Topic5 Diffusion

Embed Size (px)

Citation preview

  • 8/9/2019 Topic5 Diffusion

    1/29

    WHY STUDY DIFFUSION?

    Materials often heat treated to improve properties

    Atomic diffusion occurs during heat treatment

    Depending on situation higher or lower diffusion ratesdesired

    Heat treating temperatures and times, and heating or coolingrates can be determined using the mathematics/physics of diffusion

    Example: steel gears are case-hardened bydiffusing C or N to outer surface

    Topic 5:

    DIFFUSION IN SOLIDS

  • 8/9/2019 Topic5 Diffusion

    2/29

    ISSUES TO ADDRESS...

    Atomic mechanisms of diffusion Mathematics of diffusion

    Influence of temperature and diffusing species onDiffusion rate

    Topic 5:

    DIFFUSION IN SOLIDS

  • 8/9/2019 Topic5 Diffusion

    3/29

    DIFFUSIONPhenomenon of material transport by atomic or particle

    transport from region of high to low concentration

    What forces the particles to go from left to right?Does each particle know its local concentration?

    Every particle is equally likely to go left or right!At the interfaces in the above picture, there aremore particles going right than left this causes anaverage flux of particles to the right!Largely determined by probability & statistics

  • 8/9/2019 Topic5 Diffusion

    4/29

    Glass tube filled with water. At time t = 0, add some drops of ink to one end

    of the tube. Measure the diffusion distance, x, over some time.

    t ot 1

    t 2t 3

    xo x1 x2 x3time (s)

    x (mm)

    DIFFUSION DEMO

  • 8/9/2019 Topic5 Diffusion

    5/29

    100%

    Concen trati on Pr of iles0

    Cu Ni

    Interdiffusion : In an alloy or diffusion couple, atoms tendto migrate from regions of large to lower concentration.Initially (diffusion couple) After some time

    100%

    Concen trati on Pr of iles0

    Adapted fromFigs. 5.1 and5.2, Callister 6e .

    DIFFUSION: THE PHENOMENA (1)

  • 8/9/2019 Topic5 Diffusion

    6/29

    Self-diffusion : In an elemental solid, atomsalso migrate.

    Label some atoms After some time

    A

    B

    C

    DA

    B

    C

    D

    DIFFUSION: THE PHENOMENA (2)

  • 8/9/2019 Topic5 Diffusion

    7/29

    Conditions for diffusion: there must be an adjacent empty site

    atom must have sufficient energy to break bonds with itsneighbors and migrate to adjacent site (activation energy)

    DIFFUSION MECHANISMSDiffusion at the atomic level is a step-wise migration of atoms fromlattice site to lattice site

    Higher the temperature, higher is the probability that an atom will havesufficient energy

    hence, diffusion rates increase with temperature

    Types of atomic diffusion mechanisms: substitutional (through vacancies)

    interstitial

  • 8/9/2019 Topic5 Diffusion

    8/29

    Substitutional Diffusion: applies to substitutional impurities atoms exchange with vacancies rate depends on:

    -- number of vacancies-- temperature-- activation energy to exchange.

    incr ing l p d ti

    DIFFUSION MECHANISMS

  • 8/9/2019 Topic5 Diffusion

    9/29

    ACTIVATION ENERGY FOR

    DIFFUSION

    Also called energy barrier for diffusion

    Initial state Final stateIntermediate state

    Energy Activation energy

  • 8/9/2019 Topic5 Diffusion

    10/29

    Simulation of interdiffusionacross an interface:

    Rate of substitutionaldiffusion depends on:-- vacancy concentration-- activation energy (which is

    related to frequency of jumping).

