27
Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain, Aubervilliers (France) Presented at the COMSOL Conference 2010 Paris

Transport phenomena of bubbles in a high viscous fluid · Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Transport phenomena of bubbles in a high viscous fluid · Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

Transport phenomena of bubbles ina high viscous fluid

F. PigeonneauSurface du Verre et Interfaces, UMR 125

CNRS/Saint-Gobain, Aubervilliers (France)

Presented at the COMSOL Conference 2010 Paris

Page 2: Transport phenomena of bubbles in a high viscous fluid · Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

Industrial context

u Glass melting is a chemical process :

SiO2 + CaCO3 + Na2CO3 ⇒ SiO2 · CaO · Na2O+CO2.

u Large production of CO2 : 0.2 kg of CO2 per kg of glass.

u Low solubility of CO2 ⇒ large quantity of bubbles in moltenglass.

u Introduction of “fining” species leads to the bubble removalat high temperature (1450 ◦C).

Page 3: Transport phenomena of bubbles in a high viscous fluid · Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

Industrial context

u Glass melting is a chemical process :

SiO2 + CaCO3 + Na2CO3 ⇒ SiO2 · CaO · Na2O+CO2.

u Large production of CO2 : 0.2 kg of CO2 per kg of glass.

u Low solubility of CO2 ⇒ large quantity of bubbles in moltenglass.

u Introduction of “fining” species leads to the bubble removalat high temperature (1450 ◦C).

The mass transfer between bubbles and moltenglass is essential in glass melting

Page 4: Transport phenomena of bubbles in a high viscous fluid · Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

Industrial context

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

crown

burners

raw mat.foam hot spot

cold spot

electrodethroat

bathFig. 1 : Sketch of furnace.

Page 5: Transport phenomena of bubbles in a high viscous fluid · Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

Outline

1. Main features of mass transfer between a bubble andmolten glass

2. Experimental study of the shrinkage of O2 bubble

3. Determination of the Sherwood number for O2

4. Modeling of the shrinkage of O2 bubble

Page 6: Transport phenomena of bubbles in a high viscous fluid · Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

1. Main features of mass transfer between a bubbleand molten glass

molten glass

CO2 : raw mat.

02, SO2 : fining agents

H2O, N2 : atmosphere

Page 7: Transport phenomena of bubbles in a high viscous fluid · Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

1. Main features of mass transfer between a bubbleand molten glass

molten glass

CO2 : raw mat.

02, SO2 : fining agents

H2O, N2 : atmosphere

Mass transfer with a multicomponent bubble.

Page 8: Transport phenomena of bubbles in a high viscous fluid · Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

1. Main features of mass transfer between a bubbleand molten glass

u At 1500 ◦C, for a bubble radius of 1 mm, the Reynoldsnumber is 10−3.

u Due to low diffusion coefficient, the Péclet number isgreater than 103.

Fig. 2 : O2 concentration around a rising bubble at Pe = 103, Comsol,Multiphysicsr 3.5.

Page 9: Transport phenomena of bubbles in a high viscous fluid · Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

1. Main features of mass transfer between a bubbleand molten glass

u At 1500 ◦C, for a bubble radius of 1 mm, the Reynoldsnumber is 10−3.

u Due to low diffusion coefficient, the Péclet number isgreater than 103.

Fig. 2 : O2 concentration around a rising bubble at Pe = 103, Comsol,Multiphysicsr 3.5.

Mass transfer is mainly driven by advection.

Page 10: Transport phenomena of bubbles in a high viscous fluid · Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

1. Main features of mass transfer between a bubbleand molten glass

u Iron is the major transition metal present in glass :uNaturally present in mineral elements used as rawmaterials ;

uAdded to change the optical properties of glass.uIron content : [0.01; 5] wt %.

u Iron undergoes the following oxidation-reduction reaction :

Fe3+ +12

O2− Fe2+ +

14

O2. (1)

Page 11: Transport phenomena of bubbles in a high viscous fluid · Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

1. Main features of mass transfer between a bubbleand molten glass

u Iron is the major transition metal present in glass :uNaturally present in mineral elements used as rawmaterials ;

uAdded to change the optical properties of glass.uIron content : [0.01; 5] wt %.

u Iron undergoes the following oxidation-reduction reaction :

Fe3+ +12

O2− Fe2+ +

14

O2. (1)

The transport of O2 is also controlled by iron.

