125
Cálculo II Engenharia Electromecânica António Bento [email protected] Departamento de Matemática Universidade da Beira Interior 2009/2010 António Bento (UBI) Cálculo II 2009/2010 1 / 498 Bibliografia – Apostol, T.M., Cálculo, Vol. 1 e 2, Reverté, 1993 – Dias Agudo, F.R., Análise Real, Vol. I e II, Escolar Editora, 1989 – Demidovitch, B., Problemas e exercícios de Análise Matemática, McGrawHill, 1977 – Lima, E. L., Curso de Análise, Vol. 1 e 2, Projecto Euclides, IMPA, 1989 – Lima, E. L., Análise Real, Vol. 1 e 2, Colecção Matemática Universitária, IMPA, 2004 – Mann, W. R., Taylor, A. E., Advanced Calculus, John Wiley and Sons, 1983 – Sarrico, C., Análise Matemática – Leituras e exercícios, Gradiva, 3 a Ed., 1999 – Sarrico, C., Cálculo Diferencial e Integral, Esfera do Caos, 2009 – Stewart, J., Calculus (International Metric Edition), Brooks/Cole Publishing Company, 2008 – Swokowski, E. W., Cálculo com Geometria Analítica, Vol. 2, McGrawHill, 1983 António Bento (UBI) Cálculo II 2009/2010 2 / 498 Critérios de Avaliação A avaliação ao longo das actividades lectivas será periódica, sendo efectuados dois testes. Os testes serão nos dias 28 de Abril de 2010 e 31 de Maio de 2010. Os dois testes serão cotados, cada um deles, para 10 valores. Designando por T 1 a nota do primeiro teste e por T 2 a nota do segundo teste, a classificação final será calculada da seguinte forma: – se T 1 + T 2 for inferior a 15,5 valores, a classificação final será o arredondamento às unidades de T 1 + T 2 ; – se T 1 + T 2 for superior ou igual a 15,5 valores, terá de ser feita uma prova oral; nessa prova oral será atribuída uma nota, que designaremos por PO, entre 0 e 20 valores; a classificação final será o arredondamento às unidades de max 15, T 1 + T 2 + PO 2 . São aprovados os alunos com classificação final igual ou superior a 10 valores. Todos os alunos são admitidos a exame. António Bento (UBI) Cálculo II 2009/2010 3 / 498 Atendimento O atendimento aos alunos será às terças-feiras e às quartas-feiras, das 18 horas às 19 horas, no gabinete 4.25 do Departamento de Matemática. Caso este horário não seja conveniente, pode ser combinado outro horário com o docente da cadeira através do email [email protected] António Bento (UBI) Cálculo II 2009/2010 4 / 498

webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento [email protected] Departamento de Matemática Universidade

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

Cálculo IIEngenharia Electromecânica

António [email protected]

Departamento de MatemáticaUniversidade da Beira Interior

2009/2010

António Bento (UBI) Cálculo II 2009/2010 1 / 498

Bibliografia

– Apostol, T.M., Cálculo, Vol. 1 e 2, Reverté, 1993

– Dias Agudo, F.R., Análise Real, Vol. I e II, Escolar Editora, 1989

– Demidovitch, B., Problemas e exercícios de Análise Matemática, McGrawHill,1977

– Lima, E. L., Curso de Análise, Vol. 1 e 2, Projecto Euclides, IMPA, 1989

– Lima, E. L., Análise Real, Vol. 1 e 2, Colecção Matemática Universitária, IMPA,2004

– Mann, W. R., Taylor, A. E., Advanced Calculus, John Wiley and Sons, 1983

– Sarrico, C., Análise Matemática – Leituras e exercícios, Gradiva, 3a Ed., 1999

– Sarrico, C., Cálculo Diferencial e Integral, Esfera do Caos, 2009

– Stewart, J., Calculus (International Metric Edition), Brooks/Cole PublishingCompany, 2008

– Swokowski, E. W., Cálculo com Geometria Analítica, Vol. 2, McGrawHill, 1983

António Bento (UBI) Cálculo II 2009/2010 2 / 498

Critérios de Avaliação

A avaliação ao longo das actividades lectivas será periódica, sendo efectuadosdois testes.

Os testes serão nos dias 28 de Abril de 2010 e 31 de Maio de 2010.

Os dois testes serão cotados, cada um deles, para 10 valores.

Designando por T1 a nota do primeiro teste e por T2 a nota do segundo teste,a classificação final será calculada da seguinte forma:

– se T1 + T2 for inferior a 15,5 valores, a classificação final será oarredondamento às unidades de T1 + T2;

– se T1 + T2 for superior ou igual a 15,5 valores, terá de ser feita umaprova oral; nessa prova oral será atribuída uma nota, que designaremospor PO, entre 0 e 20 valores; a classificação final será o arredondamentoàs unidades de

max{

15,T1 + T2 + PO

2

}

.

São aprovados os alunos com classificação final igual ou superior a 10 valores.

Todos os alunos são admitidos a exame.

António Bento (UBI) Cálculo II 2009/2010 3 / 498

Atendimento

O atendimento aos alunos será às terças-feiras e às quartas-feiras, das 18horas às 19 horas, no gabinete 4.25 do Departamento de Matemática.

Caso este horário não seja conveniente, pode ser combinado outro horário como docente da cadeira através do email

[email protected]

António Bento (UBI) Cálculo II 2009/2010 4 / 498

Page 2: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

Índice

1 Sucessões e séries

2 Funções de Rn em R

m: limites e continuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 5 / 498

Índice

1 Sucessões e sériesSucessões de números reaisSéries de números reaisSéries de potências e série de Taylor

2 Funções de Rn em Rm: limites e continuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 6 / 498

Índice

1 Sucessões e sériesSucessões de números reais

Definição e exemplos

Sucessões limitadas e sucessões monótonas

Sucessões convergentes

Subsucessões

Infinitamente grandesSéries de números reaisSéries de potências e série de Taylor

2 Funções de Rn em R

m: limites e continuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 7 / 498

Índice

1 Sucessões e sériesSucessões de números reais

Definição e exemplos

Sucessões limitadas e sucessões monótonas

Sucessões convergentes

Subsucessões

Infinitamente grandesSéries de números reaisSéries de potências e série de Taylor

2 Funções de Rn em R

m: limites e continuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 8 / 498

Page 3: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.1.1 Definição e exemplos

Uma sucessão é uma correspondência que a cada número natural nfaz corresponder um e um só número real.

Assim, uma sucessão é uma função real de variável natural, ou seja,uma sucessão é uma função

u : N→ R.

Para designarmos o valor da função em n costuma usar-se a notação

un em vez de u(n).

António Bento (UBI) Cálculo II 2009/2010 9 / 498

§1.1.1 Definição e exemplos

Aos valoresu1, u2, . . . , un, . . .

chamamos termos da sucessão e

ao valor u1 chamamos termo de ordem 1 ou primeiro termoda sucessão;

ao valor u2 chamamos termo de ordem 2 ou segundo termoda sucessão;

ao valor u3 chamamos termo de ordem 3 ou terceiro termo dasucessão;

etc

À expressão un chamamos termo geral da sucessão.

António Bento (UBI) Cálculo II 2009/2010 10 / 498

§1.1.1 Definição e exemplos

Escreveremos(u1, u2, . . . , un, . . .),

ou(un)n∈N,

ou simplesmente(un)

para indicar a sucessão u.

O conjuntou(N) = {un : n ∈ N}

designa-se por conjunto dos termos da sucessão (un)n∈N.

António Bento (UBI) Cálculo II 2009/2010 11 / 498

§1.1.1 Definição e exemplos

Exemplos de sucessões

a) Façamosun = 1 para todo o n ∈ N,

isto é,(1, 1, . . . , 1, . . .)

é a sucessão constante e igual a 1. Mais geralmente, dado c ∈ R efazendo

vn = c para qualquer n ∈ N,

temos a sucessão constante e igual a c. Neste caso

v(N) = {c} .

António Bento (UBI) Cálculo II 2009/2010 12 / 498

Page 4: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.1.1 Definição e exemplos

Exemplos de sucessões (continuação)

b) Consideremos a sucessão de termo geral un = (−1)n.

O primeiro termo desta sucessão é u1 = (−1)1 = −1.

O segundo termo desta sucessão é u2 = (−1)2 = 1.

O terceiro termo desta sucessão é u3 = (−1)3 = −1.

O quarto termo desta sucessão é u4 = (−1)4 = 1.

E assim sucessivamente.

Podemos concluir que os termos de ordem par são todos iguais a 1 eque os termos de ordem ímpar são todos iguais a −1. Assim, a listaque se segue dá-nos todos os termos da sucessão

−1, 1, −1, 1, −1, 1, −1, 1, −1, 1, . . .

e o conjunto dos termos desta sucessão é

u(N) = {−1, 1} .

António Bento (UBI) Cálculo II 2009/2010 13 / 498

§1.1.1 Definição e exemplos

Exemplos de sucessões (continuação)

c) Seja u a sucessão definida por

un = n.

Entãou(N) = N.

António Bento (UBI) Cálculo II 2009/2010 14 / 498

§1.1.1 Definição e exemplos

Exemplos de sucessões (continuação)

d) Seja

un =1n

para todo o n ∈ N.

Podemos escrever esta sucessão das seguintes formas:(

1,12,13,14, . . . ,

1n, . . .

)

,

ou (1n

)

n∈N,

ou (1n

)

.

Neste exemplo temos u(N) ={

1n

: n ∈ N

}

.

António Bento (UBI) Cálculo II 2009/2010 15 / 498

§1.1.1 Definição e exemplos

Observação

O exemplo a) mostra que(un)n∈N

eu(N)

são coisas diferentes e que, por conseguinte, não devem serconfundidas. Neste exemplo tem-se

(un) = (1, 1, 1, . . . , 1, . . .),

enquanto queu(N) = {1} .

Algo de semelhante acontece no exemplo b).

António Bento (UBI) Cálculo II 2009/2010 16 / 498

Page 5: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

Índice

1 Sucessões e sériesSucessões de números reais

Definição e exemplos

Sucessões limitadas e sucessões monótonas

Sucessões convergentes

Subsucessões

Infinitamente grandesSéries de números reaisSéries de potências e série de Taylor

2 Funções de Rn em R

m: limites e continuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 17 / 498

§1.1.2 Sucessões limitadas e sucessões monótonas

Uma sucessão (un)n∈N diz-se limitada se existirem números reais a e btais que

a ⩽ un ⩽ b para todo o n ∈ N;

ou ainda, se existirem números reais a e b tais que

un ∈ [a, b] para todo o n ∈ N.