    (Courtesy P.M. Anderson)

    DIFFUSION SIMULATION

  • 8/9/2019 Topic5 Diffusion

    11/29

    (Courtesy P.M. Anderson)

    Applies to interstitial impurities. More rapid than vacancy

    diffusion (Why?).Interstitial atoms smaller and

    more mobile; more number of interstitial sites than vacancies

    INTERSTITIAL SIMULATION

    Simulation:--shows the jumping of a

    smaller atom (gray) fromone interstitial site to

    another in a BCCstructure. Theinterstitial sitesconsidered here areat midpoints along theunit cell edges.

  • 8/9/2019 Topic5 Diffusion

    12/29

    Case Hardening :-- Example of interstitial

    diffusion is a casehardened gear.

    -- Diffuse carbon atoms

    into the host iron atomsat the surface.

    Result: The "Case" is--hard to deform: C atoms

    "lock" planes from shearing .

    Fig. 5.0,Callister 6e .(Fig. 5.0 iscourtesy of SurfaceDivision,Midland-Ross.)

    PROCESSING USING DIFFUSION (1)

    --hard to crack: C atoms putthe surface in compression.

  • 8/9/2019 Topic5 Diffusion

    13/29

    Doping Silicon with P for n-type semiconductors:

    1. Deposit P richlayers on surface.

    2. Heat it.3. Result: Doped

    semiconductor regions.

    silicon

    siliconmagnifi ed imag e of a comp uter chip

    0.5 mm

    ligh t re gions: S i a t oms

    ligh t re gions: Al a t oms

    Fig. 18.0,Callister 6e .

    PROCESSING USING DIFFUSION (2)

    Process

  • 8/9/2019 Topic5 Diffusion

    14/29

    Flux : amount of material or atoms moving past a unit area in unit timeFlux, J = ( M/(A ( t)

    J !

    AdMd

    kg

    -

    -

    Directional Quantity

    Flux can be measured for:--vacancies--host (A) atoms

    --impurity (B) atoms

    J x

    J y

    J z x

    y

    z

    x-d ir c t ion

    Uni t ar a A thr ou hwh ic hat o s m ove .

    MODELING DIFFUSION: FLUX

  • 8/9/2019 Topic5 Diffusion

    15/29

    Concentration Profile , C(x): [kg/m 3]

    Fick's First Law:

    C o e tr tioo f Cu [ /m 3 ]

    C o e tr tioo f Ni [ /m 3 ]

    ositio , x

    Cu f lu x Ni f lu x

    The steeper the concentration profile,the greater the flux!

    Adapted fromFig. 5.2(c),Callister 6e .

    J x

    ! D d Cd x

    D iffusion coefficien t [m 2 /s]

    concen trat ion gra d ien t [kg/m 4 ]

    flu x in x-d ir.

    [kg/m 2 -s]

    CONCENTRATION PROFILES & FLUX

  • 8/9/2019 Topic5 Diffusion

    16/29

    Steady State : Steady rate of diffusion from one end to the other.Implies that the concentration profile doesn't change with time. Why?

    Apply Fick's First Law:

    Result: the slope, dC/dx , must be constant(i.e., slope doesn't vary with position)!

    J (l f t) = J (right)

    St dy St t :

    C o tr tio , C , i th bo do s t h g w/tim .

    J (right)J (l f t)

    x ! D

    dCdx

    dCdx

    left! dC

    dx

    right If J x)left = J x)right , the n

    STEA DY STATE DIFFUSION

  • 8/9/2019 Topic5 Diffusion

    17/29

    Steel plate at700C withgeometryshown:

    Q: How muchcarbon transfersfrom the rich tothe deficient side?

    J ! DC C1x2 x1

    ! 2 .4 v 10 9g2s

    Adapted fromFig. 5.4,Callister 6e .

    C 1 = 1 . 2 k

    g / m 3

    C 2 = . 8

    k g / m 3

    C arb on r ic hga s

    1 0 m

    m

    C arb on d eficien t

    ga s

    x1 x205 m

    m

    D =3x 10 -11 m 2 /s

    S t e a d S tat e =s tra ight line!

    EX: STEADY STATE DIFFUSION

    Note: Steady state does not set in instantaneously.