Page 12: Transport phenomena of bubbles in a high viscous fluid · Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

2. Experimental study of the shrinkage of O2 bubbleExperimental set-up

top view

crucible

crucible

furnacefront view

silica tube

glass

silica window

vide

oca

m.

Fig. 3 : Sketch of the laboratory furnace.

(a) the bubble formation (b) a rising bubble

Fig. 4 : Photographs of the bubble in theexperiment.

uTo increase the residence time of a bubble, it is trapped and transferedwith a silica tube (“Shuttle method”)1.

uThe bubble size is determined by a counting of pixels.

1J. Kloužek, and L. Nemec (2003) Ceramics 47, 155-161.

Page 13: Transport phenomena of bubbles in a high viscous fluid · Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

2. Experimental study of the shrinkage of O2 bubbleStudied glasses

u Two glasses are studied based on the same composition(flat glass).

u Only, the iron content changes :uGlass 1 : 0.03 wt % of iron ;uGlass 2 : 0.11 wt % of iron.

u No sulfate ⇒ very low concentration of SO2.

Page 14: Transport phenomena of bubbles in a high viscous fluid · Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

2. Experimental study of the shrinkage of O2 bubble

0 100 200 300 400 500 600 700 800 900 1000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a/a0

t (s)

Glass 1, a0 = 1 mmGlass 2, a0 = 1.3 mm

Fig. 5 : Bubble size vs. t with glasses at low and high iron content obtained atT = 1400 ◦C.

Page 15: Transport phenomena of bubbles in a high viscous fluid · Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

3. Determination of the Sherwood number for O2Present model

u Sherwood number for 02 ⇒ solve theadvection/diffusion/reaction equation :

DCO2

Dt= DO2∇

2CO2 + rO2 . (2)

u Assumptions :uThe flow around the bubble is in the Stokes regime.uInterface between the bubble and glass is fully mobile2.uOxidation-reduction reaction of iron oxide is in chemicalequilibrium.

uDiffusion of iron is assumed very low.

rO2 = − CFeKFe

16C3/4O2

(KFe + C1/4O2

)2

DCO2

Dt. (3)

2 E. J. Hornyak & M. C. Weinberg (1984) J. Am. Ceram. Soc. 67, C244-C246.

Page 16: Transport phenomena of bubbles in a high viscous fluid · Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

3. Determination of the Sherwood number for O2Present model

u Four dimensionless numbers are involved :

Pe =2aVT

DO2

, (4)

Sa =C∞

O2

CSO2

. (5)

NFe =C∞

Fe2+(1 −R∞)Sa1/4

16CSO2

, (6)

R∞ =C∞

Fe2+

C∞

Fe2++ C∞

Fe3+

. (7)

u The problem is solved by two methods :uBoundary layer theory for large Péclet number.uA full numerical method developed in Comsol,Multiphysicsr 3.5.

3F. Pigeonneau (2009) Chem. Eng. Sci., 64(13), 3120-3129.

Page 17: Transport phenomena of bubbles in a high viscous fluid · Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

3. Determination of the Sherwood number for O2Effect of iron content

100

101

102

103

10410

0

101

102

Pe

Sh

without reactionCFe=0.01 weight %CFe=0.05 weight %CFe=0.1 weight %CFe=0.2 weight %CFe=0.3 weight %

Boundary layer sol.

Fig. 6 : Sherwood number versus Péclet number at T = 1500 ◦C, R∞

= 0.2.

Page 18: Transport phenomena of bubbles in a high viscous fluid · Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

3. Determination of the Sherwood number for O2Effect of iron content

100

101

102

103

10410

0

101

102

Pe

Sh

without reactionCFe=0.01 weight %CFe=0.05 weight %CFe=0.1 weight %CFe=0.2 weight %CFe=0.3 weight %

Boundary layer sol.

Fig. 6 : Sherwood number versus Péclet number at T = 1500 ◦C, R∞

= 0.2.

Enhancement of mass transfer coefficient dueto the chemical reaction for all values of Pe.

Page 19: Transport phenomena of bubbles in a high viscous fluid · Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

4. Modeling of the shrinkage of O2 bubble

u The bubble size changes due to the mass transfer ofvarious species :

dni

dt= 2πaShiDi(C

i − CSi ), (8)

CSi = LiP

βii , (9)

3RTNg∑

i=1

ni

4πa3 = P0 + ρg(H − z) +2σ

a, (10)

dzdt

= VT . (11)

u Equation system solved by a fourth-order Runge-Kuttamethod.