Como todo o intervalo [a, b] está contido num intervalo da forma[−c, c], para algum c ∈ R, uma sucessão (un) é limitada se existir umnúmero real c > 0 tal que

un ∈ [−c, c] para todo o n ∈ N,

o que é equivalente a existe c > 0 tal que

|un| ⩽ c para todo o n ∈ N.

As sucessões que não são limitadas dizem-se ilimitadas.António Bento (UBI) Cálculo II 2009/2010 18 / 498

§1.1.2 Sucessões limitadas e sucessões monótonas

Exemplos

a) A sucessão de termo geral

un = 4 + (−1)n =

{

3 se n é ímpar;

5 se n é par;

é limitada pois

3 ⩽ un ⩽ 5 para qualquer número natural n.

António Bento (UBI) Cálculo II 2009/2010 19 / 498

§1.1.2 Sucessões limitadas e sucessões monótonas

Exemplos (continuação)

b) Consideremos a sucessão de termo geral

un =n+ 2n

.

Comon+ 2n

=n

n+

2n

= 1 +2n

podemos concluir que

1 ⩽ un ⩽ 3 para cada número natural n.

Assim, esta sucessão é limitada.

António Bento (UBI) Cálculo II 2009/2010 20 / 498

Page 6: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.1.2 Sucessões limitadas e sucessões monótonas

Exemplos (continuação)

c) A sucessão un = n2 não é limitada. De facto,

u1 = 1; u2 = 4; u3 = 9; u4 = 16; . . .

pelo que a sucessão não é limitada superiormente.

d) A sucessão de termo geral vn = −n também não é limitada pois

v1 = −1; v2 = −2; v3 = −3; . . .

ou seja, esta sucessão não é limitada inferiormente.

António Bento (UBI) Cálculo II 2009/2010 21 / 498

§1.1.2 Sucessões limitadas e sucessões monótonas

Uma sucessão (un)n∈N diz-se crescente se

un+1 ⩾ un para todo o n ∈ N

e diz-se decrescente se

un+1 ⩽ un para todo o n ∈ N.

Equivalentemente, (un)n∈N é crescente se

un+1 − un ⩾ 0 para todo o n ∈ N

e é decrescente se

un+1 − un ⩽ 0 para todo o n ∈ N.

Uma sucessão diz-se monótona se for crescente ou se for decrescente.

António Bento (UBI) Cálculo II 2009/2010 22 / 498

§1.1.2 Sucessões limitadas e sucessões monótonas

Exemplos de sucessões monótonas

a) Consideremos a sucessão de termo geral un =2n− 1

n+ 1. Como

un+1 − un =2(n+ 1)− 1

(n+ 1) + 1−

2n− 1

n+ 1

=2n+ 1

n+ 2−

2n− 1

n+ 1

=(2n+ 1)(n+ 1) − (2n− 1)(n+ 2)

(n+ 1)(n+ 2)

=2n2 + 2n+ n+ 1− (2n2 + 4n− n− 2)

(n+ 1)(n+ 2)

=2n2 + 3n+ 1− 2n2 − 3n+ 2

(n+ 1)(n+ 2)

=3

(n+ 1)(n+ 2)⩾ 0

para qualquer número natural n, a sucessão é crescente.

António Bento (UBI) Cálculo II 2009/2010 23 / 498

§1.1.2 Sucessões limitadas e sucessões monótonas

Exemplos de sucessões monótonas (continuação)

b) Para a sucessão de termo geral un =2n+ 1

n, temos

un+1 − un =2(n+ 1) + 1

n+ 1−

2n+ 1

n

=2n+ 3

n+ 1−

2n+ 1

n

=(2n+ 3)n− (2n+ 1)(n+ 1)

n(n+ 1)

=2n2 + 3n− (2n2 + 2n+ n+ 1)

n(n+ 1)

=2n2 + 3n− 2n2 − 3n− 1

n(n+ 1)

=−1

n(n+ 1)⩽ 0

para qualquer número natural n. Logo a sucessão é decrescente.

António Bento (UBI) Cálculo II 2009/2010 24 / 498

Page 7: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

Índice

1 Sucessões e sériesSucessões de números reais

Definição e exemplos

Sucessões limitadas e sucessões monótonas

Sucessões convergentes

Subsucessões

Infinitamente grandesSéries de números reaisSéries de potências e série de Taylor

2 Funções de Rn em R

m: limites e continuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 25 / 498

§1.1.3 Sucessões convergentes

Dados uma sucessão (un)n∈N e um número real a, dizemos que (un)converge ou tende para a se para qualquer ε > 0, existe N ∈ N talque

|un − a| < ε para todo o número natural n > N .

A condição|un − a| < ε

é equivalente às condições

−ε < un − a < ε, a− ε < un < a+ ε e un ∈ ]a− ε, a+ ε[.

Assim, uma sucessão (un) converge ou tende para um número real ase para qualquer ε > 0, existe N ∈ N tal que

a− ε < un < a+ ε para cada número natural n > N ;

ou se para qualquer ε > 0, existe N ∈ N tal que

un ∈ ]a− ε, a + ε[ para cada número natural n > N .

António Bento (UBI) Cálculo II 2009/2010 26 / 498

§1.1.3 Sucessões convergentes

Geometricamente, uma sucessão un tende para a se dado ε > 0 todosos termos da sucessão estão na “faixa” limitada pela rectas y = a− ε ey = a+ ε a partir de determinada ordem. A figura seguinte ilustra essefacto.

1 2 3 4 N N + 1 N + 2 N + 3 N + 4

a

a− ε

a+ ε

b

b

b

b

b

b

b

b

b

Interpretação geométrica do limite de uma sucessão

António Bento (UBI) Cálculo II 2009/2010 27 / 498

§1.1.3 Sucessões convergentes

Qualquer uma das notações

limn→∞

un = a,

limn→∞un = a,

limnun = a,

lim un = a,

un → a

é usada para exprimir o facto de que a sucessão (un) converge para a.

Uma sucessão (un)n∈N diz-se convergente se existe um número real atal que un → a.

As sucessões que não são convergentes dizem-se divergentes.

António Bento (UBI) Cálculo II 2009/2010 28 / 498

Page 8: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.1.3 Sucessões convergentes

As sucessões constantes são convergentes. Se un = c para qualquernúmero natural n, temos |un − c|=0 para cada n ∈ N, pelo que, dadoε > 0, tomando N = 1 vem

|un − c| < ε para qualquer n > N .

Logo (un) converge para c.

A sucessão de termo geral un =1n

converge para zero. De facto, dado

ε > 0, basta escolher um número natural N tal que Nε > 1 e, porconseguinte, 1/N < ε. Assim, para n > N , temos

|un − 0| = 1/n < 1/N < ε,

o que prova que un → 0.

António Bento (UBI) Cálculo II 2009/2010 29 / 498

§1.1.3 Sucessões convergentes

Unicidade do limite

Sejam (un) uma sucessão e a e b dois números reais. Se

un → a e un → b,

entãoa = b.

António Bento (UBI) Cálculo II 2009/2010 30 / 498

§1.1.3 Sucessões convergentes

Dadas duas sucessões u = (un)n∈N e v = (vn)n∈N de números reais,define-se a soma de u e v, e designa-se por u+ v, a sucessão cujotermo de ordem n é un + vn, isto é,

(u+ v)n = un + vn.

De modo análogo se define a diferença, o produto e o quociente deu e v (este último apenas na hipótese de se ter vn 6= 0 para todo on ∈ N):

(u− v)n = un − vn, (uv)n = unvn

e, na hipótese de vn 6= 0 para todo o n ∈ N,(u

v

)

n=unvn.

António Bento (UBI) Cálculo II 2009/2010 31 / 498

§1.1.3 Sucessões convergentes

Assim, se u e v são as sucessões dadas por

(

1, 4, 9, . . . , n2, . . .)

e(

1,12,13, . . . ,

1n, . . .

)

,

respectivamente, então u+ v é a sucessão dada por

(

1 + 1, 4 +12, 9 +

13, . . . , n2 +

1n, . . .

)

=

(

2,92,283, . . . ,

n3 + 1n

, . . .

)

e a diferença de u e v, u− v, é a sucessão

(

1− 1, 4 − 12, 9− 1

3, . . . , n2 − 1

n, . . .

)

=

(

0,72,263, . . . ,

n3 − 1n

, . . .

)

.

António Bento (UBI) Cálculo II 2009/2010 32 / 498

Page 9: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.1.3 Sucessões convergentes

Continuando a usar as sucessões u e v dadas por

(

1, 4, 9, . . . , n2, . . .)

e(

1,12,13, . . . ,

1n, . . .

)

,

o produto uv é a sucessão(

1.1, 4.12, 9.

13, . . . , n2.

1n, . . .

)

= (1, 2, 3, . . . , n, . . .)

e o quocienteu

vé a sucessão

(

11,

41/2

,9

1/3, . . . ,

n2

1/n, . . .

)

=(

1, 8, 27, . . . , n3, . . .)

.

António Bento (UBI) Cálculo II 2009/2010 33 / 498

§1.1.3 Sucessões convergentes

As sucessões que convergem para zero designam-se por infinitésimos.

O produto de um infinitésimo por uma sucessão limitada é uminfinitésimo.

Exemplo

Para todo o x ∈ R, temos limn→∞

sen(nx)n

= 0. De facto,

sen(nx)n

=1n

sen(nx)

é o produto de um infinitésimo por uma sucessão limitada e, portanto,converge para zero.

António Bento (UBI) Cálculo II 2009/2010 34 / 498

§1.1.3 Sucessões convergentes

Álgebra dos limites

Sejam (un) e (vn) sucessões tais que lim un = a e lim vn = b. Então

a) (un + vn)n∈N é convergente e

lim(un + vn) = lim un + lim vn = a+ b;

b) (un − vn)n∈N é convergente e

lim(un − vn) = lim un − lim vn = a− b;

c) (un . vn)n∈N é convergente e

lim(un . vn) = limun . lim vn = a . b;

d) se b 6= 0 e vn 6= 0 para todo o n ∈ N,(unvn

)

n∈N

é convergente e

lim(unvn

)

=lim unlim vn

=a

b.

António Bento (UBI) Cálculo II 2009/2010 35 / 498

§1.1.3 Sucessões convergentes

Suponhamos queun → a

e que todos os termos un pertencem ao domínio de uma função f . Se fé contínua em a, então

f(un)→ f(a).

Como consequência imediata temos a seguinte propriedade.

