

Package Level• Small 64-pin TFQP• Internal metal die pad is God’s “QIE ground”• QIE digital ground (and all other chip grounds)

are referenced to “QIE ground” inside thepackage

• Separate pin used to return digital bypass groundcurrent to the chip only – transient bypass capcurrent doesn’t flow through any ground plane.

• Lots of package GND pins from the die pad tofacilitate the transfer of “QIE ground” to the PCB

• Use input amplifier ground pins on BOTH sidesof SIG and REF input pins (more on this later)

Page 25: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 25

GN

D

GN

D

GN

D

GN

D

GN

D

GN

D

GN

D

GN

D

Lots ofGND pinsto “QIEGround”

64-pinTQFP

QIE DGND

SIG

in

REF

in

HPD inputs

GND pinssurroundsignal pins

QIE ground(die pad)

Dig. VDD

Digitalbypass

Page 26: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 26

Board Level• Follow the principle of “connect the grounds only at the

ADC” (in this case, “ADC” is the QIE chip)• Separate planes for Signal ground (QIE inputs) and Logic

ground (digital support chips)• Signal ground well connected to QIE ground (the die

pad) with many pins (low inductance)• Logic ground referenced to Signal ground only at QIE

ground (digital currents stay on Logic ground and awayfrom Signal ground).

• Single 5V QIE power supply with separate trace runs foranalog and digital VDD

• GND-SIG-GND input configuration all the way up to thechip pads: 1) shields against capacitive coupling, 2)minimizes input loop areas, magnetic coupling to loopareas tends to cancel (like a coax)

Page 27: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 27

“SYSTEMGROUND”(QIE Ground)

Cable Shield(LOW inductanceto Signal Ground)

+ 5V

AnalogVDDtrace

DigitalVDDtrace

QIE8 PC Board

Signal GroundPlanes (sandwichthe input traces)

Signal Ground toQIE Ground (LOWinductance)

Input cable from HPD(GND-SIG-GND-REF-GND...)

DigitalCircuits Logic

GroundPlane

DigitalCircuits Logic Ground

referenced toQIE Ground

Page 28: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 28

Conclusion• Earlier QIE chips:

ORBIT processA = 2External opamp + ADCDual +/- supply

• QIE8:AMS 0.8u BiCMOS (much better process)Higher range scaling to optimize front end (A = 5)Single chip with custom non-uniform ADCSimple: 1 supply + a few external passive componentsExcellent performance!

Page 29: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 29

MA

NTIS

SA

QQ Q Q

A (Q )2A (Q )

R = 2R = 1R = 0

IN

(A = Range Scaling Factor)

R = 3

00 1 2

(R = Range # = Exponent)

0 0

(Top ofrange R = 3)

(Bottom ofrange R = 3)

Charge at the top of range R:(N = # of ADC bits)

Relative quantization error eqr =

LSB

R

x

NxR QAQ ∑

==

02

IN

LSBR

QQA

amplitudeinputsizebin

12)(12/)( =

Appendix A: Modified FloatingPoint Analysis

Page 30: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 30

Case 1: “Small” scaling factor (A = 2)

LSB

R

x

NxR QAQ ∑

==

02

LSBNR

R QQ 12 ++≈ (top of range R)

LSBNR

R QQ +− ≈ 21

(bottom of range R)

(Charge at top of range R)

Number of ranges required:LSB

NMAX

QQ

2log2

IN

LSBR

qr QQAe

12=

Nqre2)12(

1max ≈

Since the max. relative quantization error occurs at the range bottoms:

max2 12

1logqre

N ≥

(# ADC bits)

Page 31: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 31

Case 2: “Large” scaling factor (A > 2)

An approximation: the total charge span is covered bythe 2 most significant ranges. Then:

LSBNRRR

R QAA

AQAAQ 21)( 01 +=+= − (top of range R)

LSBNRRR

R QAA

AQAAQ 21)(20

211

+=+= −−−

(bottom of range R)

MAN

TISS

A

Q

Range RRange R-1

IN“0”

An approximation

Page 32: The Design of a Charge Integrating, Modified Floating ...ppd.fnal.gov/eed/asic/Presentations/G3_ZIMMERMAN.pdf · Flash ADC PHASE M UX +-M ANTI S (4 :0) L LK IN T CAP_ ID( 1 :0) EXP

Jun-03 32

Number of ranges required:LSB

NMAX

A QAAQ

2)1(log

+

The input charge (and thus eqr) varies by a factor of A across a range.Again, the max. relative error occurs at the range bottoms:

(For A > 2)

IN

LSBR

qr QQAe

12=

Nqr AAe

2)12(1

)1(

2

max

+

≈max

2

2 )1(12log

qreAAN+

(# ADC bits)