The Radio Chemistry of Antimony.us AEC

Embed Size (px)

Citation preview

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    1/61

    --- ., -. .-

    N a t i o n a lA c a d e m y

    ofS ci e n ce s

    vNat io na l Researc h Co u nc ilB

    NUCLEAR SCIENCE SERIES

    The Radiochemistryof Antimony

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    2/61

    COMMITTEE ON NUCLEAR SCIENCE ,,;L. F . CURTISS, Ch ain nm t ROBLEY D. EVANS , ViceChakanNationalu rea u of St an dar ds Ma ma ch ue et t s In st it ut e o f Te ch nd w.,

    J . A. Ds J UREN, Sec re t ar yWe 8t t n gh o us e E le ct r ic Co rp or at io n

    C. J . BORKOWS IU J . W. IRVINE, J R.Oak Ridge Nat ion a l Labor a t o ry Mas s ach u s e t t s In s t it u t e o f Tech n o logyROBER T G. COCHRANTe xa s Agr ic ult ur al a nd Me ch an ic alCollege

    SAMUEL E PSTE INCa lifor nia h m t it u ta o f Te ch n olo gyU. F ANONa tio na l Bu re au o f St a nd ar dsHERBERT GOLDSTE INNu cle a r Deve lopm en t Corpora t ion ofAmer ica

    E . D. KLEMANor t h wes t e rn Un lver s t t y -. .. ...W. WAYNE MELNKEUn iver sit y o f MichiganJ . J . NICKSONMem oria l Hosp it al, New YorkR OBE RT L. P LATZMANLa bor at oire d e Cblm ie Ph ys iqu eD. M. VAN PATTERBar tol Re se ar oh Fou nd at ion

    LIAISON MEMBERSPAu L C. AE BERS OLD CHARLES K. REEDAt om ic En er gy Co mm ls slo n U. S. Air For ceJ . HOWARD McMILLE N WJ LI@M E. WRIGHT )Na t io na l S ole n oe F ou n da t io n J 3 ffic e o f Na va l Rs se ar oh

    SUBCOMMITTEE ON RADIOCHEMISTRYW. WAYNE MEINKE, Ch ain nu n HAROLD fURBYUn t ve rs lt y o f Mich igan Mowd Lalm a t o ryGRE OORY R. CHOPPIN GEORGE LEDDICOTTEF lo rid a St at e Un ive m it y Oa k Rid ge Na t io na l La bo ra to ryGE OR GE A. COWAN JUTIAN NIE LS ENLo s Ale m os So te nt t flc La bo ra to ry H an fo r d La bo ra t o ri esAR THUR W. F AIR HALL E LLIS P . S TE INBE RG~n ive rs lt y o f Wa abi ngt c m Ar go n ne Na t io na l Ls bo ra t o~J E ROME HUDIS PE TER C. STEVENSONBr oo kh a ve n Na t io n al La bo ra t or y Un ive ra i@ o f Ca Ufor nia (Llve rm o re )E AR L HYDE LEO YAF FEUn lve rs lt y o f Ca lifo rn ia (Be *e le y) McGi ll Un i ve r sl@

    CONSULTANTSNATHAN BALLOU J AME S De VOENa va l Ra dio lo gic al De fe ns e La bor at or y Un ive rs it y o f Mic higa n

    WILLIAM MARLOWNwion al Bu rea u of St an da rd s

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    3/61

    CHEMISTRY

    The Rad io c hem ist ry of An t im ony

    WILLIAM J. MAECKPh il l ip s Pet r oleu m Com pa n yAtom ic En ergy Div isionId ah o Fa ll s, Id ah u

    February1961

    Subcommittee on RadiochemistryNationalAcademy ofSciencesNational Research Council

    P rin t e d in USA. P ric e $ 0 .5 0 . Av n iln b le fr om t h e Offic e o f Te ch u ic n lS er vic es , Dc pe rt m e n t o f Comm er ce , Wa sh in gt o n 2 6 , D. C.

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    4/61

    FOREWORD

    The Subcommittee on Radlochemistry Is one of a number ofsubcommittees working under the Committee on Nuclear Sciencewithin the National Academy of Sciences - National Researchcouncil . Its members represent government, Industrial, anduniversity laboratories In the areas of nuclear chemistry andanalytical chemlst~.

    The Subcommitteenuclear science whichtion and distribution

    has concerned Itself with those areas oftivolve the chemist, such as the collec-of radiochemlcal rmocedures. the estab-lishment of specifications for radloche~lcally pu;e reagents,availability of cyclotron time for service Lrradlatlons, theplace of radlochemistry In the undergraduate college program,etc.

    This series of monographs has grown out of the need forup-to-date compilations of radlochemlcal information and,pro-cedures. The SubcomniLttee has endeavored to present a serieswhich will be of maximum use to the worktig scientist andwhich contatis the latest available information. Each mono-graph collects In one volume the pertinent information requiredfor radlochemlcal work with an tidlvldual element or a group ofclosely related elements.

    An expert In the radiochemistry of the particular elementhas written the monograph, following a standard format developedby the Subcommittee. The Atomic Energy Commlsslon has sponsoredthe prtitlng of the series.

    The Subcomml.ttee Is confident these publications will beuseful not only to the radiochemlst but also to the researchworker In other fields such as physics, biochemistry or medicinewho wishes to use radlochemlcal techniques to solve a specificproblem.

    W. Wayne Melnke, ChairmanSubcommittee on Radlochemlstry

    iii

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    5/61

    INTRODUCTIONThlB volume which deala with the radiochemistry ofantimony is one of a serl.es of monographs on radlochemistryof the elements. There 16 included a review of the nuclearand chemical features of particular Interest to.the radlo-chemiet, a discussion of problems of dissolution of a sampleand counting techniques, and finally, a collection of radlo-chemlcal procedures for the element as found in the literature.

    The se~les of monographs will cover all elements forwhich radiochemlcal procedures are pertinent. Plans includerevision of the monograph periodically as new techniques andprocedures warrant. The reader Is therefore encouraged tocall to the attention of the author any published or unpublish-ed material on the radiochemistry of antimony which might beincluded in a revised version of the monograph.

    ACKNOWLEDGMENTSThe author wishes to express his appreciation to JamesE. Rein for reviewing the manuscript and to Deanna ShawneenAnderson for typing and preparing the manuscript for publica-tion.

    iv

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    6/61

    CONTENTSI. Ge n e r a l Re view of t h e In o r ga r J Ic d _ic a l

    Ch e ldEtm y of An t ilum y . . . . . . . . . . . . . . . . . .II . Gen e ra l Re views o f t h e ~och em is t ry o f An t im on y . . . .

    III. m k lle of Allt in u n y Ieo t c rp eE. . . . . . . . . . . . . . .Iv. General Chmiatly of Antimony . . . . . . . . ...*..

    1. OxidationStates . . . . . . . . . . . . . . . . . .2. Ebmnantalktdnkmy.... . . . . . . . . . . ..3._e80f Autimmy.. ... . . . . . . . . . . . . .4. Eydri&of kmmmy.... . . . . . . . . . . . . .5 . Bo lu ble ~m ie . .. . . . . . . . . . . . . . . .6. Insoluble Caqounda . . . . . . . . . . . . . . . ..7. volatile CcmpoUdB end Distillationof Antimony . . .8 . Cau p le x Ion eam i Ch e la t e s . . . . . . . . . . . . . .9. Is o t op ic Exc h an ge Re ac t ion a a d Hot -At om Chm n ie t ry .

    V. An a ly t ic a l Ch em is t ry of An t im n y App lic ab le t o Sepa ra t ion s

    1.

    2.

    Yie ld De -t e rm in a t ion a . . . . . .Eolven t Elr t r a c t ion . . . . . . .~. 1 Ion -Ae8 0 c ia t ion Sya t em a , . .1 .2 Ch e la t e Sywtm n e . . . . . .Clm 3m at 43 gTl%ph yo f An tin lom g . . .2 .1 Ion -Exc h a n ge . . . . . . . .2 .2 In o rgan ic Alum in a hC~=E1.2.3 Paper Ch-onrttqnsphy. . . .

    . . . . . . . . . .

    . . . . . . . . . .

    . . . . . . . . . .

    . . . . . . . . . .

    . . . . . . . . . .

    . . . . . . . . . .

    . . . . . . . . . . .

    . . . . . . . . . .

    123999.1010Uu141415

    1616161920m2122

    v

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    7/61

    3. Dis t illa t ion an d Vola t lllza t ion . . . . . . . . . . . ~4. Electrochemistryof Antinmny . . . . . . . .

    4.1 Electrodepositlon . . . . . . . . . . .1+.2Polarography . . . . . . . . . . . . . .4.3k l la lgm l s . . . . . . . . . . . . . . . .

    5. Gravimetry . . . . . . . . . . . . . . . . .6.@ectrophotometry . . . . . . . . . . . . .7. !l?itrlmet r y . . . . . . . . . . . . . . .

    VI. Dissolutionof Antimony ContainingCompounds . .VII. Counting lkchnlque s.... . . . . . . . . . .VIII. CollectedRadiochemice.1ocedures for AnthonyIX. Neutron ActivationAnalysis . . . . . . . . . .

    . . . . 23

    . . . . 23

    . . . . 24

    . . . . 25

    . . . . 25

    . ..0 25

    . . . . 26

    . . . . 27

    . . . . 28

    . . . . 28

    . . . . 48

    vi

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    8/61

    The Radiochemistry of Antimony

    1.

    2.

    3.

    4.

    5.

    6.

    7.

    8.

    9.

    10.

    11.

    WILLT.AM J.MAECKPh il l ip s Pet roleu m Com pan yAtom ic En ergy Divi sion

    Id ah o Fa lls, Id ah o

    I. GENERALREVT.EWSOF THE INORGANICANDANAUITCAL-STRY OF ANT9110NY

    EKllebrti; W. F., Lundell, G. E. F,, Bright, H. A., Hoffman, J. I.,AppliedInorgauicAnalysis,2nd EH., Wiley, New York (1953).Sidgwick,N. V., I!hehemicalElementsand Theti Compounds,OxfordRress, Iondon (1950).Sandell,E. B., CalorimetricDetermdnation of Traces of Meta ls ,3rd E&., Interscience,New York (1959).Welcher, l?.J. organicAnalyticalReagentE,D. Van Nostrmd,New York (lg48~.Kolthoff,I. M., Belcher,R. VolumetricAnalysis,Vol. III,Interscience,New York (1957\.Wagner,W., Hull, C. J., Markle, G. E., AdvancedAnalyticalCheudstry,Reinhold,New York (1956).Lamdell,G. E. F., Hoffman, J. 1., OutUnes of MethodB of ChemicalAnalysis,Wiley, New York (1951).Wibon, C. L., Wilson, D. W., ComprehensiveAnalyticalChemistry,Vol. U, ClassicalAnalysis,ElsevierPublishing,Amsterdam (1959).Scott, W. W. (N. H. Furman,13i., Standti Methods of chWOiCdAnalysis, 5th Ed., Vol. 1 , D. Vsa Nostrand,New York (1939).Rodden, C. J.,

    Tical Chemistryof the ManhattanProject,McGraw-Hill, New York (1950 .

    McAlpine,R. K., Soule, B. A., Prescottand Johnson QualitativeChemicalAnalysis,D. Van N06 t ran d , New York (1933).

    1

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    9/61

    12 . Morrison, G. H., FYeiser,H., SolventExtractionin Analyticalchemistry,Wiley, New York (1957).

    II. GENERALREVZEWS OF THE RADI~STRY OF ANTIMONY

    1. Coryell,C. D., Sugsrmsn,N., eds. RadlochemicalSttiios: TheFissionPrcducts,hok 3, NationalNucleexEuergy Series,McGraw-Hill, New York (1951),2. Finston,H. L., Miakel , I., Ann. Rev. Nu cl. &i., j, *g-* (1955).

    2

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    10/61

    III. TABLE OF ARITMONYISOIUPES

    IBotope

    w

    HaJf-Life60m

    15 m

    60m

    2.8 h

    3.5 m

    5.1 h

    Typeof Decay

    -/

    b+vp+ (2.5$)EC (97.5*).IT (7)B+-YNo p+ &=o.q)ECY

    EnergyofRad.iaton h Mev

    0.75, l .lo0.060,0.09)1.5, 2.40.90, 1.31, 2.221.450.41, 0 .95, 1.310.6

    0.161

    3.101.2b

    O.0~, 0.255,1.03,1.22

    Assignmentma6s assignmentuncertainIn (Z6-Meva, 3n) ?~u 6 ~5-Mev p, n) ?~n115 (C4 m) ~InU3 (SMev a . n) ~~n115 (a, 2u) ?Sn U6 (>Me v d,n) 7Sn7 (5-Mw p,n) ?In U5 (1 1-Me v a,n) ?h115 (16-k!ev,n) ?

    InU5 (ZQ-Meva,n)?Sn7 (10-Mevd,n) ?