Seja (un) uma sucessão convergente para a ∈ R e p > 0. Então

a) se un → a, então (un)p → ap;

b) se un ⩾ 0 para todo o n ∈ N, então p√un → p

√a.

António Bento (UBI) Cálculo II 2009/2010 36 / 498

Page 10: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.1.3 Sucessões convergentes

Seja f é um função com domínio contendo o conjunto dos númerosnaturais. Se

limx→+∞

f(x) = a,

entãolim

n→+∞f(n) = a.

Exemplo

Como

limx→+∞

(

1 +1x

)x

= e,

temos

limn→+∞

(

1 +1n

)n

= e .

António Bento (UBI) Cálculo II 2009/2010 37 / 498

§1.1.3 Sucessões convergentes

Teorema da sucessão enquadrada

Sejam (un), (vn) e (wn) sucessões e suponha-se que existe uma ordemp ∈ N tal que

un ⩽ vn ⩽ wn para todo o número natural n > p.

Se un → a e wn → a, entãovn → a.

António Bento (UBI) Cálculo II 2009/2010 38 / 498

§1.1.3 Sucessões convergentes

Exemplo de aplicação do teorema da sucessão enquadrada

Vejamos que√

4 +1n2→ 2.

Como

2 ⩽

4 +1n2

4 + 41n

+(

1n

)2

=

√(

2 +1n

)2

= 2 +1n

e2 +

1n→ 2,

pelo teorema da sucessão enquadrada temos de ter√

4 +1n2→ 2.

António Bento (UBI) Cálculo II 2009/2010 39 / 498

§1.1.3 Sucessões convergentes

Toda a sucessão convergente é limitada.

Observação

O recíproco não é verdadeiro. A sucessão de termo geral un = (−1)n élimitada, mas não é convergente.

Todas as sucessões ilimitadas são divergentes.

Exemplo

Já vimos que a sucessão de termo geral un = n2 não é limitada. Logonão é convergente.

António Bento (UBI) Cálculo II 2009/2010 40 / 498

Page 11: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.1.3 Sucessões convergentes

As sucessões monótonas e limitadas são convergentes.

António Bento (UBI) Cálculo II 2009/2010 41 / 498

Índice

1 Sucessões e sériesSucessões de números reais

Definição e exemplos

Sucessões limitadas e sucessões monótonas

Sucessões convergentes

Subsucessões

Infinitamente grandesSéries de números reaisSéries de potências e série de Taylor

2 Funções de Rn em R

m: limites e continuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 42 / 498

§1.1.4 Subsucessões

Se (un) é uma sucessão e (nk) é uma sucessão de números naturaisestritamente crescente, isto é,

n1 < n2 < . . . < nk < nk+1 < . . . ,

a sucessão(unk) = (un1 , un2 , . . . , unk , . . .)

diz-se uma subsucessão de (un).

António Bento (UBI) Cálculo II 2009/2010 43 / 498

§1.1.4 Subsucessões

As subsucessões de uma sucessão convergente são convergentes para omesmo limite da sucessão.

Exemplo

A sucessão de termo geral

un = (−1)n

é divergente pois tem duas subsucessões que convergem para valoresdiferentes.

António Bento (UBI) Cálculo II 2009/2010 44 / 498

Page 12: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.1.4 Subsucessões

Teorema de Bolzano-Weierstrass

Todas as sucessões limitadas têm subsucessões convergentes.

António Bento (UBI) Cálculo II 2009/2010 45 / 498

Índice

1 Sucessões e sériesSucessões de números reais

Definição e exemplos

Sucessões limitadas e sucessões monótonas

Sucessões convergentes

Subsucessões

Infinitamente grandesSéries de números reaisSéries de potências e série de Taylor

2 Funções de Rn em R

m: limites e continuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 46 / 498

§1.1.5 Infinitamente grandes

Existem sucessões divergentes que, pelas propriedades de que gozam,merecem ser estudadas. Essas sucessões designam-se por infinitamentegrandes.

Diz-se que uma sucessão (un) tende para mais infinito ou que é uminfinitamente grande positivo, e escreve-se

un → +∞, ou lim un = +∞,

se para cada L > 0, existe N ∈ N tal que

un > L para qualquer natural n > N .

António Bento (UBI) Cálculo II 2009/2010 47 / 498

§1.1.5 Infinitamente grandes

Se −un → +∞ diz-se que (un) tende para menos infinito ou que asucessão (un) é um infinitamente grande negativo e escreve-se

un → −∞, ou lim un = −∞.

Diz-se ainda que (un) tende para infinito ou que (un) é uminfinitamente grande se |un| → +∞ e escreve-se

un →∞ ou lim un =∞.

António Bento (UBI) Cálculo II 2009/2010 48 / 498

Page 13: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.1.5 Infinitamente grandes

Exemplos

A sucessão de termo geralun = n

tende para mais infinito, a sucessão de termo geral

vn = −n

tende para menos infinito e a sucessão de termo geral

wn = (−1)nn

tende para infinito. A sucessão (wn) é um exemplo de um infinitamentegrande que não é nem um infinitamente grande positivo, nem uminfinitamente grande negativo.

António Bento (UBI) Cálculo II 2009/2010 49 / 498

§1.1.5 Infinitamente grandes

Observações

a) Os infinitamente grandes positivos e os infinitamente grandesnegativos, são infinitamente grandes. A sucessão de termo geral

wn = (−1)nn

mostra que o contrário nem sempre se verifica.

b) Resulta imediatamente da definição que se un → +∞, então (un) élimitada inferiormente.

c) Da definição resulta imediatamente que se (un) e (vn) são duassucessões tais que

un ⩽ vn a partir de certa ordem e un → +∞,

entãovn → +∞.

António Bento (UBI) Cálculo II 2009/2010 50 / 498

§1.1.5 Infinitamente grandes

Sejam (un) e (vn) duas sucessões de números reais.

a) Se un → +∞ e (vn) tende para a ∈ R ou para +∞, então

(un + vn)→ +∞.

b) Se un → −∞ e (vn) tende para a ∈ R ou para −∞, então

(un + vn)→ −∞.

c) Se un →∞ e (vn) tende para a ∈ R, então

(un + vn)→∞.

António Bento (UBI) Cálculo II 2009/2010 51 / 498

§1.1.5 Infinitamente grandes

Vê-se assim que pode usar-se a regra do limite da soma desde que seadoptem as convenções

(+∞) + a = +∞ = a+ (+∞)

(−∞) + a = −∞ = a+ (−∞)

∞+ a =∞ = a+∞(+∞) + (+∞) = +∞(−∞) + (−∞) = −∞

onde a é um número real qualquer.

António Bento (UBI) Cálculo II 2009/2010 52 / 498

Page 14: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.1.5 Infinitamente grandes

Observação

Seun → +∞ e vn → −∞,

então nada se pode dizer sobre (un + vn) pois em alguns casos(un + vn) é convergente, noutros é divergente. Por isso, não fazemosnenhuma convenção para o símbolo

(+∞) + (−∞);

este símbolo designa-se por símbolo de indeterminação. Algo desemelhante acontece com

∞−∞.

António Bento (UBI) Cálculo II 2009/2010 53 / 498

§1.1.5 Infinitamente grandes

Sejam (un) e (vn) duas sucessões de números reais.

a) Se un → +∞ e se (vn) tende para a > 0 ou tende para +∞, então

un.vn → +∞.b) Se un → +∞ e se (vn) tende para a < 0 ou tende para −∞, então

un.vn → −∞.c) Se un → −∞ e se (vn) tende para a > 0 ou tende para +∞, então

un.vn → −∞.d) Se un → −∞ e se (vn) tende para a < 0 ou tende para −∞, então

un.vn → +∞.e) Se un →∞ e (vn) tende para a ∈ R \ {0} ou tende para ∞, então

un.vn →∞.António Bento (UBI) Cálculo II 2009/2010 54 / 498

§1.1.5 Infinitamente grandes

Adoptando as convenções que se seguem, vê-se que se pode usar aregra do limite do produto:

(+∞)× a = +∞ = a× (+∞) onde a ∈ R+

(−∞)× a = −∞ = a× (−∞) onde a ∈ R+

(+∞)× a = −∞ = a× (+∞) onde a ∈ R−

(−∞)× a = +∞ = a× (−∞) onde a ∈ R−

∞× a =∞ = a×∞ onde a ∈ R \ {0}(+∞)× (+∞) = +∞ = (−∞)× (−∞)

(+∞)× (−∞) = −∞ = (−∞)× (+∞)

∞×∞ =∞

António Bento (UBI) Cálculo II 2009/2010 55 / 498

§1.1.5 Infinitamente grandes

Observação

Não se faz nenhuma convenção para os símbolos

0× (+∞),

0× (−∞)

e0×∞,

pois são símbolos de indeterminação.

António Bento (UBI) Cálculo II 2009/2010 56 / 498

Page 15: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.1.5 Infinitamente grandes

Seja (un) uma sucessão de termos não nulos.

a) Se un →∞, então1un→ 0.

b) Se un → 0, então1un→∞.

c) Se un → 0 e un > 0 a partir de certa ordem, então

1un→ +∞.

d) Se un → 0 e un < 0 a partir de certa ordem, então

1un→ −∞.

António Bento (UBI) Cálculo II 2009/2010 57 / 498

§1.1.5 Infinitamente grandes

A regra do limite quociente pode manter-se desde que se adoptem asseguintes convenções

1∞ = 0

10

=∞ 10+

= +∞ 10−

= −∞

onde 0+ significa que

un → 0 e un > 0 a partir de certa ordem

e 0− significa que

un → 0 e un < 0 a partir de certa ordem.

António Bento (UBI) Cálculo II 2009/2010 58 / 498

§1.1.5 Infinitamente grandes

Observação

Os símbolos ∞∞

e00

são símbolos de indeterminação.

António Bento (UBI) Cálculo II 2009/2010 59 / 498

§1.1.5 Infinitamente grandes

Exemplo

a) Dado a ∈ R, consideremos a sucessão de termo geral un = an.

Se a > 1, então temos an → +∞.

Quando a = 1, então un = 1n = 1 pelo que a sucessão tende para 1.

Se a < −1, então an →∞.

Para a = −1 obtemos a sucessão (−1)n que já vimos anteriormente.Esta sucessão é divergente.

Se −1 < a < 1, então an → 0.