  • 8/9/2019 Topic5 Diffusion

    18/29

    STEADY STATE DIFFUSION:

    ANOTHER PERSPECTIVEHose connected to tap; tap turned onAt the instant tap is turned on, pressure is high at the tapend, and 1 atmosphere at the other endAfter steady state is reached, pressure linearly dropsfrom tap to other end, and will not change anymore

    Tap end Flow end

    PressureIncreasing time

    Steady state

  • 8/9/2019 Topic5 Diffusion

    19/29

    Concentration profile,C(x), changesw/ time.

    To conserve matter: Fick's First Law:

    Governing Eqn.:

    Co nc ntr ti o n,C , in th ox

    J (right)J (l f t)

    d x

    d C

    dt

    Dd 2C

    d x2

    d x! d C

    d t ! D

    d C

    d xor(le f t)(ri t)

    d J

    d x

    ! d C

    d t

    d J

    d x

    !D

    d 2 C

    d x2

    (i f D d oesot v r

    wit x)

    eq ua te

    NON STEADY STATE DIFFUSION

    Ficks second law

    d x! d C

    d t J ! D

    d C

    d xor

    J (le f t)J (ri t)

    d J

    d x

    ! d C

    d t

    d J

    d x

    !D

    d 2 C

    d x2

    (i f D d oesot v a r

    wit x)

    eq ua te

    d x! d C

    d t J ! D

    d C

    d xor

    J (le f t)J (ri t)

    d J

    d x

    ! d C

    d t

    d J

    d x

    !D

    d 2 C

    d x2

    (i f D d oesot v a r

    wit x)eq ua te

  • 8/9/2019 Topic5 Diffusion

    20/29

    Copper diffuses into a bar of aluminum.

    Boundary conditions:For t = 0, C = C 0 at x > 0For t > 0, C = C s at x = 0

    C = C 0 at x =

    p re-existi o ., C o o f o pp er a toms

    u r f ac e c o c .,C s o f Cu a toms b

    a r

    C o

    C s

    p ositio , x

    C (x,t )

    t ot 1

    t 2t 3 Adapted fromFig. 5.5,

    Callister 6e .

    EX: NON STEADY STATE DIFFUSION

    d Cd t

    Dd 2C

    d x 2

  • 8/9/2019 Topic5 Diffusion

    21/29

    Copper diffuses into a bar of aluminum.

    General solution:

    "error function"Values calibrated in Table 5.1, Callister 6e .

    C( x, t ) C oC s C o

    ! 1 e r f x2 t

    p re-existi c o c ., C o o f c o pp er a toms

    u r f ac e c o c .,C s o f Cu a toms b

    a r

    C o

    C s

    p ositio , x

    C (x,t )

    t ot 1

    t 2t 3 Adapted fromFig. 5.5,

    Callister 6e .

    EX: NON STEADY STATE DIFFUSION

  • 8/9/2019 Topic5 Diffusion

    22/29

    Suppose we desire to achieve a specific concentration C1at a certain point in the sample at a certain time

    PROCESS DESIGN EXAMPLE

    !

    Dt x

    erf C C

    C t xC

    s 21

    ),(

    0

    0

    !!

    Dt x

    erf C C C C

    s 21constant

    0

    01

    becomes

    constant2

    !

    D t x

  • 8/9/2019 Topic5 Diffusion

    23/29

    The experiment: record combinations of t and x that kept C constant.

    t ot 1

    t 2

    t 3x o x 1 x 2 x 3

    Diffusion depth given by:

    x i w Dt i

    ( i t i ! rf it i

    = (c n tan t h r )

    IFFUSION EMO: ANALYSIS

  • 8/9/2019 Topic5 Diffusion

    24/29

    Experimental result: x ~ t 0.58

    Theory predicts x ~ t 0.50 Reasonable agreement!

