tranperances

Embed Size (px)

Citation preview

  • 8/6/2019 tranperances

    1/76

    Signal to Noise Ratio Along A XMission Path

    T- 1

  • 8/6/2019 tranperances

    2/76

    Nyquist Criteria, Roll Off Factor

    Frequency Response of Nyquist Channel

    T- 2

  • 8/6/2019 tranperances

    3/76

    Transmitter Receiver

    Superimposition

    of received

    waveform

    Fig. 6

    Generation of Eye Pattern

    T- 3Superposition

    of receivedwaveforms

  • 8/6/2019 tranperances

    4/76

    The details of digital systems currently available

    are given below :8 Mb/s 8 Mb/s 34 Mb/s

    140Mb/s

    140Mb/s

    Opticalfibretype

    6.1 6.1 6.1 6.1Monom

    ode

    LossdB/km

    repeater

    3.5 3.5 2.3 2.3 0.5

    Span 8 kms 1520 1520 2025 2530

    Opticalsource

    LED LASER LASER LASER LASER

    Detector

    APD APD APDPINFET

    PINFET

    LineCode

    Scrambled

    binary

    Scrambled

    binary3B4B 5B6B 5B6B

    Wavelength

    850 850 1300 1300 1300

    T- 4

  • 8/6/2019 tranperances

    5/76

    Table 1A short message using even character and odd

    column parity

    P b6 b5 b4 b3 b2 b1 b0ASCII

    Character

    1 1 1 0 0 1 0 0 d

    1 1 1 0 0 0 0 1 a

    0 1 1 1 0 1 0 0 t

    1 1 1 0 0 0 0 1 a

    1 0 1 0 0 0 0 0 SP0 1 1 0 0 0 1 1 c

    0 1 1 0 1 1 1 1 o

    1 1 1 0 1 1 0 1 m

    1 1 1 0 1 1 0 1 m

    1 1 0 0 0 0 1 1 BCC

    T- 5

  • 8/6/2019 tranperances

    6/76

    Table 2Bit 1 of the SP character fails both character and

    column parity checksand is therefore in error.

    P b6 b5 b4 b3 b2 b1 b0ASCII

    Character1 1 1 0 0 1 0 0 d

    1 1 1 0 0 0 0 1 a

    0 1 1 1 0 1 0 0 t

    1 1 1 0 0 0 0 1 a

    1 0 1 0 0 0 1 0 SP

    0 1 1 0 0 0 1 1 c

    0 1 1 0 1 1 1 1 o

    1 1 1 0 1 1 0 1 m

    1 1 1 0 1 1 0 1 m

    1 1 0 0 0 0 1 1 BCC

    T- 6

  • 8/6/2019 tranperances

    7/76

    Table 3Twobit errors can be detected by a combinationof character and column parity checks, but they

    usually cannot be corrected

    P b6 b5 b4 b3 b2 b1 b0ASCII

    Character

    1 1 1 0 0 1 0 0 d

    1 1 1 0 0 0 0 1 a

    0 1 1 1 0 1 0 0 t

    1 1 1 0 0 0 0 1 a

    1 0 1 0 0 0 1 0 SP

    0 1 1 0 0 1 1 1 c

    0 1 1 0 1 1 1 1 o

    1 1 1 0 1 1 0 1 m

    1 1 1 0 1 1 0 1 m

    1 1 0 0 0 0 1 1 BCC

    T- 7

  • 8/6/2019 tranperances

    8/76

    A Parity Generator Circuit

    T- 8

  • 8/6/2019 tranperances

    9/76

    Table 4Even the combination of character and column

    parity checkswill not detect all errors

    P b6 b5 b4 b3 b2 b1 b0ASCII

    Character

    1 1 1 0 0 1 0 0 d

    1 1 1 0 0 0 0 1 a

    0 1 1 1 0 1 0 0 t

    1 1 1 0 0 0 0 1 a

    1 0 1 0 0 1 1 0 SP

    0 1 1 0 0 0 1 1 c

    0 1 1 0 1 1 1 1 o

    1 1 1 0 1 0 1 1 m

    1 1 1 0 1 1 0 1 m1 1 0 0 0 0 1 1 BCC

    T- 9

  • 8/6/2019 tranperances

    10/76

    A CRC Circuit

    T- 10

    Shift right register Shift right register Shift right register

    Data

    input

  • 8/6/2019 tranperances

    11/76

    Encoded TDM (European)

    T- 11

  • 8/6/2019 tranperances

    12/76

    Frame Structure :

    T-

    Frame Structure Bit No.