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    11/61

    III. TABIEOF ANTIMONYISOTOPES- centd

    Isotope Half-1ife38.0h

    5.8 d

    16.4 m

    z2.zz-3.5 m

    2.@3 d

    TypeOf Decay

    EC7

    No ITNo ~+.!s+7

    ITv!9+(0.01$)P-(9fi)EC(9)

    Ehrgy ofRadiationin Mev

    0.53 bremstrahlungendpoint0.024

    0.09, 0.203, 1.040, 1.1701.701.18

    0.0 61, 0 .07 50.5650.74, 0.93, 1.40, 1.97

    Assignment~ ~6h g#9sn u g (5-Mev p,n) ?+8 (10-Mw d,n) 7sn~9 (18-M= d,n)SnH (l&Mev d,2n)~1~ (

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    12/61

    .

    III. TABIJlOF ANlLQ40NYISOTOPES- centd

    Isotope

    .#2h ml

    WI

    Half-Llfe42.75$ZLm

    1.3 m

    60.4 d

    2*O y

    !&peof Decay

    ITYp- (w )IT7B-P-

    7

    B-Y

    EnergyofRadiationIn Mev

    o.olt35~ 2.5

    0.012

    0.202,0.36, 0.608, 0.745O.~lJ 0.930, 1.591, 1.658.0.603, 0.632, 0.645, 0.713,0.722, 0.967, 1.05, 1.33, 1.37,1.45, 1.70, 2.09, 2.30.u 25, o.3oo, 0.444, 0.6120.113, 0.175, 0.205, 0.2140.320, 0.377, 0.427, 0.4630.595, 0.637

    Assignment

    SbM3(thn,~ )

    Sbw3(thn,y )

    SbM3 (thn, 7)1~ (fastn, ~ )

    U (nJf).+24 (pilen,d 9.4d SnU5

    7P) ?

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    13/61

    III. TABLEOF ANTIMONYISOIUPR3 centd

    Isotope~ Half-Ldfe

    i--s-blg+$ 9.9 h

    Typeof Ikcay

    P-7P-7

    13-7

    P-7

    P-7

    EnergyofRadiationin Mev

    To.h.2,0.650.%0.417, 0.685, 0.901.10, 1.351.11, 1.500.60, 0.248,o.3io0.463, 0.772

    2,90.32, 0.75

    1.00.32,-0.4, 0.75, 0.90 ?

    Assignment

    U (n,f)T# (fastn,p)U (n,f)*1X3 (~70-Mev ~fl,n) ?U (%-W d,f)uuP

    (n,f)(E6-Mevd,f)9.3hTe1n (787)

    p 105a Te~~ (*) ,U (n,f)Telx (njp)~e130 (%kkvd,u) ?U (n,f)Telx (n,p)~e~o (28_M~ d ~) ?

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    14/61

    III. TABLE OF ANTMONY ISOTOPES- centd

    -1

    180tope

    Sb132

    Half-Life4.6 h

    33 m

    7.1 m

    23,1m

    2.1 m

    4.1 m

    I Energyofof Jkcay kdlati~n in MevI

    1.~ (~) others0.165, 0.308, 0.534, 0.7WJ

    13-

    B-1

    P.-1

    AssignmentIi(nJf)P6F !cel= (76f)~3X WW (24$)U (n,f)@30 (~ p)U (nJf)~lw (n )IJ(n,f)P 25mmW (851)p 1.2d Tl@ (15*)U (nJf)P7 8h %132U (n)f)P5Pfi 133 (94)p @@33 (8$)

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    15/61

    III. TABIE OF ANIR40NYSOTOPES- centd

    180tope I Type I Energy ofHalf-Llfe Of Decay Radlatlonin Mev I Assignment

    *Mass and haM- life assignmentsare uncertain. See NationalResearchCouncilNuclearData Sheets%-1%-1 NRC 5&8-11 for discu6Bionof as6ignment8.Sourcesof data used,in this compilationand to be referredto for additionalinformationwe asfollows:

    1.

    2.3.

    Nuclearlkta Sheets,NationalAcademyof Scienc=- NationalReswch Council,2101 Constitution Avenue,Washington25, D.C.Strominger,D., Hollander,J. M., Seaborg,G. T., Rev.Mod. Pbysics~ 585 (1958).suvau, w. H., T!riklneerlwt of Nuclides(1958and r@lsions), @t. of ~c~ents,U. S. Gkrnment PrintingOffice,Wasklngton25, D.C.

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    16/61

    IV-1

    Iv. GENEFML CHEMISTRYOF ANITMONY

    OIZDATIONmm.Other than the metal, the ccmmon oxidation stateaof antimonyme

    -3 In 9bH3, +3 in S b203, u i +5 in sb205. Cldnm made for the exiBtenceOf ~205 and the stabilityof 13b20bindicatea +4 crystal~ne 8tatealso. Iatimer2 summsrizes the oxidation-reductionpotentialsof thecouplee aa:

    0.51 -o..212% Sb

    (1.34) 0.66sb~ S b

    -o.6a 0.40~+ sb@4 25 (Acid)-0.581

    (0.40)~2- ~9b06-4 (Baae)

    Reductionto the metal is easily performedwith Pb, Sn, Bi, Cu, Cd,Fe, Zn, S.ndl.fg.In .mme cases where the metals evolvehydrogenfromdilute aci~psz%ial reduc+ionto SbH3 may occur3. K,Jelbertnd P8ppas4used chromousion for reduction in a radiochemicalprocedure (seeAntimonyfiocedureNo. ~ SectionVIII). Robinson and Milton5 separatedantimonyfrom irradiatedEnC$ by depositingit as the metal on copperfrom an acid halide solutionwithout the use of externalcurrent. Underthe best conditionsa yield of 71$ 18 reported.

    In the an.alybicallaboratory,antimonyla coxsonlyfound as the +3or +5 salt. Metalllc anthony is easily oxidizedto Sb(III) and to ashigh as +5 by BN03~ C122Bra h(VI), Mn(~), and other strong oxidants,depending on the amount of reagent aud temperature. Iodine oxidizesE%to Sb(III) and in alkaHne solutionSb(V)mRy form.

    Antlnumlccompoundsare reduced to the +3 state by SnC> (distinc-tion from As) and NaM#02.IV-2 EIIMINTALANIIMORY

    1 there are four aolld forms of antimonyCCOrdingto Sidgwick,metal.IV-2.1 YellowAuthnony. This form is tramsp=ent and soluble in carbon

    9

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    17/61

    disulfide. It is evidentlycovalentend correspondsto white phosphorousad yelhw arsenic.IV-2.2 Black @ttiny. The action of omen on stibineat low tempera-tures or the rapid coo~ng of antimonyvapor gives this form. W Isformed from the yellow speciesand is more chemicallyactive than theordinary form.iv-2.3 MetalMc or Ordlnq Anttiony. This form is truly metaldlc,melting at 630c. a nd boiling at 1325C.IV-2.4 E@osive Anttiny. The electrolysisof antbony trichloride,tribromlde,or triiodidewith high current densityproducesthis form.On heating to ZQOC.of scratching,it changes explosivelyto the ordinaryform.IV-3 OXIDES OF ANITMONY

    !Cbreeoxides of the element exist, Sb203, Hb@4, ad Hb@5. Thetrioxide along with some tetroxide is formed when the metal.is burned inBllJ7.EeatSng the trioxidein air to 300-400C.forms the tetroxide;however, at higher tempmatures (i.e. gOOC.) it decomposesback to thetrioxide. The trioxide is ezaphoteric,t M.molves in concentratedacidsand basic salts are crystallizedfrom solution. The basic antimonyl(&IO+)salts are hydrolyzedin hot water. The trioxide also dissolvesin alkedlesforming salts of anttionousacid such as NaSb02-3H#3.

    HN03only

    The tetrotide is acidic in characterdissolvingonly in basic solutions.The pentavalentstate of antimonymay be preparedby the action ofon the trioxide. The oxide and correspondingacid, H9b(OH)6,meslightlysoluble in water but readily soluble in alkali.

    IV-4. HYDRIDE OF ANTIMONYom.% one hydride, ~E3, iS ~. It is easily prep=ed by

    cathodicreductionor by reductionof antimonycompoundsin acid

    solutionby strongmetal r~uctents. The generationof stibine as amesms of separatingantimony from fissionproduct solutionsis pre-sented in SectionsV-3 and VIII, Procedures ~ and 4.

    10

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    18/61

    IV-~.

    Table

    SOLUBLE CCMRIUNMThe soluble compounds1.

    saltssbBr3

    sbc13

    sbc15SbF3SbF5SbI3&H3

    Na3sbs49H@K3SbS45H.#Li3sbs4.lo~o(m)3sbs44H@(SbO)KC4@06;@@sb(c.#D@@3sb2(C4H406)36H@

    22,23) 24 m e given inof =timony

    TABLE 1. SOI.UKLE-OIW sAI.rs.Solubiuty in g/loo m l.S Qu !2Q -d.

    601.6

    a.384.7sd.

    .20cm3

    27.13075.1350.13054.5305.39ms.

    IV.6. rN soix lB LE C m fm xm osOf the many Insolublesalts of

    for gratietric determinationsand toprocedures.

    d.

    d.563.630

    d.

    4 Cms

    57.1~79.P

    35.71~

    antimonyseverales t abllsh y ie ld s

    OtherS. HC1, EHr,CS2,acet.3 .S. al., HC1,tart. a., CS2S. HC1, tart. a.i. NH3s. KFS. HI, HC1, D,al., CS2, acct.1500 cm3 al.25ca CIU3cs2S. NaOHS. KOHS. ale.

    s. glyi. eth.

    have been usedin rtiiochemlcal

    IV-6.1 IQdrolySIS Prcducts. Except for the fluorideand some organicco&ounda (e.g. tartrates ad citrates),aU the salts of +3 S b are

    hydrolyzed,wblchis often overlookedby the analyst. The chloridehydrolyzesto Insolublewhite oxychloride,the compositionbeingdependentupon the emokt of water. The precipitateis solublein

    IJ

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    19/61

    solutionsof tsrtaric acid,complexformation. washing

    strongHC1, or excess alkalihalide due tothe precipitatewith water slowlyconvertB

    it to the oxide. With SbC15, the basic salt is thought to be SbOC13,but the formula has been questioned.IV.6.2 Oxides. The Wti hydroxidesaud carbonatesprecipitatewhite,b- sb203 from acid 6olutionsof anttinous salts. The precipitateis soluble in hot solutionsof excess alkti but insolublein NH40H.If an alkallnesolutionof Sb(III) is carefuJJyneutrtized with acid(notHF, citric or tartaric)the oxide is precipitatedand at once dis-solvedby further additionof the acid. Freshly precipitatedSh203 issoluble is oxalic acid but a precipitatesoon forms unlesB excess alkalioxalate is present to form the soluble double oxalate3. The oxide orhydrated oxides are precipitatedfrom Bolutionsof fixed antimonitesor anthnonatesupon neutralizationtith HlV03or other ~neral =ids bqtthe freehly formedprecipitatewill readily dissolve in exceBs acid. Apavimetric procedureof weighingthe tetroxideresultingfrom ignition

    26of the sulfide is discussedby FMllebrandand LundelJ .Iv-6.3 SuMldes. Hydrogen sulfideprecipitatesthe orange-redstiide,Sb2S3, from dilute acidic solutionsof Sb(III). In neutral solutions(t@r@te present),precipltationis incomplete. No precipitateformsin ftied alkali so lu t ion s . Th e stiide iB slowlydecomposedby boillngwater; InsolubleIn (~)2C03 (distinctionfrom As); S1OWIY soluble inboillng solutionsof ftied alkaM carbonates;soluble in cold concen-trated and hot 1:1 HC1 (distinctionfrom As). The orange antimonicswide, Sb#5, is precipitatedtier s~,- COnditiOILS.This suHidehas the same solubllitlesaa the trit3UJfideexcept that it is solublein NH40H3. All salts of antimonywhen boiled with Na#@3 precipitate,as the sulfide.Iv-6.4 Complex SuJfide. A 6olutionof ethylenediamineand chromouschlorideyields the complex CrNH2(CH2)@H@S4 which ,~s been used forthe micrugravimetricdeterminationof anthon@.

    IJ?