António Bento (UBI) Cálculo II 2009/2010 60 / 498

Page 16: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.1.5 Infinitamente grandes

Exemplo (continuação)

a) (continuação) Assim,

lim an =

+∞ se a > 1

1 se a = 1

0 se −1 < a < 1

não existe se a = −1

∞ se a < −1

António Bento (UBI) Cálculo II 2009/2010 61 / 498

§1.1.5 Infinitamente grandes

Exemplo (continuação)

b) Calculemos lim (3n − 2n). Como lim 3n = +∞ e lim 2n = +∞,temos uma indeterminação do tipo

∞−∞.No entanto, pondo em evidência 3n temos

lim (3n − 2n) = lim[

3n(

1− 2n

3n

)]

= lim[

3n(

1−(

23

)n)]

= +∞× (1− 0)

= +∞× 1

= +∞

António Bento (UBI) Cálculo II 2009/2010 62 / 498

§1.1.5 Infinitamente grandes

Exemplo (continuação)

c) Calculemos lim2n + 5n+1

2n+1 + 5n. Temos uma indeterminação pois

lim2n + 5n+1

2n+1 + 5n=

+∞+ (+∞)+∞+ (+∞)

=+∞+∞ .

Podemos levantar a indeterminação da seguinte forma

lim2n + 5n+1

2n+1 + 5n= lim

2n + 5n × 52n × 2 + 5n

= lim

2n

5n+

5n × 55n

2n × 25n

+5n

5n

= lim

(25

)n

+ 5(

25

)n

× 2 + 1=

0 + 50× 2 + 1

= 5

António Bento (UBI) Cálculo II 2009/2010 63 / 498

Índice

1 Sucessões e sériesSucessões de números reaisSéries de números reais

Definição e exemplos

Séries de termos não negativos

Critério de Leibniz; convergência absolutaSéries de potências e série de Taylor

2 Funções de Rn em Rm: limites e continuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 64 / 498

Page 17: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

Índice

1 Sucessões e sériesSucessões de números reaisSéries de números reais

Definição e exemplos

Séries de termos não negativos

Critério de Leibniz; convergência absolutaSéries de potências e série de Taylor

2 Funções de Rn em Rm: limites e continuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 65 / 498

§1.2.1 Definição e exemplos

Paradoxo de Aquiles

Numa corrida entre um atleta velocista (Aquiles) e uma tartaruga édada uma vantagem inicial em termos de distância à tartaruga. Zenãodefende que Aquiles jamais alcançará a tartaruga porque quandochegar ao ponto onde a tartaruga partiu, ela já terá percorrido umanova distância; e quando Aquiles percorrer essa nova distância, atartaruga já terá percorrido uma nova distância e assim sucessivamente.Este famoso paradoxo foi proposto por Zenão da Elea no século V a.c..

António Bento (UBI) Cálculo II 2009/2010 66 / 498

§1.2.1 Definição e exemplos

200 m 40 m 8 m

Suponhamos que a vantagem inicial que Aquiles dá à tartaruga é200 m, que a velocidade de Aquiles é 5 m/s e que a velocidade da

tartaruga é 1 m/s. Aquiles demora2005

= 40 s para chegar ao ponto deonde a tartaruga partiu. Entretanto, a tartaruga percorreu

1× 40 = 40 m. Em seguida, Aquiles demorou405

= 8 s para chegar ondea tartaruga estava e a tartaruga andou 1× 8 = 8 m e assimsucessivamente...

Será que Aquiles consegue alcançar a tartaruga?

António Bento (UBI) Cálculo II 2009/2010 67 / 498

§1.2.1 Definição e exemplos

No primeiro ponto, o ponto inicial da tartaruga, Aquiles percorreu

200

metros; no ponto seguinte Aquiles percorreu (no total)

200 +2005

metros; no terceiro ponto Aquiles percorreu

200 +2005

+200/5

5= 200 +

2005

+20052

metros; no quarto ponto Aquiles percorreu

200 +2005

+20052

+20053

metros; e assim sucessivamente. O paradoxo de Aquiles tem por detrásaquela que, provavelmente, foi a primeira série da história!

António Bento (UBI) Cálculo II 2009/2010 68 / 498

Page 18: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.2.1 Definição e exemplos

Se (an) é uma sucessão de números reais, chamaremos série gerada por(an) à expressão

a1 + a2 + · · ·+ an + · · ·obtida por adição (formal) dos termos da sucessão.

A cada série fica associada uma sucessão (sn), a que se chamasucessão das somas parciais de (an), definida por

s1 = a1

s2 = a1 + a2

s3 = a1 + a2 + a3

...

sn = a1 + a2 + · · ·+ an...

António Bento (UBI) Cálculo II 2009/2010 69 / 498

§1.2.1 Definição e exemplos

A série diz-se convergente ou divergente conforme seja convergenteou divergente a sucessão das somas parciais (sn). Quando a série éconvergente, o limite da sucessão (sn) designa-se por soma ou valorda série.

Para representarmos a série (ou a sua soma, quando exista) usam-se ossímbolos

a1 + a2 + · · ·+ an + · · · ;∞∑

n=1

an;∑

an

e o contexto onde se usam estes símbolos indicará se estão arepresentar a série ou a sua soma.

Dizemos que duas séries são da mesma natureza se são ambasconvergentes ou ambas divergentes.

António Bento (UBI) Cálculo II 2009/2010 70 / 498

§1.2.1 Definição e exemplos

Observação

Em certos casos pode haver vantagem em que o primeiro valor que oíndice n toma seja um inteiro diferente de um, o que não traz nenhumadificuldade na teoria que irá ser exposta. Assim,

∞∑

n=2

1n− 1

e∞∑

n=0

1n+ 1

designam a mesma série, enquanto que

∞∑

n=6

1n

designa uma série diferente.

António Bento (UBI) Cálculo II 2009/2010 71 / 498

§1.2.1 Definição e exemplos

Exemplo

Para a série∞∑

n=1

2n(n+ 1)

, representamos abaixo os primeiros termos da

sucessão de termo geral an =2

n(n+ 1)e da sucessão (sn) das somas parciais

1

b

a1b s1

2

b

a2

b s2

3

b

a3

b s3

4

b

a4

b s4

5

b

a5

b s5

6

b

a6

b s6

7

b

a7

b s7

8

b

a8

b s8

9

b

a9

b s9

10

b

a10

b s102

Aparentemente a sucessão das somas parciais aproxima-se de 2...

António Bento (UBI) Cálculo II 2009/2010 72 / 498

Page 19: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.2.1 Definição e exemplos

Exemplo (continuação)

De facto, atendendo a que2

k(k + 1)=

2k− 2k + 1

conclui-se que

sn =n∑

k=1

2k(k + 1)

=n∑

k=1

2k− 2k + 1

= 2− 22

+22− 2

3+

23− 2

4+ · · ·+ 2

n− 2n+ 1

= 2− 2n+ 1

e portanto

s = lim sn = lim(

2− 2n+ 1

)

= 2.

Conclui-se que a série converge e tem soma s = 2.

António Bento (UBI) Cálculo II 2009/2010 73 / 498

§1.2.1 Definição e exemplos

Série harmónica

A série∞∑

n=1

1n

designa-se por série harmónica. Consideremos ainda a respectiva sucessãodas somas parciais e tomemos a subsucessão dessa com termos com índice daforma 2k, ou seja, a subsucessão (s2k):

s2 = 1 +12>

12

s22 = s2 +13

+14>

12

+ 2× 14

= 2× 12

s23 = s22 +15

+16

+17

+18> 2× 1

2+ 4× 1

8= 3× 1

2

Em geral temos s2k >k

2. Como lim

k

2= +∞, concluímos que lim sn = +∞ e,

consequentemente, a série harmónica é divergente.

António Bento (UBI) Cálculo II 2009/2010 74 / 498

§1.2.1 Definição e exemplos

Série geométrica

Dado r ∈ R, consideremos a série∞∑

n=0rn que habitualmente se designa

por série geométrica. A sucessão (sn)n∈N0 das somas parciais será,neste exemplo, dada por

sn = 1 + r + · · · + rn =

1− rn+1

1− r se r 6= 1

n+ 1 se r = 1.

Isto permite-nos concluir que

a série geométrica é

{

convergente se |r| < 1,

divergente se |r| ⩾ 1.

Além disso, quando |r| < 1 a sua soma é igual a1

1− r .

António Bento (UBI) Cálculo II 2009/2010 75 / 498

§1.2.1 Definição e exemplos

Sejam∑

an e∑

bn duas séries convergentes cujas somas são A e B,respectivamente. Então a série

(an + bn)

é convergente e a sua soma é A+B.

Seja∑

an uma série convergente cuja soma é A e seja λ um númeroreal. Então a série

(λan)

é convergente e a sua soma é λA.

António Bento (UBI) Cálculo II 2009/2010 76 / 498

Page 20: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.2.1 Definição e exemplos

Se∑

an é uma série convergente e∑

bn é uma série divergente, então

(an + bn)

é uma série divergente.

Note-se no entanto que, se∑

an e∑

bn são duas séries divergentes, asérie

(an + bn)

pode ser convergente ou divergente.

António Bento (UBI) Cálculo II 2009/2010 77 / 498

§1.2.1 Definição e exemplos

Exemplos

a) A série

+∞∑

n=1

(1

n(n+ 1)+

1

5n−1

)

é convergente porque as séries

+∞∑

n=1

1

n(n+ 1)e

+∞∑

n=1

1

5n−1

também são convergentes. Além disso, como+∞∑

n=1

1

n(n+ 1)=

+∞∑

n=1

1

2

2

n(n+ 1),

podemos concluir que a sua soma é 1 pois já sabemos que soma da série+∞∑

n=1

2

n(n+ 1)é 2. Quanto à série

+∞∑

n=1

1

5n−1=

+∞∑

n=0

1

5né uma série geométrica

de razão1

5e a sua soma é

1

1− 1/5=

5

4. Assim, a soma da série

+∞∑

n=1

(1

n(n+ 1)+

1

5n−1

)

é 1 +5

4=

9

4.

António Bento (UBI) Cálculo II 2009/2010 78 / 498

§1.2.1 Definição e exemplos

Exemplos (continuação)

b) A série+∞∑

n=1

(7

3n−1+

1n

)

é divergente porque a série

+∞∑

n=1

73n−1

=+∞∑

n=1

7(

13

)n−1

é convergente e a série+∞∑

n=1

1n

é divergente.

António Bento (UBI) Cálculo II 2009/2010 79 / 498

§1.2.1 Definição e exemplos

Voltemos ao exemplo inicial de Aquiles e da tartaruga. A sérieenvolvida neste exemplo é

+∞∑

n=0

2005n

=+∞∑

n=0

[

200(

15

)n]

.