    Frame alignment word(1111010000)

    1 to 10

    Alarm to remote Tml 11 Set I

    National use 12 Set I

    Bits from tributaries 13 to 212 Set I

    Justification Control bits 1 to 4 Set II

    Bits from tributaries 5 to 212 Set II

    Justification Control bits 1 to 4 Set III

    Bits from tributaries 5 to 212 Set III

    Justification Control bits 1 to 4 Set IV

    Bits for tributaries

    available for justification

    5 to 8 Set IV

    Bits from tributaries 9 to 212 Set IV

    Frame Length

    bits/tributary

    848 bits

    206 bits

    12

  • 8/6/2019 tranperances

    13/76

    T- 13

  • 8/6/2019 tranperances

    14/76

    Fig. 6

    Generalized Model of a QPSK and QMA Modulator

    T- 14

  • 8/6/2019 tranperances

    15/76

    Fig. 7

    Model of a Coherent QPSK and QAM Demodulator

    Fig. 8

    T- 15

  • 8/6/2019 tranperances

    16/76

    Multiplier Type Demodulator Carrier Recovery

    Fig. 6.1

    BWPerBitRate Comparisons for Various Modulation Techniques

    T- 16

    ( Here M is number of levels )

    2 4 8 16

    M=16

  • 8/6/2019 tranperances

    17/76

    (a)

    T- 17

  • 8/6/2019 tranperances

    18/76

    Fig. 1

    Block Diagram of QPSK Modulator

    T- 18

  • 8/6/2019 tranperances

    19/76

    Fig. 2

    Differential Encoder

    Fig. 3

    Fig. 4Differential Decoder

    T- 19

  • 8/6/2019 tranperances

    20/76

    Fig. 13Dejitterister Schematic

    T- 20

  • 8/6/2019 tranperances

    21/76

    Fig. 14Scrambler/Descrambler

    T- 21

  • 8/6/2019 tranperances

    22/76

    (i)

    Fig. 2Spectrum for

    NRZ Signal

    4

    RZ Binary Waveform and Spectrum

    T- 22

  • 8/6/2019 tranperances

    23/76

    (1)

    Spectrum of AMI Signal

    3.4.1 code.

    T- 23

  • 8/6/2019 tranperances

    24/76

    T

    Spectrum of HDB 1 Code

    T- 24

  • 8/6/2019 tranperances

    25/76

    Transition of 6 bit pattern state

    T- 25

  • 8/6/2019 tranperances

    26/76

    A Typical Microwave Radio SysSchematic of a Microwave Terminal

    Frequency Bands

    NomenclatureBit rate

    Mb/s.

    No. of

    chls.Frequency band

    Small capacity 0.704 10 658712 MHz (UHF)

    Small capacity 2.048 30 400 MHz band (UHF)

    Small capacity 8.448 120520585 MHz (UHF)622712 MHz (UHF)

    Small capacity 8.448 1202 GHz band (M/W)(2.02.3 GHz)

    T- 26

  • 8/6/2019 tranperances

    27/76

    Mediumcapacity

    34.368 4807 GHz band (M/W)(7.4257.725 GHz)

    Mediumcapacity

    34.368 48013 GHz band (M/W)(12.7513.25 GHz)

    band M/WMediumcapacity

    34.368 48015 GHz band (M/W)(14.7515.75 GHz)

    High capacity 139.264 19204 GHz band (M/W)(3.33.8 and 3.84.2GHz)

    High capacity 139.264 1920

    6 GHz band (M/W)(5.9256.425 GHz;Lower)(6.4307.110 GHz;

    Upper)

    High capacity 139.264 192011 GHz band (M/W)(10.711.7 GHz)

    T- 27

  • 8/6/2019 tranperances

    28/76

    T- 28

  • 8/6/2019 tranperances

    29/76

    Hot Standby Digital Radio System(one

    T- 29

  • 8/6/2019 tranperances

    30/76

    Block Diagram of DM2G1000 Digital Radio Equipment

    T- 30

  • 8/6/2019 tranperances

    31/76

    Hot Standby Protection Switching System

    T- 31

  • 8/6/2019 tranperances

    32/76

    Route Line Diagram

    Radio Frequency Channel Arrangement

    T- 32

  • 8/6/2019 tranperances

    33/76

    (U6 GHz, CCIR Rec. 3843, 6, 4 to 7.1 GHz)

    T-

    Lower half band Upper half band

    RF CHNo.

    Radio frequency(MHz)

    RF CHNo.