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    20/61

    IV -6. 5 S ilver Antimonate. Antimonatesprecipitatewith AgN03 to givewhite AgSbo3 which is soluble In NH40H. A silver salt alao fO~S tienSbH3 is bubbled through a silvernitrate solution. The silverreducesand the anttionycovertsto the oxide (or acid) which is only sllghtlysoluble in H20 (distinctionfrom AS)3.IV-6.6 Tbioaal.ide. Anttiny(III) can be separatedby precipitatingSb(C@1@Ns)3 fi~ either acidic or basic solutions. ChlorideandsulPate interfereby causing the formationof hsic salts. Arsenic,Bi,

    Z?3Cd, Au, Pb, Hg, Th, Sn, and the alkalineearths also precipitate .IV-6.7 8-Hydroxyquinollne. The yellow complex Sb(C#T@N)3 quanti-tati?relyprecipitatesfram acidic solutionas the pH Is increasedtoward6. This complex is stable at 105-1100C.and maybe used for the gravi-

    28metric determinationof antimony . Since many .otherions a-o reactwith this reagent,a preseparationis required.IV-6.8 TrIphenylmethylarsoniumChloride., -S mdFiggis3recwnmendaxsonlumhalides, especiallytriphenylmethylsxsonlumchlorideand icillde,for the determinationof Sb as well as for Bi and Cd. Asimple ion associationcompmnidtriphenylmethylarsotiumtetrachloro-antimonate(~l) is formed. As little as 10 pg csn be determinedbynephelometryand larger amountsgravtietrlcally.Iv-6.9 w% allol. Feige131discussegthe precipitationof antimonywith pyrogald.ol.A @ge excess of pyrogalJolin air-freewater isadded to a dilute acldlc solutionfor analyais. Welcher33~sts 1.8other elementswhich cam be determinedby tbls reagent.IV-6.1O 9-Methyl-2.?,7-Trihydroxy6-F1uorone. Feige132discussesbrieflythe work of Wenger33who recommends9-methyl-2,3,7-trihydroxyl-6-fhxoneas a specificreagent for amtimony. The compoundis soluble in alcohol.A red coripoundwith antimony salts forms In stronglyacid solutions.It Is probablethat the complexcan be extracted.IV-6.11 ~ferron. Several elementsarefrom stronglyacid soltiions32. The only

    u

    precipitatedwith cupferronantimonyoxidationstate that

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    21/61

    completelyprecipitatesis +3. The pentavalentstate does not precipi-tate. For speclficlty,a presepexdion is required.IV-6.K2 a-hli~p~ idine, An orsmge-~llow precipitateof antimonyisformedwith a-aminopyridine33. As little as 0.12 ug. is detected.Bismuth, Co, Cu, Au, and Zn interfere.Iv-6.I_3 Fhenyl&lohydanoic Acid. Severalmetals, IncludingPb, Ag,Cd, Cu, Co, and Sb exe quantitativelyprecipitatedwith thin reagent.The precipitateforma in dilute acetic acid after boiling for about5 minutes. Welcher33 gives a detailedprocedure for the determinationof antimonybut tt appeers to offer little advantageover other methods.IV-6.14 Methyl Violet. Antimony(V)is precipl.tatedithmethyltioletU.Poper45 reports similarfindings. Goto and Kakita46 have extractedtheprecipitatedcomplex into emyl acetate.

    Several other organic reagents have been proposed for the detectionof antimony. me readerconrpletelistings.IV-7. VOL4!lIUECCMPOUNDS

    The volatilizationbeen extensivelystudiedSb(V) are quantitatively

    44ia referred to Welcher33 and Feigel for more

    AND DIS!ITILATTONF ANTIMONYof elements as bromides and chlorideshasby~f- ~ ~ndeU81 . Both Sb(III) anddistilled as the bromide from HC104 or H#04.

    Antimonydoes not significantlydistill as the chloridefrom HC104,differentiatingit from Sn(II) and Sn(IV)81. Arsenic(III)and Aa(V),Re, and Ru also distill from an H6r-H@04 solution.

    The volatilehydride,SbH3 is discussed in Section ~-4. Use ofthe volatilehalides and stibine in analyticalseparationsis discussedIn Section V-3.IV-8. C~IEX IONS AND CHEMD?S

    ~t~odIII ) hti.e comphexes~~- and[sb~= tith x . .~or F-, have been reported. Hexahalo complexes,correspondingto

    [1bF6 Pd E%l- ere also known35. The bromide complex differsfrom the chlorideand fluorideby being highly colored and easily

    14

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    22/61

    hydrolyzed.for the salt

    A heptafluoroant~ny ion of unknown structureis [email protected]@

    lbth Sb(DI ) and Sb(IV)form chelateswith catechol. Undoubtablymany of the organo compoundsdescribedin Section IV-6 are also chelates.

    Mttle use has been made of complex lone and chelatea In radio-chemicalproceduresfor antimony. Ibth shople ion-associationcompomdsand chelatesare e-i~ extractedin organic solventsand can form thebasis for selectivesepexations.IV-9. ISOTUPICEXCHANGEREACTION SANDHOT-ATKM CHEMISTRY .

    Berker and Kabngg studiedthe rate of exchangeof Sb betweenSbC13 & 9bC15 in CC14. The rate of exchangela both time and Ilghtdependent. At 50C. and 81C. the half the of the reactionwas 235hours and 19.5 hours respectively. The rate of exc~e of Sb(III) andSb(IV) in HCl solutionsaccordingto Bonnerloo Is a functionof HC1concentration. The = ttie of the Peaction is lh hours in ~HCl,60 hours in f&HCl, and 36 minutes in l~HC1.

    Melander101 studiedthe Szil.scrd-Chalmerseaction with bothphenylstibinlcacid and triphenylstiblne. No concentrationof Sbactivitywas obtainedfrom the irradiatedphenylstibinicacid. A con-centrationfactor of 100 IS obtdnable by irradiating(C6H5)3Sb in

    benzene and extractingwith aqueous 2$ textaxicacid, 0.05$ KSbO taxtrate.Concentrationfactors up to 6000 axe reported102for the slow neutronirradiationof (C6~)3 Sb in benzene followedby tiraction with 2.%Hcl. Large concentrationfactorshave alm been obtainedby irradiatingsolid triphenylantimonycompounds,dissolvingthe target in chloroformand extractingwith au aqueous KHa tartrate solution103. The reaiL=ris

    103 for a nmre detaileddiacuBaionof hot-efemed to Wehl and Bonneratom chemistry.

    15

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    23/61

    v. JmAmmXL cmmsI!RY OF ANmMoNY APHZCABIEm sEPARA!lzomm YIELD DErEmmAmm

    v-1. SOLWENl!EXTRAC!KCONSolvent extractionprmldes rediochemistswith a rapid and almple

    techniquefor the selectiveBeparetionof an element from complexmdxtures. Through the judicioususe of various scrubbingagents andstr~ppants,igh de~ees of separationare attainable., The simplicityof the operationrenders tbls techniqueeasily adaptableto remoteoperation.

    In many instance~the entire sepexationmay be performedcm acexrier free basis thereby eliminatingthe Itierenterrors, such ascoprecipitationand non-stoichiometricrelationdlps, associatedwith~atietric yield determinations. Because many extractablecomplexesare colored,the @eId, if required, can in many casesbe determinedbya simple apectrophotometricmeasurement. The use of deep well crystalsand gamma spectrometrycombinedwith solventextractionseparationsemdspectrophotametricyields is gaining popularityin radiochemistry.V-1.l Ion-AssociationSystemsV-1.l.l FluorideSystem. Extractionstudiesof fluoride~yatems arerelativelyfew. Kitahara36 studiedthe extractionof several elementsfram EF solutionsinto ethyl ether. The extractionof Sb(III) from3.~HF is reported% to be less than l? as is the extractionof Sb(V)

    37from m_HF . Iarge quantitiesof 9b(V) can be extractedwith diethylether from an aqueousphase 6M in HC1 and O.& in KF with the extractedspeciesprobablybeing the chlorideratlkr thau the fluoridecomplex.V-1.1.2 ChlorideSystem. Factensivereviewsof the extractionof the

    38,39,40. ~wd s @voigt41ch~ide complexesof 6baxe availablehave shown that the extractionof anthony Into isopropylether ISsuperiorto that of diethyl ether. The distributioncoefficientiBgreater than ZQO for Sb(V) from 6.5 to 8.% HC1. Excellentseparation

    16

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    24/61

    43of Sb(V) from Sb(III) is achieved. Schweitzerand Storms confti thesefindings. Completeextractionof Sb(V) and 681 extractionof Sb(III)

    42from HCl ~olutions with methyllsobutyl ketone has been reported . Theextraction,and sepexatlonof~ HC1 containingoxalate andreportedby White and Rose47.not extracted;As, Bi, and MO

    Sb(V) from sev=al elements,from 1 totiltrateinto ethyl acetatehas beenIron, Sh, Cu, Cd, Pb, Ge, and Te areextract in trace amounts;Ag and Hg

    partiallye.xtract~and Au completelyextracts.The separationof Sb from S% oftentimesdesired in radlochemlcal

    separations,can be attainedby extractionof Sb(V) into ethyl acetatefrom @ HC149. Tin(IV) remains in the aqueousphase. The separation,by extractionInto isopropylether, is reportedby Coombem. The

    47procedure of White and Rose mentioned above is SMO app~cable.

    TrI-n-octylphosphineoxide in cyclohexaneextractsantimony(III)48f rom @ HC1 with reasonableseparationfrom severalother elements.

    The extractionof Sb in chloridesystems,though shnple, is apoor systembecause a Wge number ofchloridecomplexesof otherelementsalso extract. The use of sequestering agents,both In theoriginalaqueousphase and subsequentscrubs,contributesto a cleaner

    64separation. Passas developed a rapid (~5-min.) procedure for thesepsxatlonof short Uved antimonyisotopegfrom f!reshlyirradiatedu r a n i um by ext rac t ion of t h e ch loro com plex in t o is op ropy l ether.Molybdenumwhich 4s0 extractsis retained in the organic phase byformation of the blghly solubletbiocyanate complex.V-1.1.3 Brcmlde Systems. ??ock,Kukche, and Bock51 extensivelystdied the extractionof various elementsfrom HSr. Ninty-fIveper cent extractionof Sb(V) from ~ HSr into ethyl ether is reported,the extractionof Sb(III)Is considerablyless. Gold, Ga, In, As(III),Tl, Sn(lI and IV), Mo(VI), and Fe(III)extractto @eater them 50~frcm4toq BEm. The same general commentsgiven for the chlorldesystemregarding epecificity apply to the brcmide ,sstem.

    17

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    25/61

    V-1.1.4 Iodide System. Iodide extractionsystemshave been moreextensivelyatudledthem brcmdde. Antimony(III) quantitativelyextractsfrcm 6.~ HI into ethyl ether as do As(111),Cd(II),Au(III),In(III),Hg(II),Tl(I), T!L(III),and Sn(II). With l.%~ in 0.7%

    52H404, less than 50$ of the antlm.onyextractsinto ethyl ether . West53statesthat small amounts of the tetralcdoantimonateIII)ion extracti n t o benzene frcpraH2S04-KI aqueousV-1.1.5 TblOcymate System. Slight)ethyl ether from O.% HC1 contactingTin(IV) quantitativelyextractsIlrompossible separation.

    phase.or no extractionof Sb(III) into

    54UP to ~ ~4~S has been observed .a similarmedia suggestinga

    v-1.1.6 mlphosph oric Acids. Less then 5? extractionSb(V) with O.% dibutylphosphoricacid with greaterthan39of Sn(IV)JW, Nb, Y, and In is reported .

    of Sb(III) &95$ extraction

    V-1.1.7 l l r ia lk y lphosphineOxides. With tri-n-octylphosphineoxide,48Sb(III)partiallyextractsfrom ~ HC1 . Completeextractionof

    Sb(III) is reallzedby increasingthe HC1 concentrationto ~.v-1.1.8 Methyldioctyhnine. Extractionof antimonyfrom greaterthan @ HC1 is quantitativewith 2 to 3 volume percent solutionsof

    50methyldioctylaminein xylene . The extractiondecreaseswith lowerHC1 concentrations.V-1.1.9 Quarternarymimes. Work in progressIn the adhors labora-tory pertainingto the quaternsxy amine extractionof the elements showsthat both Sb(III) and Sb(V) are completelyextractedflmu,~ HC1 as thetetrabutylenmoniumchloro entlmonycomplexinto hexone. Little or noextractionwas observed in BN03, H#04, ~, or N a oH s~t~.V-1.1.1O RhodamlneB. The chloro complex of S%(V) forms an ion- associationcomplexwith rhodemineB readily extractableinto benzene

    39or ethyl acetate fram 3 to ~ HC1 . Severti investigators55~6>57describemodified determinationsof antimony. RecentlyVanhnan et. al.66describeda colortietrlcrhodemineB procedurewhich eUminates hydrolysis

    la

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    26/61

    problems encounteredIn other methods. A relative stud deviationof1.Z$ Is reported for the range of 2-XI ug of Sb.V-1.l.ld Methyl Violet. AntWny(V) forma a precipitatewith methyl

    46violetinEC1 which is solublein emyl acetate . The sensitivityof

    t h is sys t em is 0 .1 u g. / m l. J e a n@

    describestheviolet blue complex i%cm @ HC1 into benzene.V-1.1.12 llzo~. Morrison and l?ceiser39Ilst

    etiractionof the

    several azo dyes which.form ion-associationcamplexeswith ~(V) in strongHCl - saturatdethanolmedia extractableinto benzene. Generallythe reactionsexequite sensitive (1-8ug./ti. of %).V-1.2 Chelate SystemsV-1.2.1 Cupferron. Cupferronhas been used for the separationand

    determinationof,several elements. The insolubleprecipitatesformedwith cupferronpre soluble in organicreagents such as etherandchlorofomn. Ant~ny(III) is quantitativelyextractedtid chloroformfrcm 10$ H2S0462. 39Several other elementsalso extract ,.V-1.2.2 SodiumDiethyldithiocexbemate.A ~ aqueous solutionof thisres8ent till extract abut ZU elements39. BetweenPE4to 9.5, ~(111)extractsinto carbontetracbloride. CiFradiochemicalinterest,As(III)and Sn(IV) also .artract.Use of masking agents such as EDTA and cyanidehave greatly increasedthe selectivityof this reagent.v-1.2.3 Morin. Anthony(III), in additionto Al, %, Ce(III),Ga, In,Sc, Sn, T!h,Ti, and !Zk,form complexeswith morin, extractableintobutyl, .sm@, and cyclohexyldCOhOl frcm ECidiCmedia39.v-1.2.4 8-w nolinol. The precipitationof entimonywith 8-quinolinolhas been discussedin ~ction IV-6.7. It seems reasonableto aasumethat the compl~ is orgemic solubleand extractable. The re~ent also

    39reacts with about hO other metals .V-1.2.5 PotassiumXanthate. Islein and Vorbes65 report the extractionof Sb fromxanthate.

    acidic solutionsinto carbon tetracbloridewith potassiumLess metals are reported39 to react with tbls compound

    19

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    27/61

    compwed to the o#her chelates. Further investigationof this systemappearswarranted as an extractionprocedure for the separationin fimion product mixtures.v-1.2.6 htip~ Ine. The separationof Sb frcnnBi, Big,Sn(IV),

    65Zn, Co, Ni, and & has been reported for a chloroformsystem .V-2 CHSOMATCGRWEY OF AIW?IMONY.V-2.1 Ion-Exchange

    of Sb

    As(III),

    6aV-2.1.1 Cation-Exchange. Accordingto Lure and FYlippora , entimony.1sseparablefrom =senic and tin bypasmge of a diluteHC1 solutionthroughthe sulfoDIcacid cation exchangerWofatit-P In the hydrogenform. Arsenic passes through with Sb and Snremalnlng tight~bound.