Como série geométrica de razão15

é convergente pois∣∣∣∣

15

∣∣∣∣ < 1 e a sua

soma é1

1− 1/5=

54

, o ponto onde Aquiles ultrapassa a tartaruga é

200× 54

= 250 m.

António Bento (UBI) Cálculo II 2009/2010 80 / 498

Page 21: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.2.1 Definição e exemplos

Nem sempre é fácil calcular a soma de uma série convergente, não seconhecendo mesmo uma expressão para a soma de algumas sériesbastante simples. Assim, no que se segue, vamos estudar critérios quenos permitem saber se uma série é ou não convergente, sem estarmospreocupados com a soma no caso da série ser convergente.

António Bento (UBI) Cálculo II 2009/2010 81 / 498

§1.2.1 Definição e exemplos

Se∑

an é uma série convergente, então lim an = 0.

Assim, se (an) não converge para 0, a série∑an é divergente. Por

exemplo, a série∑ n

n+ 1

é divergente porque a sucessão(

n

n+ 1

)

n∈Nconverge para um.

No entanto, o recíproco deste teorema não é válido pois a sérieharmónica

∑ 1n

é divergente apesar da sucessão(

1n

)

n∈Nconvergir para zero.

António Bento (UBI) Cálculo II 2009/2010 82 / 498

§1.2.1 Definição e exemplos

Sejam∑

an e∑

bn duas séries. Suponhamos que existe N ∈ N tal que

an = bn para qualquer número natural n > N.

Então∑

an e∑

bn

são da mesma natureza.

António Bento (UBI) Cálculo II 2009/2010 83 / 498

Índice

1 Sucessões e sériesSucessões de números reaisSéries de números reais

Definição e exemplos

Séries de termos não negativos

Critério de Leibniz; convergência absolutaSéries de potências e série de Taylor

2 Funções de Rn em Rm: limites e continuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 84 / 498

Page 22: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.2.2 Séries de termos não negativos

Nesta secção vamos estudar séries de números reais não negativos, ouseja, séries

an tais que

an ⩾ 0 para cada n ∈ N.

Obviamente, pelo que já vimos anteriormente, a teoria que vamosapresentar mantém-se válida se

an ⩾ 0 a partir de certa ordem.

António Bento (UBI) Cálculo II 2009/2010 85 / 498

§1.2.2 Séries de termos não negativos

Critério geral de comparação

Sejam∑

an e∑

bn séries de termos não negativos tais que

an ⩽ bn a partir de certa ordem.

a) Se∑

bn é convergente, então∑

an também é convergente.

b) Se∑

an é divergente, então∑

bn também é divergente.

António Bento (UBI) Cálculo II 2009/2010 86 / 498

§1.2.2 Séries de termos não negativos

Exemplos de aplicação do critério geral de comparação

a) Consideremos a série∞∑

n=1

1n2

. Uma vez que

0 ⩽1n2

=2

n(2n)⩽

2n(n+ 1)

para qualquer número natural n

e, como vimos anteriormente, a série

∞∑

n=1

2n(n+ 1)

é convergente, podemos afirmar que a série

∞∑

n=1

1n2

é convergente.

António Bento (UBI) Cálculo II 2009/2010 87 / 498

§1.2.2 Séries de termos não negativos

Exemplos de aplicação do critério geral de comparação (continuação)

b) Estudemos a série∞∑

n=1

1nα, α ⩾ 2.

Como

0 ⩽1nα

⩽1n2

para qualquer n ∈ N e qualquer α ⩾ 2

e a série∑ 1

n2é convergente, a série

∑ 1nα

também é convergente quando α ⩾ 2.

António Bento (UBI) Cálculo II 2009/2010 88 / 498

Page 23: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.2.2 Séries de termos não negativos

Exemplos de aplicação do critério geral de comparação (continuação)

c) A série∞∑

n=1

1nα

é divergente para α ⩽ 1

pois

0 ⩽1n⩽

1nα

para cada n ∈ N e para cada α ⩽ 1

e a série∑ 1

n

é divergente.

António Bento (UBI) Cálculo II 2009/2010 89 / 498

§1.2.2 Séries de termos não negativos

Séries de Dirichlet

As séries ∞∑

n=1

1nα,

com α ∈ R, designam-se por séries de Dirichlet. Nos exemplosanteriores já estudámos a natureza destas séries quando α ⩽ 1 e α ⩾ 2.Quando 1 < α < 2, a série é convergente. Assim,

+∞∑

n=1

1nα

é

{

convergente se α > 1,

divergente se α ⩽ 1.

António Bento (UBI) Cálculo II 2009/2010 90 / 498

§1.2.2 Séries de termos não negativos

Critério do limite

Sejam∑

an e∑

bn séries de termos não negativos com bn 6= 0 paracada n ∈ N.

a) Se limanbn

= ℓ com ℓ 6= 0 e ℓ 6= +∞, então as séries

an e∑

bn são da mesma natureza.

b) Se limanbn

= 0 e a série∑

bn é convergente, então a série

an também é convergente.

c) Se limanbn

= +∞ e a série∑

bn é divergente, então a série

an também é divergente.

António Bento (UBI) Cálculo II 2009/2010 91 / 498

§1.2.2 Séries de termos não negativos

Exemplos de aplicação do critério do limite

a) A série∞∑

n=1

3n2 + 42n4 + 3n+ 1

é convergente porque

3n2 + 42n4 + 3n+ 1

⩾ 0 e1n2

⩾ 0 para qualquer n ∈ N,

lim

3n2 + 42n4 + 3n+ 1

1n2

= lim3n4 + 4n2

2n4 + 3n+ 1=

32

e ∞∑

n=1

1n2

é convergente.

António Bento (UBI) Cálculo II 2009/2010 92 / 498

Page 24: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.2.2 Séries de termos não negativos

Exemplos de aplicação do critério do limite (continuação)

b) Consideremos a série∞∑

n=1

sen1n

. É óbvio que

sen1n⩾ 0 e

1n⩾ 0 para cada n ∈ N.

Como

limsen

1n

1n

= 1

e∞∑

n=1

1n

é divergente,∞∑

n=1

sen1n

também é divergente.

António Bento (UBI) Cálculo II 2009/2010 93 / 498

§1.2.2 Séries de termos não negativos

Critério de D’Alembert

Seja∑

an uma série de termos positivos tal que

liman+1

an= λ.

a) Se λ < 1, então∑

an é convergente.

b) Se λ > 1, então∑

an é divergente.

António Bento (UBI) Cálculo II 2009/2010 94 / 498

§1.2.2 Séries de termos não negativos

Exemplos de aplicação do critério de D’Alembert

a) Provemos que a série∑ 2nn!

nné convergente. É óbvio que

2nn!nn

> 0 qualquer que seja n ∈ N.

Como

lim

2n+1(n+ 1)!(n + 1)n+1

2nn!nn

= lim2nn

(n+ 1)n= lim

2(1 + 1/n)n

=2e< 1,

pelo critério de D’Alembert, a série∑ 2nn!

nné convergente.

António Bento (UBI) Cálculo II 2009/2010 95 / 498

§1.2.2 Séries de termos não negativos

Exemplos de aplicação do critério de D’Alembert (continuação)

b) A série∑

n3n

é divergente. Como

n3n > 0 para cada n ∈ N

e

lim(n+ 1) 3n+1

n 3n= lim 3

n+ 1n

= 3 > 1,

pelo critério de D’Alembert a série∑

n3n

é divergente.

António Bento (UBI) Cálculo II 2009/2010 96 / 498

Page 25: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.2.2 Séries de termos não negativos

Critério de Cauchy

Seja∑

an uma série de termos não negativos tal que

lim n√an = λ.

a) Se λ < 1, então∑

an é convergente.

b) Se λ > 1, então∑

an é divergente.

António Bento (UBI) Cálculo II 2009/2010 97 / 498

§1.2.2 Séries de termos não negativos

Exemplos de aplicação do critério de Cauchy

a) Vejamos que a série∑

(n+ 1n

)n2

é divergente. Como

(n+ 1n

)n2

⩾ 0 qualquer que seja n ∈ N

e

limn

√(n+ 1n

)n2

= lim(n+ 1n

)n

= lim(

1 +1n

)n

= e > 1,

pelo critério de Cauchy, a série∑

(n+ 1n

)n2

é divergente.

António Bento (UBI) Cálculo II 2009/2010 98 / 498

§1.2.2 Séries de termos não negativos

Exemplos de aplicação do critério de Cauchy (continuação)

b) À série∑

n 3n

também podemos aplicar o critério de Cauchy. Como

n 3n ⩾ 0 para cada n ∈ N

elim n√n 3n = lim 3 n

√n = 3,

o critério de Cauchy garante-nos que∑

n 3n

é divergente.

António Bento (UBI) Cálculo II 2009/2010 99 / 498

Índice

1 Sucessões e sériesSucessões de números reaisSéries de números reais

Definição e exemplos

Séries de termos não negativos

Critério de Leibniz; convergência absolutaSéries de potências e série de Taylor

2 Funções de Rn em Rm: limites e continuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 100 / 498

Page 26: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.2.3 Critério de Leibniz; convergência absoluta

Critério de Leibniz

Se (an) é uma sucessão decrescente convergente para zero, então a série

+∞∑

n=1

(−1)nan

é convergente.

António Bento (UBI) Cálculo II 2009/2010 101 / 498

§1.2.3 Critério de Leibniz; convergência absoluta

Observações

a) Se (an) é uma sucessão decrescente convergente para zero, então

an ⩾ 0 para qualquer n ∈ N.

b) As séries da forma+∞∑

n=1

(−1)nan

designam-se por séries alternadas.

c) O critério de Leibniz também é válido para séries da forma

+∞∑

n=1

(−1)n+1an ou da forma+∞∑

n=k

(−1)nan.

António Bento (UBI) Cálculo II 2009/2010 102 / 498

§1.2.3 Critério de Leibniz; convergência absoluta

Exemplos

a) A sucessão de termo geral an =1n

é decrescente pois

an+1 − an =1

n+ 1− 1n

=n− (n+ 1)n(n+ 1)

=−1

n(n+ 1)⩽ 0

para qualquer n ∈ N. Além disso,

limn→+∞

an = limn→+∞

1n

=1

+∞ = 0.

Pelo critério de Leibniz, a série

+∞∑

n=1

(−1)n

n

é convergente.