    Radio frequency(MHz)

    1 6460 1' 6800

    2 6500 2' 6840

    3 6540 3' 6880

    4 6580 4' 6920

    5 6620 5' 6960

    6 6660 6' 7000

    7 6700 7' 70408 6740 8' 7080

    33

  • 8/6/2019 tranperances

    34/76

    Frequency Bands

    T-

    Nomenclature Bit rate No. of chls.

    Frequency band

    Small capacity 0.704 10 658712 MHz (UHF)

    Small capacity 2.048 30 400 MHz band (UHF

    Small capacity 8.448 120520585 MHz (UHF)622712 MHz (UHF)

    Small capacity 8.448 1202 GHz band (M/W)(2.02.3 GHz)

    Medium capacity 34.368 4807 GHz band (M/W)(7.4257.725 GHz)

    Medium capacity 34.368 48013 GHz band (M/W)[12.7513.25 GHband (M/W)]

    High capacity 139.264 19204 GHz band (M/W)(3.33.8 and 3.84GHz)

    High capacity 139.264 1920

    6 GHz band (M/W)(5.9256.425 GHz Lower)

    (6.4307.110 GHz Upper)

    High capacity 139.264 192011 GHz band (M/W)(10.711.7 GHz)

    34

  • 8/6/2019 tranperances

    35/76

    Survey and Feasibility Report for MW Routes

    TABLE-I

    S.No. Type of MW Systems Channel Capacity

    I ANALOGUE

    1 UHF (400 MHz) 602 NARROWBAND 2 GHz 120/300

    3 NARROWBAND 7 GHz 300

    4 WIDEBAND 4 GHz 1800

    5 WIDEBAND 6 GHz 1800

    II DIGITAL

    T- 35

  • 8/6/2019 tranperances

    36/76

    1.UHF 400700 MHz (2&8)mb/s

    30/120 PCM chls.

    2. NB 2 GHz (2&8 mb/s) 30/120 PCM chls.

    3. NB 7 GHz (34 mb/s) 480 PCM chls.

    4. WB 6 GHz (140 mb/s) 1920 chls.5. NB 13 GHz (34 mb/s) 480 chls.

    Table II

    Table III

    T-

    S.No. Input Data Data to be Calculated

    1. Height above MSLTower Height/AntennaHeight

    2. Latitude Free Space Loss

    3. Longitude Feeder Loss

    4. Direction of True NorthAntenna System Gainrequired

    5. Beam Direction Received Signal level

    6. Frequency of operations S/N ratio

    7. Hop distance Interference level, if any

    8. Critical point distance Noise burst study

    S.No. Type Plinth Area Where Used

    1. Z Type 136.575 Sq.m. UHF/NB Repeaters

    (Non dropping).2. Y Type 266.921 Sq.m. UHF/NB (Terminal) WB

    Rptr.

    3. X Type 435.781 Sq.m. WB Terminal

    36

  • 8/6/2019 tranperances

    37/76

    Table IV

    S.No. Tower Height Soil BearingCapacity

    1. 50 20 MT/Dry

    2. 60 20 MT/Dry

    3. 70 20 MT/Dry

    4. 80 20 MT/Dry

    5. 90 20 MT/Dry

    6. 100 20 MT/Dry

    Weight of Tower Materials :

    60 M LW : 30.51 MT60 M HW : 30.95100 M LW : 76.83100 M HW : 89.73100 M SHW : 150 MT

    6 GHz DIGITAL MICROWAVE SYSTEM DESCRIPTION

    Specifications

    The specifications of radio system are given below :

    1. System Parameter

    (1) Frequency range6430 to 7110 MHz (6 GHzband)

    (2) Modulation 16 QAM

    (3) Repeating Regenerative repeating

    (4) Transmission data rate 139.264 Mbit/s (equivalentto 1920 telephone

    T- 37

  • 8/6/2019 tranperances

    38/76

    channels).

    (5) Environmental conditionsa. Performance

    guaranteed

    b. Operation withoutdamage

    c. Transportation andstorage

    Temperature, Relativehumidity.0 to +50oC, up to 95% at

    35o

    C10 to +55oC, up to 95% at45oC

    40 to +65oC, up to 95% at45oC

    (6) Altitude of installation Up to 4500 m

    2. TransmitterReceiver

    (1) Transmitter output power+30 dBm typical at the TXunit output (+27 dBm to

    +32 dBm)

    (2) Receiver noise figure3.5 dB typical, 4 dBguaranteed, measured atRX unit input.