    6aBismuth 18 reparableflromSb as the thiocymate 3 the aepuation being

    made with a 6$ solutionof NH4CRB O.% in H2SOL. Autimony(III)CaU beseparatedfrom Sn(II)on AmberEte IR-12Clby elutionwith O.% HCl

    69contelnlng@ tartaricacid . Autimony(III)elutes, end Sn(II)rmalns on the column. Antimony(III)and Sb(V) c=be separatd by

    70elutlng Sb(III) with dilute oxsJlc acid . The unexpectedadsorptionof negativelych=ged chloridecomplexes,IncludingSb(V), on a cation

    .

    71fiaus and Ifelson extensivelystudiedthethe elementsin HCl with Ibyex-1. The

    67exchangerhas been reportedV-2.1.2 #mlon ExchangeV-2.1.2.1 ChlorideSystem.anion exchangepropei%iesofdistributioncoefficientof Sb(III) is greater than 103 in ~ HC1 whilethat of Sb(V) is less than 10. Separationof Sb(III) and Sb(V) ISdifficultdue to the slow rate of desorptlonof Sb(V) with dilute HC1elutrientand the hydrolyticproperties,of Sb(III) in dilute HC1.Trace amounts (Sb124)indicatethat Sb(V) Is not adsorbedon Dowex-1in dilute HCl whereas Sb(III),formedby reductionof Sb(V) with H SO2 3

    7 me seperationof Sb(V), Ta(IV), and Sn(IV)s stronglyadsorbed .72using a Dowex-1-X4columnhas been reported . For other possible

    sepsxationathe reader Is referredto the summarypaper of fiaus and

    20

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    28/61

    ,,~e180n71 for a table of the di8trlbutioncoefficientof the elementB.V-2.1.2.2 FluorideSystem. FwiS73 has studiedthe fluoride-anionexchangepropertiedof the element8Eimilexto that described abovefor chloride. Antimony(III)1s stronglyedsorbedin dilute I-E?;b(V)

    appe=a stronglyedsorked at all concentration. Arsenic(V)as wellas Sn(~) exe also stronglyheld. Arsenlc(III)IS not adsorbedoffer-ing same possibilityfbr the separationof As and Sb.V-2.l.2.3 Nitrate System.propertiesof the elementsAs(V) are not adsorbedw

    l?e r i s 8 0 h a s a lJ 3o s t u d ied t h e an ion exc~ein nitric acid on IkIwex1. bthnony(V) andSn(IV) Is slightlyadsorbed. This syB~em

    aple=s to offer uttle advantegefor the separationof Sb from otherelements.V-2.1.2.4 Oxalate System. Mixbres of &(IV), Sb(V),end Te(IV) are

    74separableon a Dowex 1 column . The samplein ~ HC1 - O,~oxalicacid is placed on the column. Telluriu@V) is eluted ftist withO.~oxallc acid, then antimony is separatedwith O.~pH 4.8 sodiumoxalate,finally tin is removed with ~ H#304.V-2,1.2.5 Malonate Sywtem. The separatimof tracer Sb(V) and Sn(IV)using emmmium malonate as the elutrianton an Amber~te IRA-400

    75. The Sn(IV)malonate is retsined on theolumn @s been describedcolumnwhile the anttiony iB eluted with a 3$ malonate ~olutionat apH of 4.8. Tin is removed with 4.% H&04.V-2.1.2.6 S~ide. The separationof Sn, As, and Sb as sulfide com-plexes in basic solutionon kwex 2 columnshas been studied. A 3$sodi~ polys~ide solutionis placed on a.Dowex 2 column in thehydroxideform. Hn is removed with O.~ KDH, arsenicwith l.~ KOH,and antimonywith 3.% KOH.V-2.2 Inorganic Alumina Exchagem

    Numerousprocedureshave been developedfor the =Peration ofelementswith an alumina column. Generally,washi~solventsseparatesthe elementsinto bands which are

    with selectedidentifiedby

    a

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    29/61

    w reewntato formcolored Cqlexel% *S-C (III) C= .besep a ra t ed frdn Sb(III) by waeh in s wit h d ilu t e ~ ah d deve lpp ln g t h eco lo r vit h H# sa t u ra t u l wa t e r . Th e ~ea (AE). = Is ye llow en d t h e

    7 7lou& Sb(IZI)baM is mange-red. . Antimmy cti bermu+edfrcmt heelcmenta of the tin ~oup by additionae a ~a$ solutionti waehingwit h d ilu t e HC1? ? . Ar se nic is eltiaiMth a H@ Baturtitdeolutiun-mvesdown thecolumnaeq Mamn yellow band. Fallmdng the deaorptionof srsmlc, ant- 19 r&mved with.co~entrated:[email protected], Tej and MO are ~ttally eluted. SeleOilumJ., Te, and MO arecompletelyrewved by waeldng tith a solutionof (qj2s. Arsenic d8tJare aepmated; & and Sb wp=ation ie @or. W reader19 referredto Lederer end.kderer79 for a nmre ccmpletediscuaaionof inorgahlc

    ~a. :. .V-2 .3 .RzPer Ch rom at ogm@J Y

    Gen e ra lQ t h ie t e cbn lqu e ccm im t a o f d ipp in g t h e en d of a filt e rpwer strip intu the ample solution.vith clumacteritiicratea dependeqtonmedia, pH, &Ltype of paper. In many

    The fona migrate qp the paperEIuchvar iable a a e t he eolven tc ae e e , p ap e r a @.P%Pe .t ad Uit h

    AI.(OH)3 a an ion~ h ewe baa n im dt oin cre aaa t h G. d e~ee ofsepa r a t ion . Th e pap= m ay be 8 p3 yed u lt h CO* fozmihgreagent8oraectionecut out fbr.aubaequentquantitative-la.

    Many ueeful aeparationeof Ae(III)d Sb(III) have been repor tedcon trac ted to fev for 8b and Sn79. In a butauol-HClm@ia~. Ae laaeperatedfran Sb ad Sn. The sep ar a t ion of Aa(III) e n d Sb(III) h a abeen .s cc aqUeh ed wit h t h e lowe r e J coh o le7 9 . Sepa r a t ion of Aa (III),8 b(III), - t i(~) h a s bB-. ObtdJled with COIJldime.aaturatedwI*o.&J Elm .3v-3 m ILKlzm w m vOLm IIz zA!IT@!J ,.

    m e vOk t i le a n t - c~u n d e h a ve k en demribed .in6ectimn IV-T.s c h e m e r eecri-a a-dlatiUation poceduru far-13enic,ent~, d tin. !llheaupleis,placed

    22

    the separationofin the titillation

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    30/61

    flask end made @in EUl and 0.5 to ~ in H#04. Arsenic is distilledat lJ1-lJ2C. me receiver iB removed,phosphoric acid 18 kddedto thedlstilJlngflask, and antinxmy18 distilled at 155-165C. Aftercooking;the receiver Is changed and the distillationis continued

    a t 140C. with a 3 to 1 mixture of concentratedHC1 and concentratedH& dropping into the distllJlngflask. MolyMenum, Re, Se, Te, andHg pertialJydllstill.

    Radloanthony is mphrated by distitition inProcedure~ de-scribed in detail in Section VIIC. Heti.83 describes a &upMfieddistillationprocedure for Sb, As, and ~and Maxwell et. al.84describe thedistillation of Sb from HCIOk-lIEr.The easily&ccomplish-ed electro~ic formationof stibine,SbH3, has been used as thebasis

    for the separationof radioantimo~. Cook13 separatesanttiny fromfission prcduct mixturesby generatingstibine at a lead cathcde inan atnmsphereof hydrogen. The stibine,swept out of the cell %y the-Wen stre~, Passes thro@ a sl%htu acid silvernitrate solution,forming a mirror when heated or remaining As ihsolublesll~ anthiotide.The latter technique is more convenient. Inve93, using this techmlque,recently describeda 10-secondprocedure(SectionVIII, Rrocedure4) foraeperatlngshort-~ved antlmohyfrom fissionproduct mixtureBwithgreater than 107 decontaminatlori.Othermethods base&on gerierationof stlbinehave been reportedm#15~~/17~~.V-4 =ECI!ROC=SIRY OF ~.V-4.1 Electrodepasition

    One hportent advantageof electrodepositioncomparedtoprecipitationiB that extraneousIons are not added which can interferein subsequ~ntanalytical.steps. Controlledpotential techniquespro-tide specificity,with completenessmd apeed of separationprimarilydependentupon the differencesin the reduction@tentials of the lon-metal reactionB. The techmiqueIs particulerJyadvantGgeoueorradlochemicalapplicationbeca&e thin @l evenly depositedfilms on

    23

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    31/61

    countingplates axe obtainable. Details of instrumentation,cells, and8general.methodology-e fuJJ.yd e mr l b e d by Idngane .

    Reynolda6extensivelystudiedthe controlledcathddepotentialseparationof antimony,tin, and bismuth. Quarkitatlverecovery wasobtainedfrom a sulfuricacid - hydrazine stiate solutionat -0.3 V.Jovanoticgstudiedthe cathcdicdepositrlonof bismuth and emtlmonyfromH#O~ media and give, procedure.for their sepsxationfrortln.

    25Nornitz also,diacuesesthe electrolyticdeterminationof antimony.Several comprehensivestudiesof controlled- potentialelectrodeposi-tion have been reportei recently. Tankam describesthe electrdeposi-tion behatiorof antimony in HC1, H#04, HN03, MH40H, and cyanidemedia. The controlledpotential separationand determinationofantdmony,copper,led, and tin in nonferrousalloys is dlscuasedby

    UHayakawa .Electrodepositionhas been used in severalradiochemicalsepara-

    tions. A methcd for the sepsxatlon@ mounting of antimonyas well asseveral other elementsis describedby Lee and Cook7. Excellentbetacoumtingplates, mitable for decay scheme studies,were obtained.Her# isolatedthe separatedantimonyRrom a Szilard-Chalmersreactionby electradepoaitionon a platlnus electrode.

    Hydrogen canbe likeratedIn snelectrcdepositiontechniqueaudcme must be taken to prevent the 10BB of entimcmyas 9bR .3v-4.2 Polar~aphy

    Polarcgraphyhas not been used f o r the radiochemicaldeterndna-19 discuss severalpolsxographicion of antinmny. lblthoff and Idngane

    methcds for the determinationof antjmmy in complexmitiures. Excellentwaves are obtainedin ~ HN03 with gektin as a maximum suppressorwitha half wve potentialof -0.3 V. vs. S.C.E.

    Love= has been pioneeringthe applicationsof polarographytoradiochemist~. Antimonyhas not been Investigated;however,tihetechniquemay be app~cable to the separationof antimonyfrom fissionprcduct mlxturea.

    24

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    32/61

    v-4.3 J llm lgam sIsotopicexcbmge with mercury amalgamshas been proposedby

    Meinke21 as a technique i%r the separationof radloelments from complexmixtures. Attempts to prepare an anttiny-amalgsm were unsuccessful.

    V-5 GRAVIMIIFRYVolumetricmethcklsfor the msn-radiochemicaldeterminationof

    antinmnyaxe accurateaud rapid, hence the more tedloua gravtietricmethods are seldamused.

    Precipitationas.the .s~ide has been used almostto the exclusionof other methods. (&e Wction IV-6 for a compiktion ofprecipitants).However,disagreementexists concerningits use. HillebrandandLWndel.16 state that weighing of the trlsulfideis satisfactoryif itIs drfed and heated In an atmosphereof C02 at 280-3C0C. Narwltz25cl.aha that errors inherentin depositingthe sulfide frcm acidicsolutioninclude adheringdeposits and inmmplete precipitation.Results can be 1 to 1.5% high due to occlusionof oxygen and .miUurcompounds.