António Bento (UBI) Cálculo II 2009/2010 103 / 498

§1.2.3 Critério de Leibniz; convergência absoluta

Exemplos (continuação)

b) Estudemos a natureza da série+∞∑

n=1

(−1)n

n2. Como

1(n+ 1)2

− 1n2

=n2 − (n+ 1)2

n2(n+ 1)2=n2 − (n2 + 2n+ 1)

n2(n+ 1)2=−2n− 1n2(n+ 1)2

⩽ 0

para qualquer n ∈ N, ou seja, a sucessão de termo geral an =1n2

é

decrescente, e

limn→+∞

1n2

=1

(+∞)2=

1+∞ = 0,

o critério de Leibniz garante-nos que a série

+∞∑

n=1

(−1)n

n2

é convergente.

António Bento (UBI) Cálculo II 2009/2010 104 / 498

Page 27: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.2.3 Critério de Leibniz; convergência absoluta

Exemplos (continuação)

c) Estudemos a natureza da série+∞∑

n=1

(−1)nan com an =n+ 1n

. A

sucessão (an) é decrescente pois

an+1 − an =n+ 2n+ 1

− n+ 1n

=(n + 2)n − (n+ 1)2

n(n+ 1)

=n2 + 2n− (n2 + 2n+ 1)

n(n+ 1)

=−1

n(n+ 1)⩽ 0

para qualquer n ∈ N.

António Bento (UBI) Cálculo II 2009/2010 105 / 498

§1.2.3 Critério de Leibniz; convergência absoluta

Exemplos (continuação)

c) (continuação) No entanto, como

limn→+∞

an = limn→+∞

n+ 1n

= limn→+∞

n

n+

1n

= limn→+∞

1 +1n

= 1,

não podemos aplicar o critério de Leibniz pois lim an 6= 0. Mas selim an = 1, a sucessão de termo geral (−1)nan é divergente pois asubsucessão dos termos de ordem par converge para 1 e asubsucessão dos termos de ordem ímpar converge para −1. Assim,a série

+∞∑

n=1

(−1)nan =+∞∑

n=1

(−1)nn+ 1n

é divergente.

António Bento (UBI) Cálculo II 2009/2010 106 / 498

§1.2.3 Critério de Leibniz; convergência absoluta

Uma série+∞∑

n=1

an diz-se absolutamente convergente se a série dos

módulos+∞∑

n=1

|an| é convergente.

As séries absolutamente convergentes são convergentes, ou seja, se

+∞∑

n=1

|an| é convergente,

então+∞∑

n=1

an também é convergente.

António Bento (UBI) Cálculo II 2009/2010 107 / 498

§1.2.3 Critério de Leibniz; convergência absoluta

Observação

O recíproco do resultado anterior não se verifica. A série

+∞∑

n=1

(−1)n

n

é convergente, mas a sua série dos módulos

+∞∑

n=1

∣∣∣∣

(−1)n

n

∣∣∣∣ =

+∞∑

n=1

1n

é a série harmónica que já vimos ser divergente.

As séries convergentes cuja série dos módulos é divergente dizem-sesimplesmente convergentes, semi-convergentes oucondicionalmente convergentes.

António Bento (UBI) Cálculo II 2009/2010 108 / 498

Page 28: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.2.3 Critério de Leibniz; convergência absoluta

Exemplos

a) Através do critério de Leibniz concluímos que a série+∞∑

n=1

(−1)n

n2é

convergente. Uma outra forma de vermos que é convergente é através dasérie do módulos:

+∞∑

n=1

∣∣∣∣

(−1)n

n2

∣∣∣∣

=+∞∑

n=1

1n2.

Ora a série+∞∑

n=1

1n2

é uma série de Dirichlet com α = 2 e, portanto, é

convergente. Logo

+∞∑

n=1

(−1)n

n2

é absolutamente convergente e, portanto, é convergente.

António Bento (UBI) Cálculo II 2009/2010 109 / 498

§1.2.3 Critério de Leibniz; convergência absoluta

Exemplos (continuação)

b) Estudemos a natureza da série+∞∑

n=1

cosnn2 + 2n+ 3

. Como, para qualquer

n ∈ N, se tem

0 ⩽

∣∣∣∣

cosnn2 + 2n+ 3

∣∣∣∣

=|cosn|

n2 + 2n+ 3⩽

1n2 + 2n+ 3

⩽1n2

e a série+∞∑

n=1

1n2

é convergente, pelo critério geral de comparação, a série

+∞∑

n=1

∣∣∣∣

cosnn2 + 2n+ 3

∣∣∣∣

é convergente. Logo

+∞∑

n=1

cosnn2 + 2n+ 3

é absolutamente convergente e, por conseguinte, é convergente.

António Bento (UBI) Cálculo II 2009/2010 110 / 498

§1.2.3 Critério de Leibniz; convergência absoluta

Exemplos (continuação)

c) Consideremos a série

+∞∑

n=1

(−1)nn+ 1

n2 + 2. A sua série dos módulos é

+∞∑

n=1

∣∣∣(−1)n

n+ 1

n2 + 2

∣∣∣ =

+∞∑

n=1

n+ 1

n2 + 2

e, como

limn→+∞

n+ 1

n2 + 21

n

= limn→+∞

n2 + n

n2 + 2= limn→+∞

n2(1 + 1/n)

n2(1 + 2/n)= limn→+∞

1 + 1/n

1 + 2/n= 1,

pelo critério do limite, as séries

+∞∑

n=1

n+ 1

n2 + 2e

+∞∑

n=1

1

n, por serem séries de termos

positivos, são da mesma natureza. Como a série harmónica é divergente, a série+∞∑

n=1

n+ 1

n2 + 2também é divergente.

António Bento (UBI) Cálculo II 2009/2010 111 / 498

§1.2.3 Critério de Leibniz; convergência absoluta

Exemplos (continuação)

c) (continuação) Acabámos de ver que a série dos módulos de

+∞∑

n=1

(−1)nn+ 1

n2 + 2é

divergente. Vejamos, usando o critério de Leibniz, que a série

+∞∑

n=1

(−1)nn+ 1

n2 + 2é

convergente. Como

limn→+∞

n+ 1

n2 + 2= limn→+∞

n(1 + 1/n)

n2(1 + 2/n2)= limn→+∞

1 + 1/n

n(1 + 2/n2)=

1 + 0

+∞(1 + 0)= 0

en+ 2

(n+ 1)2 + 2−

n+ 1

n2 + 2= · · · = −

n2 + 3n− 1

((n+ 1)2 + 2)(n2 + 1)⩽ 0

para qualquer n ∈ N, pelo critério de Leibniz a série

+∞∑

n=1

(−1)nn+ 1

n2 + 2

é convergente. Assim, esta série é simplesmente convergente.

António Bento (UBI) Cálculo II 2009/2010 112 / 498

Page 29: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

Índice

1 Sucessões e sériesSucessões de números reaisSéries de números reaisSéries de potências e série de Taylor

2 Funções de Rn em Rm: limites e continuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 113 / 498

§1.3 Séries de potências e série de Taylor

Sejam a0, a1, . . . , an, . . . os termos de uma sucessão e a um número real.A série

+∞∑

n=0

an(x− a)n

= a0 + a1(x− a) + a2(x− a)2 + · · ·+ an(x− a)n + · · ·

designa-se por série de potências de x− a. Dizemos que a série estácentrada em a e que os números an são os coeficientes da série.

As séries

+∞∑

n=0

xn

n!,

+∞∑

n=0

n

n2 + 1(x− 2)n e

+∞∑

n=0

n(x− π)n

são séries de potências centradas, respectivamente, em 0, 2 e π.

António Bento (UBI) Cálculo II 2009/2010 114 / 498

§1.3 Séries de potências e série de Taylor

Observações

a) Há séries de potências que não começam em zero. Por exemplo, a série+∞∑

n=1

1nxn =

+∞∑

n=1

xn

n

tem de começar em um. Obviamente, tudo o que vamos estudar nestasecção contínua válido para estas séries.

b) Quando x = a e n = 0 obtemos (x− a)n = 00 que, apesar de não estardefinido, no contexto das séries convencionamos ser igual a 1.

c) Uma série de potências pode convergir para determinados valores de x edivergir para outros.

d) Para x = a, tendo em conta a observação b), a série é sempre convergente.Aliás, se x = a temos

+∞∑

n=0

an(x− a)n = a0.

António Bento (UBI) Cálculo II 2009/2010 115 / 498

§1.3 Séries de potências e série de Taylor

Exemplos de séries de potências

a) Estudemos a série de potências+∞∑

n=0

xn

n+ 1. Aplicando o critério de

D’Alembert à série dos módulos

+∞∑

n=0

∣∣∣∣

xn

n+ 1

∣∣∣∣

=+∞∑

n=0

|x|nn+ 1

(que é obviamente uma série de termos positivos) temos

limn→+∞

|x|n+1

n+ 2|x|nn+ 1

= limn→+∞

n+ 1n+ 2

|x| = limn→+∞

1 +1n

1 +2n

|x| = 1 . |x| = |x|

e, portanto, a série+∞∑

n=0

xn

n+ 1é absolutamente convergente para |x| < 1.

António Bento (UBI) Cálculo II 2009/2010 116 / 498

Page 30: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.3 Séries de potências e série de Taylor

Exemplos de séries de potências (continuação)

a) (continuação) Se |x| > 1, temos

limn→+∞

|x|n+1

n+ 2|x|nn+ 1

= |x| > 1

e, portanto,|x|n+1

n+ 2⩾|x|nn+ 1

a partir de certa ordem. Daqui concluímos que para |x| > 1 a sucessão de

termo geralxn

n+ 1não converge para zero e, consequentemente, a série

+∞∑

n=0

xn

n+ 1é divergente quando |x| > 1.

António Bento (UBI) Cálculo II 2009/2010 117 / 498

§1.3 Séries de potências e série de Taylor

Exemplos de séries de potências (continuação)

a) (continuação) Falta ver o que acontece quando |x| = 1. Se x = 1, entãoobtemos a série

+∞∑

n=0

1n+ 1

=+∞∑

n=1

1n,

isto é, obtemos a série harmónica que já vimos ser divergente. Parax = −1, temos a série alternada

∞∑

n=0

(−1)n

n+ 1=∞∑

n=1

(−1)n+1

n

que é convergente (ver os exemplos do critério de Leibniz). Assim, estasérie é convergente para x ∈ [−1, 1[ e é divergente parax ∈ ]−∞,−1[∪ [1,+∞[.

António Bento (UBI) Cálculo II 2009/2010 118 / 498

§1.3 Séries de potências e série de Taylor

Exemplos de séries de potências (continuação)

b) Consideremos a série de potências+∞∑

n=0

xn

n!. Aplicando o critério de

D’Alembert à série dos módulos

+∞∑

n=0

∣∣∣∣

xn

n!

