23
THE SHAPE TRANSITION IN ROTATING NUCLEI vanyuk 1 , K. Pomorski 2 and J.Bartel 3 titut for Nuclear Research, Kiev, Ukraine oretical Physics Division, UMCS, Lublin, Poland titute Pluridisciplinaire Hubert Curien, Strasbourg University, Strasbourg, France • Introduction The Strutinsky‘s procedure for the shape of fissioning nuclei The shape transition in axially symmetric rotating charged liquid drop The shape of triaxial rotating drop Summary and outlook

THE SHAPE TRANSITION IN ROTATING NUCLEI F. Ivanyuk 1, K. Pomorski 2 and J.Bartel 3 1 Institut for Nuclear Research, Kiev, Ukraine 2 Theoretical Physics

  • View
    215

  • Download
    2

Embed Size (px)

Citation preview

Page 1: THE SHAPE TRANSITION IN ROTATING NUCLEI F. Ivanyuk 1, K. Pomorski 2 and J.Bartel 3 1 Institut for Nuclear Research, Kiev, Ukraine 2 Theoretical Physics

THE SHAPE TRANSITION IN ROTATING NUCLEI

         F. Ivanyuk1, K. Pomorski2 and J.Bartel3

1Institut for Nuclear Research, Kiev, Ukraine2Theoretical Physics Division, UMCS, Lublin, Poland3Institute Pluridisciplinaire Hubert Curien, Strasbourg University, Strasbourg, France

• Introduction• The Strutinsky‘s procedure for the shape of

fissioning nuclei• The shape transition in axially symmetric

rotating charged liquid drop• The shape of triaxial rotating drop• Summary and outlook

Page 2: THE SHAPE TRANSITION IN ROTATING NUCLEI F. Ivanyuk 1, K. Pomorski 2 and J.Bartel 3 1 Institut for Nuclear Research, Kiev, Ukraine 2 Theoretical Physics

Strutinsky‘s optimal shapes

( ) profile function

LD LD surf Coul curvE E E E

z

E

2

1

2

1

2surf

22

Coul

2 ( ) 1 ( / )

1 ( )( ) ( , ( ))

2

z

z

z

LD Sz

E z d dz dz

d zE x z z z dz

dz

21 2 12 12

20, ( )LDE V R R z z dz

V

2 2 3/2

1 2

(0) (0) 2the fissility parameter, / 2 ( / ) / 49

( ) the Coulomb pot

1 ( ) 10 ( ) (

ential on the surf

1 ( )

ce

)

a

LD S

LD LD C S

S

x x E E

x

z

z

A

z

Z

V.M.Strutinsky et al, Nucl. Phys. 46, 659 (1963)

(z)

z

Page 3: THE SHAPE TRANSITION IN ROTATING NUCLEI F. Ivanyuk 1, K. Pomorski 2 and J.Bartel 3 1 Institut for Nuclear Research, Kiev, Ukraine 2 Theoretical Physics

Optimal shapes of fissioning drop

-2 -1 0 1 2

-1

0

1

xLD

=0.75

(z)

/R0

z / R0

Page 4: THE SHAPE TRANSITION IN ROTATING NUCLEI F. Ivanyuk 1, K. Pomorski 2 and J.Bartel 3 1 Institut for Nuclear Research, Kiev, Ukraine 2 Theoretical Physics

The deformation energy

xLD

=1.0

xLD

=0.0

1.0 1.5 2.0 2.5-0.1

0.0

0.1

0.2

0.3

E

def /

E(0

) surf

R12

/ R0

F. Ivanyuk, Int. J. Mod. Phys. E18 (2009) 130

Page 5: THE SHAPE TRANSITION IN ROTATING NUCLEI F. Ivanyuk 1, K. Pomorski 2 and J.Bartel 3 1 Institut for Nuclear Research, Kiev, Ukraine 2 Theoretical Physics

The shape of axially symmetric rotating drop

1 2 12var .principle : 0 0LD LD rotE V R E V E

2 2 2

:

/ 2 , ( / ) rigid-bodymoment of i

theenerg

ert

y

n ia

RLD surf Coul curv rot

rot

E E E E E

E L J J M V r dV

h

J. Bartel, F. Ivanyuk and K.Pomorski, Int. Jour. Mod. Phys. E19 (2010) 601

2 2 2 3/2

(0) (0) (0)