    Although sfiide precipitationas a means of determing antimonyrequiresprecise conditionsfor accuratemacro analysis,the errorsinvolveddo not appearto be of such consequenceto seriouslyaffectyield determinationsin routine radlochemicalanalyses. Yielddeterminationsfor many elementsare sub~ectto shilar conditionsof occlusionand non-stoichiametricprecipitation. fie authorbelievesthat other more precise analyticaltechniques,such as titrimetryorspectrophotometry,are better suitedfor @Xld determinations. Theincreasinguse of gannnaspectrometryaud especiallydeep well countingencomages investigationalong these lines.v-6 SPEC?lZROPHOT@lETRY

    This proven techniquecan substitutefor gravtietricfielddeterminationin many radiochemicalmethods andas coprecipitation,occlusion,and questionable

    25

    cticumvertsuch errorsformula of Ignited

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    33/61

    products. It iB a simplematter ta develop the color by additionof uchromogenicagent,make to volume, remve an aliquot for the absorbancemeasurement,and count the remainder. An example of this, uelngrhcdemlneB as the chrcmqenic egent, is given in SectionVIII, Rtocedure4.

    Rh c d am l n e B is the most widely used re~nt for Sb. Sandeli85discussesthe merits and shortcomingsof the method. For qtititativerecovery,the crucialstep in the rhodemineB meth~ is conversionofSb(I~) to SbC16-. The HC1 concentrateon must be greater than ~ andCe(IV) appears to be one of the few suitable.oxidizingagents. BecauseSbC16- slowlyhydrolyzes,the rhodemlneB is added i&n&liately~eroxldaton . Th e precipitate(brightred) 16 easily extractedinto

    morganic solvents,providing additionaldecenteminatio,n. Luke and66Vadmlan report a@ht modificationsin the procedure.

    In acid solution,strongly,yellow colored Iodoantbonlte is86formed by additionof excess Iodideto eitherBb(III) or (V) .

    BeerIs law is followedfor the range of 5 to 50 ppn of enthmmy.Nitrite, hypochlorite,end suEite interfereend close control ofiodide end aciditymust be mainteined. A pyr id in e - icd id e m et h cd fo ran t im on y h a s been de s c r ibed by Cla rk e87 . In t h is p r@edu r e , pyr id in eforms a sll@ly soluble,colored todoantimonitecomplex,which is keptin suspension.bygum arabic. S~iC mid concentrationfor -mcolor intensityis 3 to 4M and iodide and pyridine concentrateons mustbe closely controlled.

    Methyl violet, bril.llantgreen, and enthraquinone--azo-ddmethyl auillnereact with emttiny(V) in a ~er similartor~ne ~85.v-7 m~Y

    Titrimetricmethods also offer conveniencefor detemning theyield in a rtiiochemicalmethod. The entire separatedsample can betitrated,thenby oxidimetric

    countedin atitrationof

    well trystal. Usuallyantimony is determinedSb(III)with p&manganete, iodine, or br~te.

    26

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    34/61

    Ce r ium (IV) an d d i.c h rom a t e c an a ls o be u s ed .!lltraton tith bromine iB usually c-led out at an elevated

    temperaturewith methyl orange or indigo sulfonicacid ag theindicator. Antinmny(III)can be titratedwith icdine in concentratedbicdxmate solution. Tartrateis add~ to hold the anthnonyinsolution. The reactionla slow nem the eq~valence point and offers

    89. In the presence of HCIJo advantagesover the brcnnatetitrationEh(ITI)IS oxidizedto Sb(V) by permanganate. Acidity is critical.@lrolyais may occur if too Ilttle acid is present while stiong acidKIves high results due to oxidationof chloride. Wil@d and yoq#have titrated Sb(III) in HC1 with eerie sulfatewith iodinemonochldrideas catalyst. The titrationis c-led out at 50C. using fmoinIndicatmr. The so lu t ion sh ou ld con t a in 15 m l . Of concentratedHC1 .per 100 ml. of solution. T3tratlonwith dlchromatehas alsu beenr-tdgl, - howevw, the method 1s unattractivebecause 2 to 3 hoursme reqtied for the oxidationand the endpoint is not very shw.

    Antimony(V)has been determinedby titrationwith titanoua,.,.9uJfate92.After oxidation,with brorhine,the solutionis boiled toremove excess mddemt. The titratibnis made in an inert atmosphere(i.e.C02) above 600C. using indigo carmine indicator. This approachdoes mt seem practical for a redlochemicalyield determination.

    Because antinxmy is easily lost by Volatilizationfrcuahydrochloricacid media, dlssoluttonwith this reagent shouldbe carriedout undertotal reflux. Dissoltiionulth sulfuricacid and a reducing agent oran alkallfusionprevents the loss uf antimonyand is preferred.

    The metal is soluble in hot sulfuricacid. Bisulfitefusion in aporcelain or si~ca crucibledissolvesthe metal and lead aJJ.oy. Thecooledmelt is solublein a dilute hydrochloric- sulfuricacid media.

    The Sb(Ill) sulfide is soluble in hot stiuric acid; the Sb(V)*

    27

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    35/61

    sulfide in alkall auHate so lu t ion con t a in in g fre e .wlfu r or in.B~OUS acid.

    Fusionmethcds =e recommendedfor samples containingoxidizedmaterialthat may not readily dissolvewith sulfuricacid. Scdiumhydroxide in an iron crucible,dehydratedsodiumthiostiate, and amixture of sodiumcarbonateand sulfur in a porcelaincrucibleare used.

    VII, COUNTING~Q&3

    The common fiaEion ~cduct eatimonyi80topeeencounteredin126analysis ue 2.4y Sb125, & Sb , and 93 h r . S bW. &m egbr . sb 12 6

    a n d b. 6 h r . S b lB m a y b e observedin shoi-tcooledmaterial. Of theseisotopes,all may be gamma counted except the Z@d Sb126 which is a purebeta emitter. Gross beta or gamma countingcan be cbnfusingdue to thegrw in of the telluriumdaughterprcducts. Gamma countingusing amltichermd analyzm is recommended. Characteristicgamma spectraare

    104given by Heath and Crouthmlello5.

    VIII. COLLECTEDRADIOCHEMICALPROCEDURESFOR ANTIMONY

    In preparationof this monograph the authorrequestedother mnograph authorsradiochemicalmethods for antimxiy

    lakaratwf.es. These methcds are includedin the fdlcwing

    from theuEed in theircompilation

    which is bellevedto be representativeof the methnds now in use.

    28

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    36/61

    PROCEDURE1(ION-EXmGE)

    Note: This procedurehas been used to obtainpure Sb i%actionsfrom U,Th, and Cf f ission pmsductmixturesbut shouldbe applicableto almostmy mixture of actlvitiem. Chemicalyields me apprcodmately&@ endit usually takes about five hours to run four samples. (W. E. N.)----- ----- ----- ----- ----- ----- ----- -1. Add 30 mg Sb curler plus 1 mg Mo, Te, Sn carriers. (&lutiQn atthis point shouldbe free of oxhiizingagents----ifit is not, pp~ Sbwith pH 6-7 acetatebuffer,wash once with dilute acetatebuffer, dis-solve in 8 ml ~ [email protected]. Ad@t to ~ HC1 (25-30ml vol) - ice cool - add 10 ml &C>.(oxsorbent,made by Burrell Corp.) - digest cold 5min. - bubble in02 1 min. - cent - wash twice with H@. (If Sb does not centril%&e,filter it, waah with H#, and dissolve It off the filter as in Step 3) .3. Mssolve sb in 4 ml cone. HC1 + Mquid Br2 -mid 1 w each of Snand MO carrier - add [email protected] to reduce Br2 - dilute to 30 ml - add 1ml~NaI - digest hot 15 min.4. Add ~ ~ NHkFoHl?- Ice cool - saturatewith H# - digest hot15 min. (no longer) (saturatewith H@ every 5 min.) - cent - wash oncet it h (~ HCl + H# + d ilu t e KQF. HF).5. a) Dissolve Sb#3 in 15 ml hot @ HC1 - add 1 mg Te - pass in E& -cent.

    b) Add lin g A.e+3 - d ige s t - filter Aa#33.6. a) Adsorb ~ on _ A-1 anion exchange column (6 m u x 10 c~ jIk.wexlx 8, 50-10 Qmesh,pre-equilibratedulth ~HCl).

    b) Wash colmn with 5 ml @ HC115 ml ~ HC110 ml ~ H#04

    29

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    37/61

    PROCEDURE1 (Ccmtimed)

    c) Elute Sb with 2 m l H@15 ml lmillng ~ i%OH

    7. Ad@t to ~ in HC1 - filter (WhatmanNo. 44 paper) - ice cool -add 10 ml CrC12 - digest cold 10 min. - pass in 02 1 min. - cent - wa~htwice with O.% HC1, once with acetone,dry at lJ.O- weigh aa Sb.

    PRCCEDURE2(BRQIIDEDIsTIIL!KCIm)

    J. W. &neB95

    1. IntpductionAntimony is separatedfram moBt of the fia~ionproducts by distil-

    lation of the ,trilnmmldefr~ acid solution. Among the substanceswhichalso appear in the dlstildate are vcd.atie compounds (probablythe bro-mides) of germanium, arsenic(III),tellurium, and tin(n).Tin(IV),is the main contaminantof the distillateunder the conditions. . .CmIploti. Oermanlumtetrabrouddeboils at a considerablytiwer tenrpera-ture than anttiny tribromideemd is largelyremovedby discardinganappropriatelow boilhg fraction. !EbI1s removed by am acid hydrogensulfideprecipitation- the presence of ,fluorideion, the latterforming a stable complex with the tin and preventingits precipitation.Remaininggermanium,aa welJ.as arsenic and tellurium,which have pre-cipitatedakmg with anthony, me seperatedby concentratedhydrochloricacid extractionof the stiide precipitate. Anthony(III) PulfidediS-mlvea, whereas the othera are unaffectedby the acid treatment. ht tinyiB finally convertedto the metal by reductionwith chramouschlorideand is we igh ed an d counted in this form. The chemicalyield is 70 to90$.

    30

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    38/61

    31

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    39/61

    Spray t ra p (t oa 2 n lon g

    ~~PRCmDTJRE 2 (continued)flt into groundglass joint in flask alxwe)--conaistsofsectionof glass hellce~ In a I-6-mm-tube.This Shouyibe

    ~acketedand heated to preyed conden~ationof SbBr3. The very

    simplemethai of heating used 1s to lead the hot geaes from altlsherburner under the 3-neck flask up through a large dlar@ erglass tube to the jacket. The spray trap leads to a condenser.:

    condenser125-ml =lenmeyer flask (receivm for distIllate)--outlet tube from the

    condensertouches theDroppingfunnel (fitsinto

    cedure for diagram

    N*t.mkGround-offElrsch fumnels:

    bottcunof the flaskground glass joint in flask above)--see~-

    Coors 000A (oneper eemple)Filter chimneys (oneper sample)IYlter flasks (oneper sample)lVo.40 Whatmsn filter circles: 7/8 diameter--weighed40-ml ComicalFilterbeaker

    (one per~lff

    100-ml beakers&)-ml slntsredWaBh bottleStirringrods

    4.

    centrifugetubes: ~ex 832u (fourper sqple)containing15-ml slntered@ass cmcible of fine pmoslt ysttidizatlon}--see Repuation and Standmdization of

    (oneP sttidization)glass crucibles: fine porosity (twoper sample)

    Preparationand Standardizationof CarrierDissolve 18.7 gm of SbC13 in F& HCl ami make the sqlutionto a

    vulme of 1 liter with the acid.Pipet 5 m l of the above carrier solutioninto a weighed filter

    baaker. (Thisbeaker has a 15-ml, fine porosity sinteredg~s crucibleBealed Into the aide near the top BO that the operationswhich follow--

    32

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    40/61

    PRmEWRE 2 (continued)

    reduction,filtration,drying,~ ~i---~ be Cezriedout h thison e vem el . ) Ad d 5 to lo ml of CrC~ 1301utioh(Oxsorbent). After con-~version to Sb metal is complete,filter, ami wash the fiecipitatewith~ portionsof H# end absoluteC!H30H.llrythe filter~~er con-tainingthe Sb at 100 for 1 hour. cool and Veigh.