∣∣∣∣

=+∞∑

n=0

|x|nn!

(que é obviamente uma série de termos positivos) tem-se

limn→+∞

|x|n+1

(n+ 1)!|x|nn!

= limn→+∞

n!(n+ 1)!

|x| = limn→+∞

1n+ 1

|x| = 0 . |x| = 0,

o que permite concluir que a série+∞∑

n=0

xn

n!é absolutamente convergente

para todo o x ∈ R.

António Bento (UBI) Cálculo II 2009/2010 119 / 498

§1.3 Séries de potências e série de Taylor

Exemplos de séries de potências (continuação)

c) Estudemos a natureza da série+∞∑

n=0

nxn. Aplicando o critério de Cauchy à

série dos módulos+∞∑

n=0

|nxn| =+∞∑

n=0

n |x|n

temoslimn→+∞

n

n |x|n = limn→+∞

n√n |x| = 1 . |x| = |x| .

Assim, a série é absolutamente convergente para |x| < 1. Para |x| > 1 asérie é divergente. Para |x| = 1 a série também é divergente. Portanto, asérie

+∞∑

n=0

nnxn

converge se x ∈ ]− 1, 1[ e diverge se x ∈ ]−∞,−1] ∪ [1,+∞[.

António Bento (UBI) Cálculo II 2009/2010 120 / 498

Page 31: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.3 Séries de potências e série de Taylor

Sejam a0, a1, . . . , an, . . . os termos de uma sucessão e a um númeroreal. Então

a) existe um número real r ⩾ 0 tal que a série de potências

+∞∑

n=0

an(x− a)n

converge absolutamente quando |x− a| < r e diverge quando|x− a| > r; ou

b) a série de potências+∞∑

n=0

an(x− a)n

converge absolutamente para qualquer x ∈ R.

António Bento (UBI) Cálculo II 2009/2010 121 / 498

§1.3 Séries de potências e série de Taylor

O número r do resultado anterior designa-se por raio de

convergência da série de potências+∞∑

n=0

an(x− a)n.

Se estivermos no caso da alínea b) costuma-se fazer r = +∞.

O conjunto dos x para os quais a série é convergente designa-se por

intervalo de convergência da série de potências+∞∑

n=0

an(x− a)n.

Note-se que o intervalo de convergência de uma série de potências é umdos quatro intervalos seguintes:

]a− r, a+ r[ , [a− r, a + r[ , ]a− r, a+ r] ou [a− r, a+ r] .

António Bento (UBI) Cálculo II 2009/2010 122 / 498

§1.3 Séries de potências e série de Taylor

Observações

a) Do critério de D’Alembert resulta que se limn→+∞

|an+1||an|

= λ, então r =1λ

.

De facto, supondo x 6= a e an 6= 0 para qualquer n ∈ N, como

limn→+∞

∣∣an+1(x− a)n+1

∣∣

|an(x− a)n| = limn→+∞

|an+1||an|

|x− a| = λ |x− a| ,

pelo critério de D’Alembert, a série é absolutamente convergente se

λ |x− a| < 1⇔ |x− a| < 1λ.

Além disso, se

λ |x− a| > 1⇔ |x− a| > 1λ,

a série é divergente porque (an(x− a)n)n∈N não converge para zero. Logo

r =1λ

= limn→+∞

|an||an+1|

.

António Bento (UBI) Cálculo II 2009/2010 123 / 498

§1.3 Séries de potências e série de Taylor

Observações (continuação)

b) De forma análoga prova-se, usando o critério de Cauchy, que se

limn→+∞

n

|an| = λ,

entãor =

= limn→+∞

1n√

|an|.

António Bento (UBI) Cálculo II 2009/2010 124 / 498

Page 32: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.3 Séries de potências e série de Taylor

Exemplos

a) Já estudamos a natureza da série de potências+∞∑

n=0

xn

n+ 1e

provámos que o raio de convergência desta série é r = 1 e que o seuintervalo de convergência é [−1, 1[.

b) Num exemplo anterior vimos o raio de convergência da série de

potências+∞∑

n=0

xn

n!é r = +∞ e, consequentemente, o seu intervalo de

convergência é ]−∞,+∞[= R.

c) Também já vimos que a série+∞∑

n=0

nxn tem como raio de

convergência r = 1 e o seu intervalo de convergência é ]− 1, 1[.

António Bento (UBI) Cálculo II 2009/2010 125 / 498

§1.3 Séries de potências e série de Taylor

Exemplos (continuação)

d) Estudemos a série de potências+∞∑

n=1

(x− 1)n

n2 2n. Consideremos a série

dos módulos+∞∑

n=1

∣∣∣∣

(x− 1)n

n2 2n

∣∣∣∣ =

+∞∑

n=1

|x− 1|nn2 2n

e apliquemos-lhe o critério de D’Alembert

limn→+∞

|x− 1|n+1

(n+ 1)2 2n+1

|x− 1|nn2 2n

= limn→+∞

n2

(n+ 1)2

2n

2n+1

|x− 1|n+1

|x− 1|n

= limn→+∞

1(1 + 1/n)2

|x− 1|2

=|x− 1|

2.

António Bento (UBI) Cálculo II 2009/2010 126 / 498

§1.3 Séries de potências e série de Taylor

Exemplos (continuação)

d) (continuação) Assim, a série+∞∑

n=1

(x− 1)n

n2 2né absolutamente

convergente quando

|x− 1|2

< 1 ⇔ |x− 1| < 2⇔ x− 1 < 2 ∧ x− 1 > −2

⇔ x < 3 ∧ x > −1⇔ x ∈ ]− 1, 3[

e é divergente quando

|x− 1|2

> 1⇔ x ∈ ]−∞,−1[∪ ]3,+∞[.

Falta ver o que acontece quando x = −1 e x = 3.

António Bento (UBI) Cálculo II 2009/2010 127 / 498

§1.3 Séries de potências e série de Taylor

Exemplos (continuação)

d) (continuação) Quando x = 3 temos+∞∑

n=0

(3− 1)n

n22n=

+∞∑

n=0

2n

n22n=

+∞∑

n=0

1n2

que é uma série de Dirichlet convergente. Quando x = −1 vem+∞∑

n=0

(−1− 1)n

n22n=

+∞∑

n=0

(−2)n

n22n=

+∞∑

n=0

(−1)n 2n

n22n=

+∞∑

n=0

(−1)n

n2,

e esta série é convergente. Para vermos isso podemos usar o critério deLeibniz ou então ver que a sua série dos módulos

+∞∑

n=0

∣∣∣∣

(−1)n

n2

∣∣∣∣

=+∞∑

n=0

|(−1)n|n2

=+∞∑

n=0

1n2

é convergente. Assim, o raio de convergência da série+∞∑

n=1

(x− 1)n

n2 2né r = 2

e o seu intervalo de convergência é [−1, 3].

António Bento (UBI) Cálculo II 2009/2010 128 / 498

Page 33: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.3 Séries de potências e série de Taylor

Exemplos (continuação)

e) Consideremos a série de potências

+∞∑

n=1

n

n2 + 1(x− 2)n.

Para cada x ∈ R obtemos uma série numérica cuja série dos módulos

associada é+∞∑

n=1

n

n2 + 1|x− 2|n, uma série de termos positivos. Como

lim

n+ 1(n+ 1)2 + 1

|x− 2|n+1

n

n2 + 1|x− 2|n

= limn3 + n2 + n+ 1n3 + 2n2 + 2n

|x− 2| = |x− 2|

concluímos pelo critério de d’Alembert que se |x− 2| < 1, isto é, sex ∈ ]1, 3[, a série converge absolutamente. Se |x− 2| > 1 a série diverge.

António Bento (UBI) Cálculo II 2009/2010 129 / 498

§1.3 Séries de potências e série de Taylor

Exemplos (continuação)

e) (continuação) Se x = 3, obtemos a série

+∞∑

n=1

n

n2 + 1(3− 2)n =

+∞∑

n=1

n

n2 + 1,

que por ser uma série de termos positivos, estudaremos a sua naturezarecorrendo ao critério do limite, fazendo a comparação com a sérieharmónica. Como

limn/(n2 + 1)

1/n= lim

n2

n2 + 1= 1

concluímos que para x = 3 a série tem a mesma natureza da sérieharmónica e, portanto, diverge.

António Bento (UBI) Cálculo II 2009/2010 130 / 498

§1.3 Séries de potências e série de Taylor

Exemplos (continuação)

e) (continuação) Além disso, se x = 1 obtemos a série+∞∑

n=1

(−1)nn

n2 + 1. A

sucessão de termo geral an =n

n2 + 1é decrescente visto que

n+ 1(n+ 1)2 + 1

− n

n2 + 1=

−n2 − n+ 1(n2 + 2n+ 2)(n2 + 1)

< 0 para todo on ∈ N.

Por outro lado, uma vez que temos

limn→+∞

n

n2 + 1= limn→+∞

n

n2(1 + 1/n2)= limn→+∞

1n(1 + 1/n2)

=1

+∞ = 0

podemos concluir pelo critério de Leibniz que, para x = 1, a sérieconverge. Assim, a série converge para x ∈ [1, 3[ e diverge parax ∈ ]−∞, 1[∪ [3 +∞[.

António Bento (UBI) Cálculo II 2009/2010 131 / 498

§1.3 Séries de potências e série de Taylor

No intervalo de convergência I de uma série de potências

+∞∑

n=0

an(x− a)n

fica bem definida a função f : I → R dada por

f(x) =+∞∑

n=0

an(x− a)n

= a0 + a1(x− a) + a2(x− a)2 + · · · + an(x− a)n + · · · .

António Bento (UBI) Cálculo II 2009/2010 132 / 498

Page 34: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.3 Séries de potências e série de Taylor

Propriedades da função f(x) =∑+∞n=0 an(x− a)n

Seja+∞∑

n=0

an(x− a)n

uma série de potências com raio de convergência r e com intervalo deconvergência I. Consideremos a função f : I → R definida por

f(x) =+∞∑

n=0

an(x− a)n.