Page 20: Transport phenomena of bubbles in a high viscous fluid · Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

4. Modeling of the shrinkage of O2 bubbleComparison of various Sherwood numbers

0 250 500 750 1000 1250 1500 1750 2000 2250 2500t (s)

0.4

0.6

0.8

1

1.2

1.4

a (mm)

Exp. dataNum. sol., Sh ∝ 3

√Pe

Fig. 7 : a versus time obtained for the glass 1 (low iron content) at T = 1400◦C.

Page 21: Transport phenomena of bubbles in a high viscous fluid · Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

4. Modeling of the shrinkage of O2 bubbleComparison of various Sherwood numbers

0 250 500 750 1000 1250 1500 1750 2000 2250 2500t (s)

0.4

0.6

0.8

1

1.2

1.4

a (mm)

Exp. dataNum. sol., Sh ∝ 3

√Pe

Num. sol., Sh ∝√

Pe

Fig. 7 : a versus time obtained for the glass 1 (low iron content) at T = 1400◦C.

Page 22: Transport phenomena of bubbles in a high viscous fluid · Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

4. Modeling of the shrinkage of O2 bubbleComparison of various Sherwood numbers

0 250 500 750 1000 1250 1500 1750 2000 2250 2500t (s)

0.4

0.6

0.8

1

1.2

1.4

a (mm)

Exp. dataNum. sol., Sh ∝ 3

√Pe

Num. sol., Sh ∝√

PeNum. sol., present model

Fig. 7 : a versus time obtained for the glass 1 (low iron content) at T = 1400◦C.

Page 23: Transport phenomena of bubbles in a high viscous fluid · Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

4. Modeling of the shrinkage of O2 bubbleComparison of various Sherwood numbers

0 250 500 750 1000 1250 1500 1750 2000 2250 2500t (s)

0.4

0.6

0.8

1

1.2

1.4

a (mm)

Exp. dataNum. sol., Sh ∝ 3

√Pe

Num. sol., Sh ∝√

PeNum. sol., present model

Fig. 7 : a versus time obtained for the glass 1 (low iron content) at T = 1400◦C.

The relevance of oxidation-reduction reaction ofiron is clearly established.

Page 24: Transport phenomena of bubbles in a high viscous fluid · Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

4. Modeling of the shrinkage of O2 bubbleEffect of iron content

0 100 200 300 400 500 600 700 800 900 1000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a/a0

t (s)

Glass 1Glass 2

Fig. 8 : Bubble size vs. time for the two glasses, at T = 1400 ◦C.

Page 25: Transport phenomena of bubbles in a high viscous fluid · Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

4. Modeling of the shrinkage of O2 bubbleEffect of iron content4

0 100 200 300 400 500 600 700 800 900 1000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a/a0

t (s)

Glass 1, exp. res.Glass 2, exp. res.Glass 1, num. res.Glass 2, num. res.

Fig. 8 : Bubble size vs. time for the two glasses, at T = 1400 ◦C.

Page 26: Transport phenomena of bubbles in a high viscous fluid · Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

4. Modeling of the shrinkage of O2 bubbleEffect of iron content4

0 100 200 300 400 500 600 700 800 900 1000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a/a0

t (s)

Glass 1, exp. res.Glass 2, exp. res.Glass 1, num. res.Glass 2, num. res.

Fig. 8 : Bubble size vs. time for the two glasses, at T = 1400 ◦C.

Results obtained without data fitting.4F. Pigeonneau, D. Martin & O. Mario (2010) Chem. Eng. Sci., 65(10),

3158-3168.

Page 27: Transport phenomena of bubbles in a high viscous fluid · Transport phenomena of bubbles in a high viscous fluid F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

Conclusion & perspectives

u Determination of a Sherwood number taking into accountthe redox reaction of iron oxides.

u The experimental results obtained with two iron contentsare well reproduced with the proposed model :

uThe larger the reduced iron content, the larger theshrinkage of the O2 bubble.

u Perspectives :u Development of numerical model to study mass transfer

interaction between molten glass and a large bubblepopulation (bubbly flow model).

u Bubble motion in a crucible (Level-set model).