    . Rrocedure1. To the sample In a DO-a, 3-neck distillingflask, add the follow-ing reegenta: exactly 2 ml. of standardSb Cmier; 1 ml of MO Csmrier;2 mI of sn carrier;1 to 3 ~ of 85% H3p04J&?r_te= 0.1 = ofs (Rote1); ~ ml of cone. H#4 (slowly). Place a 360 khermometer,a short spray trqp leading to a condenser,and a droppingfunnel (seediagram)in the three ground jointsof the flask.Plug held on by s p r i ng

    Made from a 25-mlPyrex graduate

    Rressuretype stopcock

    Vigreauxpoints In thisto break up the drops ofHBr

    7.nml

    Drop pin g Fu nn el

    IV2

    tip--fitsto bottom of flask

    .ialet

    2. Bubble N2 through the solutionin the flask while 15 to 2X)m l ofcone. HBr is kided dropwlsefrom the droppingfu,unel. The t em p e r a t u r e

    33

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    41/61

    PRCXEOUHE2 (Conthled)

    of the liquid in the flkek.is mdntd,ned at ~ to 230 (N ote 2) Wmeans 07 a Fisher burner during the 15 to .~ min. required for theaddition,ofKE!r, The distillatewhich comes over belxni180 is dis-cardedend the eddltiomof EC& is begun only aft= a temperatureof210 is reached (Note 3).3. To the distillate(180to 230) in the 125-mlErlenmeyer receiveradd 1 ml of Te cerrler, 0.5 ml of As C=ier, and 2 mJ of N~.H@(Note.4]. Neutralizethe solutionwith cone. ~OH. Make theneutral solutlonsllghtlyacid @th. cone. HC1 d ~ a few ~OPSof aerosol solution md 0..5to 0.7 ml of cope. ET. Saturatewith..H@ u@il the sulfi~eprecipitatebegins to set,tle,leaving a c>arsupernate. Tbls shouldbe done as rapidly aspossible because SnL.andSnS2 will also precipitateafter a short time; also the precipitationshouldbe cexried out at rooq temperatureor below to aid in the rapidformationand coagulationof Sb2S3. bansf~ the mixture to a 4-mlconical tube and centrifuge. WaOh the precipitatewith 15 ml of ~H2 SOh c o n t ai n in g aerosol. Discard both the supernateand the washings.4. Boil the precipitatewith 2to 4 ml of cone.with H20, and centrifuge(Note 5) . Transferthe40-ml centrifugetube.5. To the supernate,add a few drops of aerosol

    HC1, dilute to 20 mlsupernateto another

    solution,0.1 ml ofSn carrier,1 ml of Te c=ier, &nd 0.5 to 0.7 ml of cone. HF. Pre-cipitateand wash sulfidesas in Step 3.6. Dissolvethe precipitatein 4 ml of co~c. HC1, boil off the H#formed, amd filter the solutionthrough a 60-ml fine sinteredglasscrucibleinto a b-ml centrifugetu~e.7.and8.the

    Add a few drops of aeroEolsolutionand 0.5 to 0.7 ml.of cone. EFprecipitateemd wash Sb,#3 as in S&p ~.Dissolvethe precipitatein 5 to 10 ml of cone. HC1 and bail offH@. Make the solution3 to ,% in HC1 and filter through @ 60-ml

    34

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    42/61

    PRaEDLIRE2 (Ca l t inued)fin e a ln t e r ed glem cru c ible ixc t o a hO-m l c en t r ifu ge t ube .9. Add su ffic ie n t CrC12 ao lu t in n (Oxaorbem t ) t o [email protected] t e ly p re c ip i-t a t ama s t h eme t a l . 6 t a r t fi lt e r in g t h rou gh a veighed Ho. 40 Who&anfilter chcb, 7/8 dim=, titw 1 b. or IW, UOhg a SOUU&OffElrech flmuel ad a Chinuley. Wlulhthe metal Vith 5-ml por t ion s of E#d abeo lu t e CH30E. m -y a t lw fo r 15 min. cool, Veigh, - mow(Note6).

    Eotea1. SuMur 10 addEd to tk 131etim flaak to FeVent the fozmatim

    of Br2 frm m.2. All t -a t u re8 n ot t i a r e a t a bou t 590 mu of ~ pressure.3. Mwh of the Ge in the fissionqroduct 801UtiOnis remved vhen

    the flaotioncd= m ti M is al~.k. ~aajne h yd r a t e r du ce e m y Sb(V) in t h e d iu t illd e t o Sb(III).5 . An y w, AE, or m t ich is p rm ip it a t e d a lon g vit h 6 b a s Su lfid e

    is hsdible in C-. ECl, uhereaa 6b#13 5s ~olu ble .6. = procdame u scr i= is d e s~ fa r t h e ~e rm in a t ion of

    Sbw. Com t in g is a t t ie d a ft e r 4 d aya , in vh ich t im e 9.3h Tela hasgrown into qqu ilibr ium wit h 8 bm . lh e h a lf-lives obt a in ed fm SIWree lu lt in g fr a il t h e rm al n eu t r on fiem ion of $3 5 aver age abu t *.*.Eau -llve t 3 from far t n eu t lwl fis s ion (1L Me7 n eu t r om ) ewe r ege ~ zo@L Th e cau ae of t h is d is c r ep an cy is p robably t h e d s t e n c e of anotherS b isotope h a vin g a *er h a l f -l i?e th a n 2.7y S b13.

    35

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    43/61

    FRaxuum 3(q wymmzmm, a-om~ PRECm ZATION)K. F . F lyn n , L. E. GlendeDIn, and E. P. %teinWg 96

    Ill-&duction~s procedme was developed for the radlochemicaldetonation

    of S0 in fission@dct ndxtures. 9auQlea of U=, @35, em PU239whichhadundergonealnrc &3 fiasionewere aualyzedfor both Sb127ad S#=. The decay curves of theme iaotope~ehowed leas thau O.5*of a n y lon g M* Contamhant to be present. Ac cu ra te d ec en t -n at io nfac t o r s fr a n spe c ific e~n t s h ave not been de t e rm in ed , bu t a a ep ar~t lon of in ac t ive Sb fra a solu t ion cor r t a i~ A8~ t ra ce r 1 3 1m u edn oac t ivit y in the final Sb saqple, in dic a t in g a decon tam in at ion factaof gr ea t e r t h an 1 0 3 . Ch em ic a l y ie ld e m e abou t 25$ wd th e analyalBcau lm performd h about 40 minutes or less.

    Procedme1. w to the sempI.c (tiee of nitrate) in a dieti~tion fla ak L dof ~ a t en derd ized c~i= (10 ~ Sb+5 / n il) - L m l of 6~ ~. ~iivit h s d rop of Br2 t o in su re exc lm n ge . Ad d 5 gam e of wau u lazd z in cau d paa s t h e ~~ in t o 2 0 m l of ~ HCi con t a in in g a few d rop s of liqu idbra lin e Ue in g m & Bt r em n t o ave? ep t h e ga s t h rou gh t h e Ey9 t em .(i c c / see flov ra t e fo r 5 m in . )2. Ad d 10 q T e d 1 wam h@razW-HCl ta the solution. Hea t t obo i~ an d ga s vit h H# . Cen t r ifu ge a n d d isc e rd pp t . (!l%is is ze ro -t im e for Te r em va l).3. h d d 5 m l of con e . HHLOE, d ilm e t o 30 m l, a n d gee u lt h H# .Cen t r ifu ge t h e 6 b~3 ~ au d waah . Di8 eo lve in 2 ml cone. ECl, add1/2 ~am liaE803,dilute to 10 ml, and boil. Add 3 ml of &hydr~.qulnollne (3$ solutionin ~ Eel) azd boil. Add 1 m Cone. qm,

    -Ac t i l l p p t q i s ccm glete @5). Uaah with E@, &LC@Ol,d dry a t llOC. fa r 15 mi n .

    36

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    44/61

    PBCCEDURE3 (Con t inued)Ca rr ie r S t an d xu -d iz .e xlo n : Take 5 ml Of Sb canrier solution (in ~. HCl).Add 1 ml Of 6~ HCli 1 / 2 gr am IVaE303,end boil. Add 4 M. of 8-hydroxy-quino~ne (3$ so lu t ion In ~ HC1). Md 1 ml of cone.. NH40H and ~ NH4Ac

    until ppt~ la complete (@=5). WaGh with H@, alcohol,and ether..,ryat llOC. for 15 min . Weigh. tiatietric Factor = 3.8.

    PRocED lJRE4 ,( $bH3 VOLMKUZWTON , SHNH!R~ c YIEID)

    D. L..We

    Rapid Separ a t ion of An t im on y from Ileaion Produot l.HxturesDecontaminationFactor: 107 for gross fission productsChemicalYield: wTime: 10 secondsBasis of Method: Formationof SbH3 and its conversionto fi metalZinc metal (40mesh) is placed in a distillingflask and mrmed to

    looc. Auti.mm.y(IIIcmier plus fissionprcductsplus 30~ H#O~ aredroppd onto the Zn and SbH3 is immediatelyformed before the Zn hashad a chance to.convertthe Sb(III) to Sb metal. The SbH3 (plustheH2 formed) passes through a CaC12 &ylng tube and then through a heatedsmaU diameterquartz tube (PyrexiB acceptablebut ittiesnot keep itsshape when warmed with a burner). The Bb~ is convertedto Hb metal,part of which collectsas andrror on thecool portion of the quartztube andthe rest @50$) on a fine frittedgl.aSBfilter. me metal israpidly dissolvedwith wsxm H#04. If it is dea~able to study thedecay products of..b, the metal may be dlsaolvd in tartarlcacid.chemical.yield may be determinedeither by using 6b124 tracer or aspectrophotnmetPicdetermination of the Sb-rhdamine B complex.

    IThe

    Arsenic is expectedto followthe antinumy;however,most ofit

    37

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    45/61

    PRmmJRE 4 (continued)collectB on a d lf fe r en t pos it Ion of t h e tube . Wm Ser I ic ca n berem ved from the Sb metal by leachingwit h sd lum h ypoch lo r lt e .

    Com p le t e ex-e is obt a in ed even if s om e of t h e fis s ion p rod~tm is Sb(v).

    PROCEDURE(Hm41DE Ex!mm!Icm, ml!AL PREclTmATIoH)

    A. ~elberg .4ndA.C.Yappas4

    (Rapid s ep ar a t ion of Sb from ir r ad ia t ed enrichedTe-128 and Te-130)Reccsmnenblfor decay scheme studieswhere yield Is [email protected] Ofsep eration: .Iessthen 5 ndnuteslkcontaudnation: 5 x 104 for Te

    lo5 fm Snm-lCKIfor I

    chemicalYield: @-y@...~1. IsopropyleIJheT- washed repeatedlywith 8 solutdonof FeS04 and

    tistl~edfram solid FeS04 and lkOHand equlM-brated ulth

    2 . An t im on y car r ie r - 10 W/ m l a sOXidiZed bybenzene and

    SbC13 in ~ HC1. Before use, it i13shakingwith 2 d rop6 l!m 2 in 10 m lva sh ed t it h 1 0 m l ben zen e .

    3. 8n ~12 Sblutiun - ~ mg/ml Sn as SnC12 in ~ HC1 .. Th e solu t ionsh ou ld be fk eeh wh en W.

    4. Cr* Solu t ion . - ~ &C13 mlution, UJ in T321,is reduced byboiling wit h em a lgem a t ed , gr an u la t e d m et a lllc Zn .

    5. HC1 - Cone. and q6. IUI03 - Cone .

    3 6

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    46/61

    PmmmRE 5 (Con th l ed )7. Hr28. Henzene9. [email protected]@, 50$S@E!s!k1. W-ml. beaker2 . GhBS rmi3. Sinteredglass4. 100-ml suction

    go oc h c ru cibleflask

    5. 50-- mwratow fun u e li R ro cedme :1 . Dissolve the target in 5 m l .% HC1 to which is added 2 DW ,Sb(V),,,Cer r ie r . Add u n de r vigorom st t r r ln g 2 .5 m l S nC~ so lu t ion pe r 10 0 m gt a rge t . Aft e r abou t 1 / 2 m in t ie , filt ~ wit h su c t i ,gn t h rou gh a gooch,and wash twice wit h 2 m l. 91JRC1.2. Wa n sfer the filtrateta a aeparatbryfunnelcontaining10 m C6H6,1.0 ml. isopropylether and 0.1 ml Er2 per I.00mg target. Shake,thefunnel for ataut 10 sec. (Riatinctbrown color of E?2 shouldremain inthe organic prose,,showing completeoxidation). Discsrd the water phaseend wash with 1 ml ~ HC1.

    3. Transferthe org~c phase to a se~atory funqel containing5 ml9~ HCl and 1.0 ml SnC12 solutionand shake, (Theorganic phase showbe colorlessafter extraction,shcndngcmplete reduction).4. Tremfer the water phase to a sepxratoryfunmSl contacting10 ml ofC6H6, 1.0 ml isopropylether and 0.05 ml Erp (or as Ilttle 8s possible)and shake for 10 sec. (~ent WOWI CO-).. Discard the water phaseand wash with 1 ml 9N HC1..5. Transferthe oregnic ph~e to a eepexatcmyfunnel containing5 ml9X H Cl a nd a dd d rop uise a mlnlmum amountof SnC~ solution (O.5Shake,,eventualJyadd SnCl tu just discolorthe,organicphase.