2 2

2

/ , ( ) / , /

( ) 2 , for the perpendicular rotation

2 ( ) , for the par

151 ( )

d

10 ( )

allel rotat

( ) (1 ( ) )

iff.equ

ion

4

ation

LD rot S rot rot rot rot

LD S

rot

rot LD rot

y E E z

x z B y z

B B E E

z z

z

( ) {rot z

Page 6: THE SHAPE TRANSITION IN ROTATING NUCLEI F. Ivanyuk 1, K. Pomorski 2 and J.Bartel 3 1 Institut for Nuclear Research, Kiev, Ukraine 2 Theoretical Physics

The energy and shape transition in axially symmetric rotating drop

( 1) 2 ( 1) ( 1)RLD surf LD Coul LD rotB B x B y B

0.0 0.2 0.4 0.6-0.15

-0.10

-0.05

0.00

'perpendicular' rotation 'parallel' rotation

xLD

=0

BR

LD

0.0 0.1 0.2 0.3 0.4-0.10

-0.05

0.00

xLD

=0.25

0.00 0.05 0.10 0.15 0.20

-0.04

-0.02

0.00 xLD

=0.50

BR

LD

yLD

0.00 0.01 0.02 0.03 0.04 0.05

-0.004

-0.002

0.000x

LD=0.75

yLD

Page 7: THE SHAPE TRANSITION IN ROTATING NUCLEI F. Ivanyuk 1, K. Pomorski 2 and J.Bartel 3 1 Institut for Nuclear Research, Kiev, Ukraine 2 Theoretical Physics

The deformation energy of rotating drop

0.5 1.0 1.5 2.0

0.00

0.01

0.02

0.03

0.04

0.05

yLD

=0.04

yLD

=0

xLD

=0.75E

defLD

M+

Ero

t

R12

/ R0

Page 8: THE SHAPE TRANSITION IN ROTATING NUCLEI F. Ivanyuk 1, K. Pomorski 2 and J.Bartel 3 1 Institut for Nuclear Research, Kiev, Ukraine 2 Theoretical Physics

The energy and shape transition in axially symmetric rotating drop

( 1) 2 ( 1) ( 1)RLD surf LD Coul LD rotB B x B y B

0.0 0.2 0.4 0.6-0.15

-0.10

-0.05

0.00

'perpendicular' rotation 'parallel' rotation

xLD

=0

BR

LD

0.0 0.1 0.2 0.3 0.4-0.10

-0.05

0.00

xLD

=0.25

0.00 0.05 0.10 0.15 0.20

-0.04

-0.02

0.00 xLD

=0.50

BR

LD

yLD

0.00 0.01 0.02 0.03 0.04 0.05

-0.004

-0.002

0.000x

LD=0.75

yLD

Page 9: THE SHAPE TRANSITION IN ROTATING NUCLEI F. Ivanyuk 1, K. Pomorski 2 and J.Bartel 3 1 Institut for Nuclear Research, Kiev, Ukraine 2 Theoretical Physics

The shape transition in rotating drop

-1 0 10.0

0.5

1.0

z / R0

'perpendicular' rotation 'paralel' rotation

xLD

=0.5, yLD

=0.124

(z)

/ R

0

-1 0 10.0

0.5

1.0

xLD

=0.25, yLD

=0.225

(z)

/ R

0

Page 10: THE SHAPE TRANSITION IN ROTATING NUCLEI F. Ivanyuk 1, K. Pomorski 2 and J.Bartel 3 1 Institut for Nuclear Research, Kiev, Ukraine 2 Theoretical Physics

The energy and shape transition in axially symmetric rotating drop

( 1) 2 ( 1) ( 1)RLD surf LD Coul LD rotB B x B y B

0.0 0.2 0.4 0.6-0.15

-0.10

-0.05

0.00

'perpendicular' rotation 'parallel' rotation

xLD

=0

BR

LD

0.0 0.1 0.2 0.3 0.4-0.10

-0.05

0.00

xLD

=0.25

0.00 0.05 0.10 0.15 0.20

-0.04

-0.02

0.00 xLD

=0.50

BR

LD

yLD

0.00 0.01 0.02 0.03 0.04 0.05

-0.004

-0.002

0.000x

LD=0.75

yLD

Page 11: THE SHAPE TRANSITION IN ROTATING NUCLEI F. Ivanyuk 1, K. Pomorski 2 and J.Bartel 3 1 Institut for Nuclear Research, Kiev, Ukraine 2 Theoretical Physics