    (3) Frequency stability + 2 x 105

    (4) Receiver threshold level74 dBm to 17 dBm forBER of 1 x 103 measuredat RX unit input

    3. ModulatorDemodulator

    Modulation 16 QAM

    DemodulationCoherent/Instantaneousdecision

    Spectrum shaping 35% rolloff at baseband

    IF frequency 70 MHz

    4. Base band switching

    Switching capacity

    One protection channelfor maximum seven mainchannels. At the initialstage of this system,number of main channelsis three.

    T- 38

  • 8/6/2019 tranperances

    39/76

    Switching methodHitless switching withoutframe loss on fades ormaintenance actions.

    Switching threshold

    a. Switching initiationBER

    b. Restoration BER

    c. Switching time

    1 x 10

    4

    to 1 x 10

    9

    (1 x 10

    4, adjustable on site).1 x 104 to 1 x 109 (1 x 106, adjustable on site).Less than 15 msexcluding propagationtime.

    5. Baseband signal interface to/from MUX

    Bit rate 139.264 Mbit/s + 15 ppm

    Code format CMILevel

    in accordance with CCITTG.703

    Impedance 75 unbalanced

    6. Digital service channel

    Maximum number of 64kbit/s channel

    24

    Digital interface64 kbit/s, codirectional inaccordance with CCITTG.703.

    Analog interfacea. Input/Output levelb. Connection methodc. Impedanced. Signalling

    16 dBm/+7 dBm4wire600 ohms, balancedE&M

    7. Auxiliary signal (option)

    Wayside signal 2,048 Mb/s

    Analog service channel1 voice channel (OmnibusOW)

    T- 39

  • 8/6/2019 tranperances

    40/76

    Transmission lineProtection and No.1working channel

    8. Interface connector

    RF (at antenna port)

    PDR70 at antenna side

    JIS BRJ7 at radioequipment side.

    IF and baseband SP3CJ coaxial, 75Alarm and auxiliarysignals

    Multipin jack

    9. Power supply

    Input voltage48V nominal, positiveground(40 to 60 V)

    Power consumption(typical)

    a. Terminal (3+1) with SDincluding SC WS and

    MSTR SVb. Repeater (3+1) with

    SD including SCWSand sub SV

    1,074 W

    1,358 W

    10. Physical dimensions

    Rack, excluding RF 2500 mm high, 120 mm

    T- 40

  • 8/6/2019 tranperances

    41/76

    branching networkwide,225 mm deep.

    T- 41

  • 8/6/2019 tranperances

    42/76

    Fig. 1Block Diagram of Typical Terminal Configuration

    T- 42

  • 8/6/2019 tranperances

    43/76

    T- 43

  • 8/6/2019 tranperances

    44/76

    Hardware of Centralized Supervisory Equipment (CSE)

    T- 44

  • 8/6/2019 tranperances

    45/76

    Fig. 2Basic FibreOptic Link

    nformation Transmission Sequence

    Core (m) Cladding (m)

    8 125

    50 125

    62.5 125

    100 140

    Fig. 3Typical Core and Cladding Diameter

    T- 45

    Information in

    (Voice, Data,

    Video)

  • 8/6/2019 tranperances

    46/76

    Fig. 4Optical Fibres Principle and Types

    T- 46

  • 8/6/2019 tranperances

    47/76

    Fig.Cross Section of Optical Fibre (Single Mode)

    Fig.Siecor Mini Bundle Loose Tube Optical Fibre Cable

    T- 47

  • 8/6/2019 tranperances

    48/76

    12 Fibres PE/Nylon

    Fig.Loss and Bends

    T- 48

  • 8/6/2019 tranperances

    49/76

    Fig. 1

    Simplified Block Diagram of the Fibre Optics Transmission System

    T- 49

  • 8/6/2019 tranperances

    50/76

    Fig. 3

    T- 50

  • 8/6/2019 tranperances

    51/76

    Block Diagram of a Typical

    Optical Line Transmission System

    T- 51

  • 8/6/2019 tranperances

    52/76

    Fig. 4Frame Structure of Service Data for

    140 Mbit/s Fibre Optics Transmission System

    T- 52

  • 8/6/2019 tranperances

    53/76

    Frame Structure of Service Data for34 Mbit/s Fibre Optics Transmission System

    T- 53

  • 8/6/2019 tranperances

    54/76

    STM-N Frame Structure

    T- 54

  • 8/6/2019 tranperances

    55/76

    SDH Standards Bit Rates

    T- 55

  • 8/6/2019 tranperances

    56/76

    Multiplexing Principles

    T- 56

  • 8/6/2019 tranperances

    57/76

    Synchronous Multiplexers

    Optional Tributary Interfaces

    Add Drop Multiplexer

    T- 57

  • 8/6/2019 tranperances

    58/76

    Add/Drop Multiplexers

    Digital CrossConnects

    T- 58

  • 8/6/2019 tranperances

    59/76

    Modes of Communication

    T-1

    T- 59

  • 8/6/2019 tranperances

    60/76

    Frequency bands in use for satellite

    communication are :