    Tbls solu tion ca n eitherbe used for liquldbeta counting;

    39

    to 1.0 u).

    or:

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    47/61

    PROCEDURE {Continued)6. Ad d 2-3 m g S bC13 cexrier,heat the soltiion,and add approximately15 ml balling hot ti++ solution. Filter the ~olutionand wa8h theprecipitatecerefullyin boillnghot ~ HC1, then with ~OJ alcohol andether. (SamemetalJlc Sn is also pptd.)

    m ocm mm 6(SUIKCDEFRECTPITA!LCON)

    A. S. Newton and W. R. McDoneIl

    Element Seperated: AnthonyParentMateriti: TlnMilking fiocedime (Sbfroh low energy p, d, or n producedSn

    activityfractions)Yield: 60-80$De~ee Of purification: Atlead a factor of 104 from SnProcedure:1. Tuna 3-4~HCl solutionof the Snti 10 ~ Sb- carrier (Note1).Add ticm powder to excess (hydrogenevolution),heatwith sttiin& ppt,&metal (black)i ~lter byv&nnun thrbugb a sinteredglaea filteringcrucible.2 . Dissolve t h e Sb in eq~ r~ia , d ilu t e t o ~pPt .S@3 + s . ~s aolve t h e sdfide ou t of t h eHC1 (wer sd ng m d s t ir r in g).

    acid,WSB in H2S &s~ with concentrated

    ,.3; ~d 10 mg Sn+4 cexrierttifiltrate; Heat in boillng nte~ bath,pass in E2S to saturate,ppt,orangeSb.#3. Centril%gehot, decemt.DissolveSb S in concentratedHC1.23 Dilute to ~HCl.4. Repeat Stq Jtwice. 5. Filter the Sb2S3onfilter paper and waah wi~h water. Eeat gently,,

    (Note 2).

    40

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    48/61

    mxmmm 6 (Continued)Notes:1. Iridiummay be scavengedout of this &lXing %y &ing 10 mg In c=rierto initial Sn solutionof In activitypresent2. The suMide should

    ,.(Step 1), repeatingthe Fe reductionif the amountWaxrants it.

    not be relied upon for accurateyield determination.

    PROCEDUREi(smIDEmmImsomc PRECIPITATION)

    H. L. Finston%(Separationof Sb from Sn)

    1. Dissolvethe Sn in 1+8$HF plus a few drops of EIt03and evaporatethesolutionto about 1 ml. Add 1 ~ of Sb ca r r ie r an d d ilu t e t h e so lu t iont o .2 0 m l an d bu bble h yd rogen s~id e in t o each solutionfor 5minutes.2. Centrifugeemd dissolvethe precipitatein concentratedHNO3.H 10 mg of Sri++.-rier and evaporatethe solutionneexly to dryness.3. Add 2 ml. of HN03 d dilute the solution * Q 20 m l. Ad d 3 drops ofconcentratedHC1 and heat the solutionto neer boiling.4. Add with stirring,4 ml of phenylsxsonicacid.5. Centrifugeand discard ppt. .,6. Bubble E@ into the mpernate to sgainppt,the Sb.7. Filter,mount, and count.

    41

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    49/61

    mx!mum 8(AKTIMONY,-ON ACI!IVATTON-IS (I-C CARRIER)-D)

    G. W. LeddlcotteU9

    SCOPE-This method of neutron activationsnelyaiscan be used to determine

    microgram and submicrogramamounts of anthony in a variety of materials.Under the conditionslhit of measurementdependingqpon whichincreasedby the usePRImImE

    Antimw can be

    of neutron tiadiation that =e apecifled,theof the method 16 almut 1 x 10-8 orl x10 -7 ~.nuclear reactionis u6-. The Sensitivitymay be

    ,..of a hlgheirneutron fluk.

    dete&ninedquarititativelyy measuringthe r ad l o -lti & gb=3, by the sloiactitity induced Iritots stable 1sotopes,Sb

    ne&on reactioni, Sbl=(n, 7)S#2 and SbW3(n, 7)Sb124. The isotopicactivationcross sectionsof these reactkrie are 6.8 ~ 1.5 and 2.5 ~ 0.5barns, respectively. Anthcmy-121 is 57.25* abundant;Sbw has a halfIlfe of 60 d.and emits both beta and gamma radiationsin Its decay.Other products of these neutronre&tions, i.e., Sb-(3. 5 m),

    @l.m2gb124ti(l.3m), - ~ (21m), will not Interfere inthedetermina-tlon describedhe r e in . ,,

    Tes t por t ion s of t h e t es t s am p le an d of a com p~a t o r swip ie (inthis case, antimonymetal) exe Ir ra d ia t e d s lm u lt a n eou e ly In on e of t h eORNL r e a c to r s for an appropriatelength of tinie The i&dlated test...

    por t ion s a re d is sQlved , an d a k n own am ou n t o f in a c t ive an t t in y; a san t im on y ch lo r id e , is a d ded t o e a ch a s a c~ie r ll fc r r t h e ~ad ioa c t lveantImony. Holdbeck (scavenging)carriers,which are arsenic,tin,copper, iron, sodium, end cobalt in solution,are also sdded to thesolutionsof the teat partions in order to decontaminatethe Sb122

    (and/orSbW4) radloactltityilromcontaminantradioactivespeciesinthe samples. The ersenic end tin carriers=e seyaratedby distillation.

    42

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    50/61

    The antlmo~ c exr ie r en d t h e an t im on y radio~tititles are precipitatedas emtinmnytrisulfld~l.~@3> in order ti renmve them fromthe otherholdb.ack..sqi.ersand radoelements. Additionalmxqfengingstepsareused to further decontaminatethe antimonytrisulfide.

    As an alternateprocedureto the precipitationof antimonytri-sfiide, the antimonycan be convezrbedto antWbhy metal by reductionwith chrcmwuschloride. The ant-my trisulfide,u the antimonymetalis weighed ahd is *hen asaayed for eitherbeta or gemmk rmiioactivity.The quamt$tyof antimonyin the originalsemple ik obtainedby corqmringthe 9bU2 (and/orSbl.24)radioactivityfound in the test samplewith theSbl@ (and/or#4.) radioactivityin the e@nparatorsamplethat WE@&ed in.the same manner 8s the test sampti.S!lYmJs

    , T@ m e t h d w deve lop@ @ is USed.Iabora t o ry t u d e t e rm in e .@cim on y in m et a lsadapted for the determination of microgramsmthony la @her materials.

    in t he QFUt LIh ic le ar An alyse sand alloys. It.can beand Suhmlcrogmm mmunta of

    For the procedurewhich uses the Sbm (n,y)Sbm rea@ion, theMmit of measurementis about 1 .xlo-8 g; this quantityis the smallest. .weight of anttiny that cam bq determinedquantitativelywhen the testprtion is fiadiated at a neutron flux of 5.0 x 10U neuGrons/cm2/see,f~ 62 b. tin123(n,7 )Sbhe Lboit of measurement by the.Sb. reaction,for which a one-weekirradiation at the same nmxtron flux is used, la, -7almut 1.0 x 10 g. These lhits & measurementcan be extendeddown-wsxd by the use of higher neutron flux. The choice of the neutronreactionto be used is governedby the the availablefor the analysisand by the nature of tie test sample. hewn interferencescau resultif the sample contai& iodine as 1~ d tin as S#4. !Chefast-neutron reaction (n,a)orIIm producesSb124 (60 d). tie ~low-neutronreactiom on SnU4 till produce SbM5 (2.7y); the reaction is Snwk(n, Y)

    43

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    51/61

    PROCEDURE8 (Con t inued)SUW5 ~~ S1+5 (2.7 y). If &33 or #35 is preaeti in a sample,a n um ber of rad ioa c t ive Iso t op ea of an t t in y will & T@odu ced by fiaa icm .

    Th e u se of t h e .c cs spe ra t o r am p le e lim in a t e s t h e n ec e ss it y of con -t ro lJ ln g r igid ly su ch fa c t or s a s n eu t r on flux, pos it ion of t h e s am p lein t h e r ea c t or , d u r a t ion of ir r ad ia t ion , a n d effic ie n cy of t h e rad io -ac t iv-it y m ea su r em en t s . Th e r ad ioch em ic a l s~p sr a t ion p roc edu r e h a s be en sh own t o be r eprodu c ible , a n d it gives ad equ a t e d econ t am in a t e ion of t h ean t t in y frcm ot h e r . rm iioa c t ive com pon en t a in t h e a~le . It iSadvisableto scavengeat least twice for contmsinantradioelements.The chemicalyield shouldbe at least 70~ of the added inactiveantimonyc-ier; a recovery of less than 50$ 10 regarded aB unsatisfactoryandrequiresthat the analysesbe repeated. It iB assumed that negMgiblemm n t s of su lfu r an d m t im on y pen t =uMide j n@5) =e f m ed in t h efinal precipitationstep in which the sntimny carrier ariiradioactiveantimony&-e precipitatedas antimonytrisulfide.SAMPITNG ,.,

    If the sample is a solid,weigh out to the newest O.COlg, atest portionthatuse a 5- to 25-ticate portions i%r

    weighs o.1o to o.. g; if the sempieis a liquid,pofiitin.In etih instance,prepare at least du@l-mslysiti. As a ctaupsrtitorample usespectrogram

    icaUy pure antimonymetal; weigh out to thenearest 0.0001g dupllcatetest portionsthht veigh 0.025 to 0.030 g. These suggestedsizes ofthe test portions are those arbitr=ily establishedfor use by the CEWiLNuclear AnalysesGro@ and exe umalJ.y governedby the type of containerand the facilitiesused for the irradiation.PROCEDURE

    Make Ml analpes for antimonyon at least dqpllcateportions ofthe teat and cooperatorsamples.

    44

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    52/61

    PROCEDUFW8 (Catinued)A. Preparation of Test hrtions for Irradiation1.

    the teat sample2.

    quartztubes or3.

    Weigh out ted porticmwof the comparatorsampleand of~ instructedin:S~ll~ above.Place te8t portione of eolid materla10 in cork.~tioppered,wrap them in alunlntifoil.Place portionB of liquid samples in polyethylenebottles

    equippedwith polyethylenecaps (sealedquartz smpoulesfor the polyethyleneImttles).

    may be subatitutad

    B. Irradis.tion,ofest Portions1. Irradiatecomparatorand test samples stiultaneously

    under identicalconditions.c. &epmation of IrradlatecTest PortLonsfor halyeia

    1. By whicheverof the followingproceducegapplie8,Prepmethe portions for =alyais:

    a. Anthmy CanpsratorSample(1) Quantitativelytransfertheirradiatedteet portionof

    the comparatorsample from the quextz tube or alminum wr@ to a 50-mlvolumetricflask. Mssolve the test portion In a small> measured volumeof aqua regia; then dilute the solution to 50 ml with water. Mix thesolutionwell by shaking it carefuIly.

    (2) Bymeaus of a volumetricpipet, pipet a l.00-ml aliqubtof this solutioninto a second 50-ml volumetricflask;then dilute theallquotto 50 ml with distilledwater.

    (3) -e the solmonttiro@QJ then pipet a 1.03-mlallquot of It -to a 100-ml distillationflask. By means of a volumetricpipet, add to the same distillationflask 2.00ml of a standsxdcarriwsolutionof & antimony concentrationand 1 ml each of holdback carriersolutionsof the ions of arsenic,cobalt, copper, Iron, scdium, strontium,and tin (lVotea). Eva~ratethe solutionto a volu@ of approximately3 ml.Continuewith Part D below.

    45

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    53/61

    PRUXDURE 8 (~tinued)b., Solld Test semples

    (1) If the sample Is a met+, or alloy, quantitativelytransferthe -adiated test portion from the quertztube or aluminumwrap to a 103-ml distillationflaBk, and then add, by means of avolumetricpipet, to the same +istil&tion flask 2.00ml ofa standazfi:c~i.er solutionof known sntlmopyconcentration. Also mid 1 ml each ofhddback ~iers of arsenic,aobalt, copper> iron> s@iuJ str~nti~;and tin (Note a). To this mkture, mid dropwiseenough concentratedmineral acid to completelydissolvethe sample. Evaporatethe solutionto a volume of approximately3.ml. Continueyith Part D below.

    c. LLquld Test samples(1).Pipqt amallquot of the irra@iatedportlon into a

    100-ml distillationflask., By meansof .svolumetricpipet, mid to thesame distillationflask 2.00ml of a standardcarrier solutionof lmownantimonyconcentration.a@also @d,l gl each of holdbackcsrriersofarsenic,cobalt,copper, iron, sodium,stronti~, and tti (N@e a).Evaporatethe solutionto:a volume of approximately3 ml; ,thenenntinuewith Part D belOW. ..

    D. RadiochemicalSeparationof Antlmon~1. To the m~ure in thedistilJ-ation.lask,.@ 2 ml

    of cone. HC1 and 3ntLof ~.,2. Attach a tiater-cooledondenserto the distillation

    flask. Place the dellvmy tube of the condenserin a distillatecollectionvessel khat is set in M ice bath. Bymeans of a hose,apply a gentle stream of ah to the flask in order to minimizebumping.

    .3. llistillthembrt~e in the flask untilthe temper,at~eof the ndxture reaches 11O*C. @ until [email protected] approxbnatily5 ml of the.901utionemains indistillation flask,

    the flask. Add an additional3-tiand then continuethe distillation

    46

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    54/61

    PRamKlm 8 (continued)appro-tely 5 ml of the solutionremains.,,

    4. DiHcerd the di.stildateand quantitatively transfer thecontents of the distillation flaskto a@-ml centrlf%ge tube. k i a25 t iof a 8aturkted sOlution of OXSMC acid; then heat tie mitiure to bearIx)illxlg Saturate the solutionwith H@ in order to precipitanttheantimonyaBaritho~ tristiide, Sb@3. Centrifugethe ndxture- :discard thesupernatantliquid. ,. .