The critical rotational velocities

-1 0 1

-1

0

1

(

z) /

R0

z / R0

0.0 0.5 1.00

1

2

3

0.612

ycr

it

x

Page 12: THE SHAPE TRANSITION IN ROTATING NUCLEI F. Ivanyuk 1, K. Pomorski 2 and J.Bartel 3 1 Institut for Nuclear Research, Kiev, Ukraine 2 Theoretical Physics

The non-axial rotating drops

K. Pomorski, F. Ivanyuk and J. Bartel, Acta Phys. Polon. B42 (2011) 455 A. May, K. Mazurek, J. Dudec, M. Kmiecik and D. Rouvel, Int. J. Mod. Phys. E19 (2010) 532

2

2

22

2 22

( ) ( , ), ( , , ; , )

Euler-Lagrange equation: 0

Fourier series: ( , ) ( )cos( )

Approximations: ( , ) ( )[1 ( )cos(2 )]

(1 / ) 1( , )

1 cos(2( ,

)

RLD z

z

n

n

z z E dz d z

d d

dz d

z z n

z

z

z z

z cz

2( ) 1 ( ))

1 ( ) cos(2 )

z z

z

Page 13: THE SHAPE TRANSITION IN ROTATING NUCLEI F. Ivanyuk 1, K. Pomorski 2 and J.Bartel 3 1 Institut for Nuclear Research, Kiev, Ukraine 2 Theoretical Physics

The equations for ( ) and ( )z z

2 2 2 21 2 3 4 5 6

23 2

2 2 2 21 2 3 4 5 6

2

2

15 51 (1 )[2 ] ( ) 0,

216

2

15 51 (1 )( ) 0

2 216

LD

LD

LDSa

rot

LDSb

rot

a a a a a a

y xz z

B

b b b b b b

y xz

B

2 2

20 0

( , ) [ ( ) cos(2 )] ( , )( ) , ( )

2 1 ( )cos(2 ) 2 [1 ( )cos(2 )]S S

Sa Sbz z zd d

z zz z

21 , ( , ) theCoulombpotentialon thesurfaceS z

Page 14: THE SHAPE TRANSITION IN ROTATING NUCLEI F. Ivanyuk 1, K. Pomorski 2 and J.Bartel 3 1 Institut for Nuclear Research, Kiev, Ukraine 2 Theoretical Physics

The shape of axially non-symmetric rotating drop

-1 0 10.0

0.5

1.0

xLD

=0.75

yLD

=0.043

yLD

=0

(z

) / R

02

-1 0 10.0

0.5

1.0

yLD

=0.044

yLD

=0.01

-1 0 1

0.0

0.1

0.2

(z)

z / R0

-1 0 1

0.0

0.1

0.2

z / R0

Page 15: THE SHAPE TRANSITION IN ROTATING NUCLEI F. Ivanyuk 1, K. Pomorski 2 and J.Bartel 3 1 Institut for Nuclear Research, Kiev, Ukraine 2 Theoretical Physics

The energy of axially non-symmetric rotating drop

0.00 0.05 0.10 0.15 0.20-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

'perpendicular' rotation 'parallel' rotation nonaxial 'perp.' rotation

xLD

=0.5

B

RLD

yLD

Page 16: THE SHAPE TRANSITION IN ROTATING NUCLEI F. Ivanyuk 1, K. Pomorski 2 and J.Bartel 3 1 Institut for Nuclear Research, Kiev, Ukraine 2 Theoretical Physics

The energy of axially non-symmetric rotating drop

0.00 0.01 0.02 0.03 0.04 0.05-0.004

-0.003

-0.002

-0.001

0.000

0.001

'perpendicular' rotation 'parallel' rotation nonaxial 'perp.' rotation

xLD

=0.75

B

RLD

yLD

Page 17: THE SHAPE TRANSITION IN ROTATING NUCLEI F. Ivanyuk 1, K. Pomorski 2 and J.Bartel 3 1 Institut for Nuclear Research, Kiev, Ukraine 2 Theoretical Physics