    "L" BAND 18302700 MHz

    "S" BAND 25002700 MHz INSAT IS USING

    "C" BAND

    59256425 MHzUP37004200 MHzDOWN

    INSAT IS USING

    "X" BAND 79008400 UP72507750DOWN

    "KU" BAND

    14.00014.500Hz. UP1095011200GHz/DN.1145011700GHz/DN.

    "K" BAND27.530 GHz UP17.721.2 GHzDOWN

    EXTENDED CBAND

    67257025 UP45004800DOWN

    INSAT IS USING

    V BAND4051 GHz UP4041 GHz

    DOWNV BandIntersatellite

    5964 GHz5458 GHz

    T- 60

  • 8/6/2019 tranperances

    61/76

    T- 61

  • 8/6/2019 tranperances

    62/76

    Example of Geographical Advantage

    T- 62

  • 8/6/2019 tranperances

    63/76

    T- 63

  • 8/6/2019 tranperances

    64/76

    Three Basic Orbits

    FM/FDM/FDMA

    Table 1

    T- 64

  • 8/6/2019 tranperances

    65/76

    RF Bandwidthper Carrier

    (MHz)

    Voice CHLS.per Carrier

    Accesses perTransponder

    Voice CHLS.per

    Transponder

    2.5 24 14 336

    5 60 7 42010 132 3.5* 456

    36 972 1 972

    T- 65

  • 8/6/2019 tranperances

    66/76

    T- 66

  • 8/6/2019 tranperances

    67/76

    Configuration at Earth Station B

    Configuration at Earth Station B

    T- 67

  • 8/6/2019 tranperances

    68/76

    Fig. 11

    T- 68

  • 8/6/2019 tranperances

    69/76

    T- 69

  • 8/6/2019 tranperances

    70/76

    Fig. 1System Concept of Multichannel VSAT Network

    T- 70

  • 8/6/2019 tranperances

    71/76

    Fig. 2Block Schematic of Multichannel per Carrier

    Very Small Aperture Satellite Terminal (MCPCVSAT)

    T- 71

    2.5m

    Dia

    6GHz

  • 8/6/2019 tranperances

    72/76

    Block Schematic of Hub Station

    T- 72

  • 8/6/2019 tranperances

    73/76

    T- 73

  • 8/6/2019 tranperances

    74/76

    (1/2) Illustration of IDR Channel Unit

    T- 74

  • 8/6/2019 tranperances

    75/76

    CHARACTERISTICS AND TRANSMISSION PARAMETERS FOR IDRCARRIERS

    S.No. PARAMETER REQUIREMENT

    1. Information rate, IR 64 Kbit/s to 44.736 Mbit/s

    2. Overhead data rate for carrier with IR > 1.544Mbit/s

    96 Kbit/s

    3. Forward error correctionencoding

    Rate convolutionalencoding/Viterbi decoding

    4. Energy dispersal(scrambling)

    As per CCITT Rec. V.35

    5. Modulation 4-Phase Coherent PSK

    6. Ambiguity resolution Combination of differentialencoding (180o) and FEC (90o)

    7. Clock recovery Clock timing must be recoveredfrom the received data stream

    8. Minimum carrier bandwidth (allocated)

    0.7 R Hz or [0.933 (IR+overhead)]

    9. Noise bandwidth (andoccupied bandwidth)

    0.6 R Hz or [0.8 (IR+overhead)]

    10. Eb/No at BER (Rate FEC)a. Modems back-to-back

    b. Through satellitechannel

    10-3 10-7 10-8

    5.3 dB 8.3 dB 8.3 dB5.7 dB 8.7 dB 9.2 dB

    11. C/T at nominal operatingpoint (10 II BER)

    -219.9 + 10 log10 (IR+OH), dBw/K

    12. C/N in noise bandwidthat nominal operatingpoint

    9.7 dB

    13. Nominal bit-error-rate atoperating point

    1 x 107

    14. C/T at threshold -222.9 + 10 log10 (IR+OH), dBw/K

    15. C/N in noise bandwidthat threshold

    6.7 dB

    16. Threshold bit-error-rate 1 x 10-3

    T- 75

  • 8/6/2019 tranperances

    76/76

    THE END