    00.5

    11 .5

    22 .5

    33 .5

    0 0.5 1 1 .5 2 2 .5 3

    ln[t (m in)]

    Lin ea r r e gr e ss io n f it t o d a t a :

    ln[ x(mm )] ! 0.58ln[t (m in)] 2 .2R2 ! 0.999

    DATA FROM DIFFUSION DEMO

  • 8/9/2019 Topic5 Diffusion

    25/29

    Copper diffuses into a bar of aluminum. 10 hours at 600C gives desired C(x). How many hours would it take to get the same C(x)

    if we processed at 500C, given D 500 and D 600 ?

    (Dt) C (Dt) 6 C

    s

    C ( x , t) CoC Co

    = 1 e r f x

    2Dt

    Result: Dt should be held constant .

    Answer:Note: valuesof D areprovided here.

    Key point 1: C(x,t 500C ) = C(x,t 600C ).Key point 2: Both cases have the same C o and C s .

    t !(Dt )6

    D! 11 r

    . x1 -1 m 2 /s

    .3x1 -13 m 2 /s 1 rs

    PROCESSING QUESTION

  • 8/9/2019 Topic5 Diffusion

    26/29

    Diffusivity increases with T.

    pr e -e xp o n e nti a l [m2 /s ] (s ee Tab le 5. 2 , C a llis t e r e )a cti a tio n e n e rgy

    g a s c o n s t a nt [8. 31 J/ mo l-K]

    D ! Do e xpQd

    RT

    di ff s i ity[J/ mo l],[ eV /mo l](s ee Tab le 5. 2 , C a llis t er e )

    DIFFUSION AND TEMPERATURE

    Remember vacancy concentration: N V = N exp(-Q V/kT)QV is vacancy formation energy (larger this energy,

    smaller the number of vacancies)Qd is the activation energy (larger this energy, smaller

    the diffusivity and lower the probability of atomic diffusion)

  • 8/9/2019 Topic5 Diffusion

    27/29

    ACTIVATION ENERGY FORDIFFUSION

    Also called energy barrier for diffusion

    Initial state Final stateIntermediate state

    Energy Activation energy

  • 8/9/2019 Topic5 Diffusion

    28/29

    Experimental Data:

    1 /

    D (m 2 /s) C i E - F e

    C i K - F e

    l i

    l C

    u i C

    u

    Z n i n C u F e

    i n E

    - F e

    F e i n

    K - F

    e

    . 1. 1. 2.1 -2

    1 -1

    1 -(C ) 1 1 6 3

    D has exp. dependence on TRecall: Vacancy does also!

    pr e -e xp o n e nti a l [m2 /s ] (s ee Tab le 5. 2 , C a llis t e r e )

    a cti a tio n e n e rgy

    g a s c o n s t a nt [8. 31 J/ mo l-K]

    D ! Do e xpQdRT

    di ff s i ity

    [J/ mo l],[ eV /mo l](s ee Tab le 5. 2 , C a llis t er e )

    Dint er s titi a l >> Dsu b s tit u tio n a l

    C in E- eC in K- e Al in AlC u in C u

    Zn in C u

    Fe in E-FeFe in K-Fe

    Adapted from Fig. 5.7, Callister 6e . (Date for Fig. 5.7 taken from E.A.

    Brandes and G.B. Brook (Ed.) Smithells Metals Reference Book , 7thed., Butterworth-Heinemann, Oxford, 1992.)

    DIFFUSION AND TEMPERATURE

    NOTE: log(D) = log(D0) Qd/(RT)

  • 8/9/2019 Topic5 Diffusion

    29/29

    Diffusion FASTER for...

    open crystal structures

    lower melting T materials

    materials w/secondarybonding

    smaller diffusing atoms

    lower density materials

    Diffusion SLOWER for...

    close-packed structures

    higher melting T materials

    materials w/covalentbonding

    larger diffusing atoms

    higher density materials

    SUMMARY:STRUCTURE & DIFFUSION