The comparison with ellipsoidal shapes

0.0 0.1 0.2

1

2 xLD

=0.5

sem

i-axe

s

yLD

22 2 22

2 2 2

( ) 1 ( )1(dash), ( , ) (solid)

1 ( ) cos(2 )

z zx y zz

za b c

Page 18: THE SHAPE TRANSITION IN ROTATING NUCLEI F. Ivanyuk 1, K. Pomorski 2 and J.Bartel 3 1 Institut for Nuclear Research, Kiev, Ukraine 2 Theoretical Physics

The effective ellipsoids

0.0 0.1 0.2

1

2

3

xLD

=0.5

sem

i-axe

s

yLD

2 220 20

.

2 222 22

.

( , ) ( , ) ,

( , ) ( , )

ellips optimal

ellips optimal

r Y r Y

r Y r Y

Page 19: THE SHAPE TRANSITION IN ROTATING NUCLEI F. Ivanyuk 1, K. Pomorski 2 and J.Bartel 3 1 Institut for Nuclear Research, Kiev, Ukraine 2 Theoretical Physics

The effective ellipsoids, the energy

2 220 20

.

2 222 22

.

( , ) ( , ) ,

( , ) ( , )

ellips optimal

ellips optimal

r Y r Y

r Y r Y

0.00 0.05 0.10 0.15 0.20-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

xLD

=0.5

BR

LD

yLD

triaxial ellipsoides nonaxial 'perpendicular' rotation

Page 20: THE SHAPE TRANSITION IN ROTATING NUCLEI F. Ivanyuk 1, K. Pomorski 2 and J.Bartel 3 1 Institut for Nuclear Research, Kiev, Ukraine 2 Theoretical Physics

The limiting values of rotational velocity

0.00 0.25 0.50 0.75 1.000.0

0.2

0.4

0.6

0.8

ymax, fission

yJac.

xLD

y max

0 100 200 3000

25

50

75

100

ymax, fission, axial

L max

A

Page 21: THE SHAPE TRANSITION IN ROTATING NUCLEI F. Ivanyuk 1, K. Pomorski 2 and J.Bartel 3 1 Institut for Nuclear Research, Kiev, Ukraine 2 Theoretical Physics

Summary and outlook

• Within a liqiud drop model we have developed a method for the calculation of optimal shape of the surface within a broad region of rotational velocitiy and fissility parameter

• We have found out that sharp Jacobi transition from oblate to triaxiall ellipsoides is the result of limitation imposed by the assumption of the ellipsoidal shape

• For the more flexible shape parmeterisation the Jacobi transition gets smoothed

• For the drops with the fissility parameter xLD>0.612 the fission takes place before the Jacobi transition

• The investigation of Poincare instability will be the subject of future studies

Page 22: THE SHAPE TRANSITION IN ROTATING NUCLEI F. Ivanyuk 1, K. Pomorski 2 and J.Bartel 3 1 Institut for Nuclear Research, Kiev, Ukraine 2 Theoretical Physics

Thank you for attention

Page 23: THE SHAPE TRANSITION IN ROTATING NUCLEI F. Ivanyuk 1, K. Pomorski 2 and J.Bartel 3 1 Institut for Nuclear Research, Kiev, Ukraine 2 Theoretical Physics

The barrier heights, topographical theorem

28 30 32 34 36 380

10

20

30

barr

ier

heig

ht (

MeV

)

Z2 / A

Bexp

BLSD

-Emicr

(gs)

(saddle) (saddle) (g.s.) (g.s)B LSD LSDV =E +δE -E +δE

W. D.Myers and W. J. Swiatecki, Nucl. Phys. A601, 141 (1996): the “barrierwill be determined by a path that avoids positive shell effects and has no use for negative shell effects. Hence the saddle point energy will be close to what it would have been in the absence of shell effects, i.e., close to the value given by the macroscopic theory!”

(saddle)B LSD micr

(g.s) (g.s.) (sph)micr LSD LSD

V =V +E ,

E =δE +(E -E )

F.A.Ivanyuk and K.Pomorski, Phys: Rev. C 79, 054327 (2009)