    5. Dlstiolvethe fi.#3 by mrmihg it ii a Wure of 2 &of cotic.HC1 &d 2 dropsof conc.HN03. ~ 1 ml e=h of holdba&cexrier SQIUtiO~ of iron, Cdpp~, strcintwh, ezui130dium;~ecipitate .... .sb#!3 by _ 10 ml ofCOilcHt?03and then boiling the Solutiori.Centrifugethe mi&ture ahd disc~d the Bup&nakant llquid. Wa6htheprecipitatewith three10-ml portionb of hot, cone. HN03. After each

    @washing,:centrifugethe mitiure and discard the supa%ataut l&i&.6. Dissolk the Sb93 precipitatein2ml of cone.HC1.

    Add to the solution30 ml of a saturatedsolutionofoxalic &id and1 ml of tin holdback,carrier solution. Heat the ~lutiog to bbillng(theboiling helps to coagulatethe precipitate);then precipitateSb#3 by saturathg the solutionwith H2S. .. .

    7. Filter off the Sb#3 through a tared filter papert h a t is held in a Hirsch,funnel; wash the precipitateonce with 3- to5-ml yortionseach of ~0, ethyl alcohol,CS2, and ethyl ether in thatorder. Dry the precipitatefor one minute. Weigh the Sb#3 precipitateand filterpaper on an analyticalbalance. Mount the precipitateandcount its activity.

    47

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    55/61

    IX. NEU2RONACTTVATTOH~ISlaWith B thermal ReutIOnfln of ~x 10 ,./cm 2/see., the theoretical

    106aensititityof this techniquefor antimonyis reported as 0.CX34ugbased on *.M SbW and 0.03 w based on @ m 124 .ftm en inducedactltity of @d/a at aatwation. Becauseof the lung irradiationttie

    magnlttie getiter. b the other hand? an dV8.UtESeOf a re~tive~ 10=

    lived ,=tivity to decay. Gamma spectra of neutron activation isotopes104 105 @ BroQlst3bankare given by Heath , Crouthamel , ~. For spectra

    that cannotbe resolveddue to other actlvitieathe methods describedin SecticmVIII -e recommendedfor chemic~ aep~ati~.8V!

    Table 2 La a partial Ilst of material; tiich ~ve ken -*for antimony by thezmalneutron activation WBiS. A typical methodis describedin Procedure8, sectionVIII. ,

    TABLE II. ACIICVA~ONANALYSIBOF ARKCMORY !i!!=!E Remarks Referencezro~ sens. 0.5 ppm I-08Al 109, U361 sens. 1 x 104 ppm

    f=sxlolpllo

    111

    Ge sens. 10-5 ppul log, 115f= 3 x 101=Iiquid Metah 1 x 10-3 ppm 112BiologicalMaterials 114Pb U6M3 IJ7Water 0.04 ppm determined IJO

    48

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    56/61

    REFERENCES1. Sidgwick,N. V., The ChendcalElemerits@ Their CompoundE,

    Oxford Press, London (1950).2. Iatimer,W. M., OxidationPotential, Ftrentice-Hall,ew York

    (1 952 ) .3. McAlpineR. K., Soule, B. A., Wescott and Johnsons ~tative

    ChemicalAn&aia, D, lTanNostrand,ew York (1932).4. Kjelberg,A., Pappas: A., Rivate Caummnicationto W. W. Meinke/

    W. J. Maeck (Aug. lx).5. Robinson, J. D., ~, Milton, J. Am. Chem. Sot., ~ ~4-6 (1953).6. Reynolds, S. A., U. S. Atomic Energy Con&lsalonReport, QRF&15~

    (1953).7. Ice, D., Cook, G. B., U. S. Atomic Energy CommissionRepti =

    C/R-430 (1955). ~8. Ldngane,J. J., Electroanal@ical chemistry,2nd Ed., Interscience

    Iiiblishers,NewYork (1958).9. JOV8110viC,,M. S., Bull. *C. Chti. Belgrade~ 3 9-4 5 ( 195 5) .10. Tanaka,M., Bu.naeki&gaku~ 2~-300, 631-6 (1958).11. Hayakawa,H., Ibid.,~, 360-2(1958).1 2 . Herr, Wilfred, Z. AnOrg. Chem.~, 94-8 ( 19 49 ) [~&373 0~13. Cook, G. B., U. S. AtcunicEnergy Commia6ion14 . Abelson, P. H., Phya. Rev. ~ 1 (1939).15. Grunlmit,w., Wilkinson,G., CamdiEUIAtomic

    (1945)

    49

    Report AJIRE-C/R-424(1949).

    Energy ReportMC-167

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    57/61

    ,,, .I-6.17.

    la.19.

    2Q.a.22.

    23 .

    24 .

    25 .26 .

    27.H .

    29 .30 .31 .32 .

    33 .

    34 .

    35 .

    Hahn, O., Strasaman,F., Naturwissenschaften & 499 (1943).Reid, A. l?.,Wetl, A. S., U. S. Atomic Energy CommissionReport-2324 (@8).S a n d , J. S., Grant, J., Analyst,Kolthoff,1. M., Idngane,J. J.,PubMshers, New York (1952).I.eve,D. L., U. S. Atomic Energy

    = 6X (1928).Pol=ography, Vol. II, Interscience

    Conzuissioneport USKRDLTR-225 (1958).Meinke, W. W., U. S. Atcm&En~.& u&aionReport AECU-4k3d (1959).Ho@nan, C. D., (=.), Handbookof chemistryand ~iCS, 39th ~.,ChemicalRubb= PubHshing Co., Cleveland (1958).-e, N. A., Handbookof Chemistry,Hedbook Publishers,Inc.,Sandua@, ohiO (1956).SeideU, A., SolubKLltiesof Inorganic@ Metal OrganicCompounds,3rd EWtion, D. VanNostrandCo., Inc., New York (194.0).Norwltz, G., AnB1. Chem.~ 386 (1951)..,~lletcrand,W. F., Lundell,G. E. F., Appkkd InorganicAnalysiE,Wiley, Hey York .(1950).SP8CU, G., Pop, A., Z. Anal. Chem., ~ 254 (1938).Flagg, J. F., OrganicReagentsUsed In Gravtietricand VolumetricAnalysis,IntersciencePublish=a, New York (@-8).,,.Dwyer, F. P., Gibson, IV.A., -St, E =1(1950).IY.ggis,B., Gibson,N. A., Anal. Chlm. Acts,L 313 (1952).,,Feigel, F., Z. Anal. Chem.,~ 41 (1924).Lundell,G. E. F., Hoffman,J. 1., Outlineof Methods of ChemicalAnalysis,Wiley, New York(1951).. .Welcher,F. J., OrganicAnalyticalReagents,Vol. 1, 2, 4, D. VknNor3trandCo., New York (1947).Feigel, Fritz, Spct Tests, Vol. &, InorganicElmvier PublishingCo., Amsterdam (1954).Ballar, J. C., Ch.miOtryof the CoordinationMew York (1956).

    AppUcationsJ

    Compoundsr,einhold,,. .,

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    58/61

    36.37.*-

    39.

    40.41.42.

    43.44.45.46.

    47.48.

    49.

    50 .

    51 .52 .53 ,54 .55 .56 .57 .58 .

    Kitah=a, w. Imt. P@s. Chem. Research (Tokyo) 165 (1949).Eeck, R.. ~, M., Z. AnOrg. U. AI&s. Chemie, 284, 288 (1956).Wilson, C. L., Wilson, D. W., ComprehensiveAna~ical CherdstryC!hapt.7 by G. Morrison and H. Freiser,Elsevier,.Amsterdam (1959).l&rison, G. H., Freiser,H., SolventErtracthn In AnalyticalChemistry,Wiley, New York (1957).Morrison, G. H., l?relser,H., Anal. Chem.,& No. 5, 37-47R (Q60) .Edwda, F. C., Voigt, A. F., Aaal. Chem.,+ 1.204(1949).Goto, H., Kakita, Y., Furukawa,T., Nippon Kagaku, zas~hi~1513-zO (1958)also U. S. Atomic Energy CcmmlaslonReport, UCFUFTr=s. -54l (L).Schweitzer,G. K., Btorma, L. E., Anal. -. Acts., Q, 154 (1958).Kuznetsov,V. I., zhw. ~. -. ~, 179-81 (1947)Popov, M. A., &VOdSk.8y8Iab.~ 178-~1 (1948).Goto, H., Kakita, Y., J. Chem. Sot. Japan,Pure Chem.339-42 (1952)White, C. E.,White, J. C.,( 19 56) .Khorasani,S.(1958).

    Rose, H. J., Anal. Chem. q 3 51 (1 953) .U. S. Atamlc Energy CommissionReport, CF-56-9-I-8

    S . M. A., IUIundkr, M. H., W. Ckdm. Acts ~ 24-zkl

    Coombe,D. J., U. S. Atomic(1 95 3) .Bock, R., Kuache, H., Bock,Iming, H. M., Rossotti,F.

    Energy CommissionReport,QRIJL1639 (WI. )

    E., Z. W. C%=., Q, 167 (1953).J. C., Analyst,~ 801 (1952).

    West, P. W., H.md.lton,. C., Anal. Chem.,&, 1025 (1952).Bock, R., z . h a l . Ch em ., g X l -o (1951).OniBhi, H., Ekdell, E. B., Analyt. Chti. Acts, > 444 (1954).Coppins,W. C., l%ice, J. W., MetaUurgia, ~ I -83 (1956 ).l?mdrick,W. G., Anal. Chem.,q, 9 22 ( 194 1).Jean, M., Anal. -. Acts, IJ_,82 (1954).

    51

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    59/61

    59 .60.6162 .63 .

    64 .65 .66 ,

    67 .68 .

    69 .

    70 .

    71 .

    72 .73 .74 .75 .76 .77 .

    78 .

    79 .

    Bewlllerd,P., Compt. rendi,& 7 11 (1953).Cdo, H., Kaklta, Y., J. Chem. &c. Japan,~ 152 (1958).L=e, Y.Y., Zeglcdina,T.V., ZavodskayaIab.~ (2),133 (1958).Furman, N. H., Maeon, W. B., Pekola, Anal..Chem.,~ 1325 (1949).Iapin,L. N., Zranalatedfor Ios Alamcm ScientificIaberatorytramVoprosy Med. Khlm., ~ 309-15 (1956).Pappas, A. C., U.S. Atomic Energy C-cmmlasioneport ~-2806 (1953).Sudo, E.,J. Chem. Sot. Japan,Pure Chem.Sect.,n, M91 (1954).VanAman,R. E., Ho~baugh,& 1783 (1959).K ra w , K . A., Michelson,D.Lure,Y. Y., Fillppova,N.p42, E@.

    F. D., Kamzelme~, J. H., Anal. Chin.,

    c .} Nelson, l?.,J. A.C.S. ~, 3204 (1959).A., ZavmiskayaIab. ~, 159 (1*)

    IUrmma, K., Saito, N., ~ana, H., Ishimori,T., J. Chem. Sot.Japan,Pure Chem. Sect.~ 305-308, (1953) LW ~ g85~ qSaito, N., ICLba,T., ICLmura,K., SecondUnited Nations Internationalconferenceon the PeacefulUses of Atomic Energy Paper A/Conf.15/P/1323 (1958).I&aus, K. A., Nelson, F., Proceedingsof the.~rst InternationalConferenceon the PeacefulUses of Atomic EnergyVol. 7, p. 113,United Nations, New York (1956);S asek l, Y ., W. ch in . sec. Japan= 615-M (1955) ~~z , 75653.Faris, J., Ahal. Chem.,~, 520 (l@).Smith, G. W., Reynolds, S. A., M. Ch3m. Acts, ~ 151 (1955).Dswson, J ., Megee , R. J., Mikrochim.Acts,& 325-% (1958).IUement,R., Kuhn, A., Z. AnaI-.Chem.,~ 1~ (1956),E%zrain,H. H., Chromatogaphic AdsorptionAnalysis,Interscience,New York (1945).fknith,O. C., InorganicGmomatography, D. VanNostiand,New York( 1953) .Iederer, E., hd~er, M., ~Om8tOWaPhY,

    52

    l u J WV ler ,A m st er a am (l g53).

  • 8/3/2019 The Radio Chemistry of Antimony.us AEC

    60/61

    80.

    81.

    82.83.84.

    85.

    86.87.88.89,

    9.91.92.93.94.95

    %.

    97.

    98.99.100.101.102.

    F-is, J., Bucbnan, R. F., Paper presentedat the kth Gatllnburg_icd conference (l@).Hoffman,J. I., Lun&ll, G. E. F., J. ResearchNatl. Bur. Standards,~ 465 (1939).Scherrer, J. A.,=., ~ 95 (I-938).Heuss, W., Rev.hbwell, R. D.,J. Chem. Phye.,Saudell,E. B.,

    Tech. SuJzer~, UO (1945).Haymond,H. R., Garrison,W. M., Hamilton, J. F.,g 1340 (1949).ColorfietricDeterminationof Traces of Metals,