Então

a) a função f é contínua em I;

b) a função f é de classe C∞ em ]a− r, a+ r[;

António Bento (UBI) Cálculo II 2009/2010 133 / 498

§1.3 Séries de potências e série de Taylor

Propriedades da função f(x) =∑+∞n=0 an(x− a)n (continuação)

c) para cada x ∈ ]a− r, a + r[ tem-se

f ′(x) =+∞∑

n=0

[an(x− a)n]′ ,

ou seja,

f ′(x) =+∞∑

n=1

nan(x− a)n−1

=+∞∑

n=0

(n+ 1)an+1(x− a)n

= a1 + 2a2(x− a) + 3a3(x− a)2 + · · ·+ nan(x− a)n−1 + · · ·

António Bento (UBI) Cálculo II 2009/2010 134 / 498

§1.3 Séries de potências e série de Taylor

Propriedades da função f(x) =∑+∞n=0 an(x− a)n (continuação)

d) para cada x ∈ ]a− r, a + r[ tem-se

f(x) dx =

[+∞∑

n=0

an(x− a)n+1

n+ 1

]

+ C

= C + a0(x− a) +a1

2(x− a)2 +

a2

3(x− a)3 + · · ·+

+ann+ 1

(x− a)n+1 + · · ·

ou seja, a função g dada por

g(x) =+∞∑

n=0

an(x− a)n+1

n+ 1

é uma primitiva de f .

António Bento (UBI) Cálculo II 2009/2010 135 / 498

§1.3 Séries de potências e série de Taylor

Exemplos

a) Seja f : R \ {1} → R a função dada por

f(x) =1

1− x.

Quando estudámos a série geométrica vimos que para cadax ∈ ]− 1, 1[ temos

+∞∑

n=0

xn =1

1− x = f(x).

Verificamos então que f admite um desenvolvimento em série depotências de x no intervalo ]− 1, 1[.

António Bento (UBI) Cálculo II 2009/2010 136 / 498

Page 35: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.3 Séries de potências e série de Taylor

Exemplos (continuação)

b) Como

(1

1− x

)′=

1′(1− x)− 1(1 − x)′

(1− x)2=

0(1 − x)− 1(−1)(1− x)2

=1

(1− x)2,

usando o exemplo anterior e uma das propriedades anteriores,temos, para x ∈]− 1, 1[,

1(1− x)2

=(

11− x

)′=

+∞∑

n=0

(xn)′

=+∞∑

n=1

nxn−1 =+∞∑

n=0

(n+ 1)xn

António Bento (UBI) Cálculo II 2009/2010 137 / 498

§1.3 Séries de potências e série de Taylor

Exemplos (continuação)

c) O estudo que fizemos da série geométrica permite-nos concluir,para cada x ∈ ]− 1, 1[, que

11 + x

=1

1− (−x)=

+∞∑

n=0

(−x)n =+∞∑

n=0

(−1)nxn.

Como ln(1 + x) é uma primitiva de1

1 + xtem-se

ln(1 + x) = C ++∞∑

n=0

(−1)nxn+1

n+ 1

para algum C ∈ R. Como ln(1 + 0) = 0, tem-se C = 0 e, porconseguinte,

ln(1 + x) =+∞∑

n=0

(−1)nxn+1

n+ 1para qualquer x ∈]− 1, 1[.

António Bento (UBI) Cálculo II 2009/2010 138 / 498

§1.3 Séries de potências e série de Taylor

Exemplos (continuação)

d) Usando novamente a série geométrica, para x ∈ ]− 1, 1[, temos

11 + x2

=1

1− (−x2)=

+∞∑

n=0

(−x2)n =+∞∑

n=0

(−1)nx2n

e, pelas propriedades estudadas, tem-se para x ∈ ]− 1, 1[

arc tg x = C ++∞∑

n=0

(−1)nx2n+1

2n+ 1

para algum C ∈ R. Como arc tg 0 = 0, concluímos que C = 0 e,portanto,

arc tg x =+∞∑

n=0

(−1)nx2n+1

2n+ 1para x ∈ ]− 1, 1[.

António Bento (UBI) Cálculo II 2009/2010 139 / 498

§1.3 Séries de potências e série de Taylor

Seja f : D → R uma função de classe C∞. Se f puder ser escrita naforma

f(x) =+∞∑

n=0

an(x− a)n

= a0 + a1(x− a) + a2(x− a)2 + · · ·+ an(x− a)n + · · ·

para x ∈ ]a− r, a+ r[⊆ D, com r > 0, dizemos que f admite umarepresentação em série de potências de x− a no intervalo]a− r, a+ r[. As funções que admitem uma representação em série depotências num intervalo não degenerado da forma ]a− r, a+ r[dizem-se funções analíticas no ponto a.

Dada uma função analítica num ponto a, como calcular os coeficientesan?

António Bento (UBI) Cálculo II 2009/2010 140 / 498

Page 36: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.3 Séries de potências e série de Taylor

Se para cada x ∈ ]a− r, a+ r[ se tem

f(x) = a0 + a1(x− a) + a2(x− a)2 + · · ·+ an(x− a)n + · · ·então f(a) = a0. Derivando obtemos

f ′(x) = a1 + 2a2(x− a) + 3a3(x− a)2 + · · · + nan(x− a)n−1 + · · ·

e, portanto, f ′(a) = a1. Derivando novamente obtemos

f ′′(x) = 2 a2 + 3× 2 a3(x− a) + · · · + n× (n− 1) an(x− a)n−2 + · · ·

o que implica f ′′(a) = 2 a2. Iterando o processo obtemos

f (n)(a) = n! an ⇔ an =f (n)(a)n!

para cada n ∈ N0 (com f (0) = f). Assim,

f(x) = f(a) +f ′(a)

1!(x− a) +

f ′′(a)2!

(x− a)2 + · · ·+ f (n)(a)n!

(x − a)n + · · ·

António Bento (UBI) Cálculo II 2009/2010 141 / 498

§1.3 Séries de potências e série de Taylor

Esta última fórmula faz-nos lembrar o polinómio de Taylor e a fórmulade Taylor que estudámos em Cálculo I:

Fórmula de Taylor (com resto de Lagrange)

Sejam I um intervalo,f : I → R

uma função de classe Cn, n+ 1 vezes diferenciável em int I e a umponto de I. Para cada x ∈ I \ {a}, existe c estritamente entre a e x talque

f(x) = f(a) + f ′(a) (x− a) +f ′′(a)

2!(x− a)2 + · · ·+ f (n)(a)

n!(x− a)n +Rn(x)

onde

Rn(x) =f (n+1)(c)(n+ 1)!

(x− a)n+1 .

António Bento (UBI) Cálculo II 2009/2010 142 / 498

§1.3 Séries de potências e série de Taylor

Recordemos que a

pn(x) = f(a) + f ′(a) (x− a) +f ′′(a)

2!(x− a)2 + · · ·+ f (n)(a)

n!(x− a)n

chamamos polinómio de Taylor de grau n da função f em torno dex = a e a

Rn(x) =f (n+1)(c)(n+ 1)!

(x− a)n+1

resto Lagrange de ordem n da função f em torno de x = a.

Se a = 0 a fórmula de Taylor designa-se por fórmula de Mac-Laurine o polinómio de Taylor designa-se por polinómio de Mac-Laurin.

António Bento (UBI) Cálculo II 2009/2010 143 / 498

§1.3 Séries de potências e série de Taylor

Dada uma função f : D → R de classe C∞, designa-se por série deTaylor de f em a a série

+∞∑

n=0

f (n)(a)n!

(x− a)n

= f(a) +f ′(a)

1!(x− a) +

f ′′(a)2!

(x− a)2 + · · · + f (n)(a)n!

(x− a)n + · · ·

No caso particular em que a = 0 obtemos a série

+∞∑

n=0

f (n)(0)n!

xn = f(0) +f ′(0)

1!x+

f ′′(0)2!

x2 + · · ·+ f (n)(0)n!

xn + · · ·

que se designa por série de MacLaurin de f .

António Bento (UBI) Cálculo II 2009/2010 144 / 498

Page 37: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.3 Séries de potências e série de Taylor

Pelo que foi visto anteriormente, uma função f de classe C∞ éanalítica num ponto a interior ao domínio se existe r > 0 tal que

f(x) =+∞∑

n=0

f (n)(a)n!

(x− a)n

para cada x ∈ ]a− r, a+ r[. Assim, da fórmula de Taylor resultaimediatamente o seguinte resultado.

Seja f : D → R uma função de classe C∞ e seja Rn(x) o resto deLagrange de ordem n da função f em torno de x = a ∈ D. Se existirr > 0 tal que para cada x ∈]a− r, a+ r[⊆ D se tem

limn→+∞

Rn(x) = 0,

então a função f é analítica em x = a.

António Bento (UBI) Cálculo II 2009/2010 145 / 498

§1.3 Séries de potências e série de Taylor

Exemplos

a) A função exponencial, f(x) = ex, é de classe C∞ e

f (n)(x) = ex o que implica f (n)(0) = 1

para qualquer n ∈ N. A fórmula de Maclaurin com resto de Lagrange será

ex = 1 + x+x2

2!+ · · ·+ xn

n!+Rn(x), com Rn(x) =

ec xn+1

(n+ 1)!

e onde c é um número entre 0 e x. Como∣∣∣∣

ec xn+1

(n+ 1)!

∣∣∣∣⩽

emax{0,x} |x|n+1

(n+ 1)!,

temoslimn→+∞

Rn(x) = limn→+∞

ec xn+1

(n+ 1)!= 0

e, por conseguinte, a função exponencial é analítica em torno da origem e

ex = 1 + x+x2

2!+ · · ·+ xn

n!+ · · · =

+∞∑

n=0

xn

n!.

António Bento (UBI) Cálculo II 2009/2010 146 / 498

§1.3 Séries de potências e série de Taylor

Exemplos (continuação)

b) A função seno, f(x) = sen x, é de classe C∞ e

f (n)(x) =

cos x se n = 4k − 3, k ∈ N;

− senx se n = 4k − 2, k ∈ N;

− cos x se n = 4k − 1, k ∈ N;

sen x se n = 4k, k ∈ N;

pelo que

f (n)(0) =

{

0 se n = 2k, n ∈ N;

(−1)k+1 se n = 2k − 1, n ∈ N.

António Bento (UBI) Cálculo II 2009/2010 147 / 498

§1.3 Séries de potências e série de Taylor

Exemplos (continuação)

b) (continuação) Assim, a fórmula de Maclaurin, com resto deLagrange, da função seno é

sen x = x− x3

3!+x5

5!+ · · ·+ (−1)n

x2n+1

(2n + 1)!+R2n+1(x),

com

R2n+1(x) =(−1)n sen c x2n+2

(2n + 2)!

e c um número entre 0 e x. Como limn→+∞

R2n+1(x) = 0, a função

seno é analítica em torno da origem e

senx = x− x3

3!+x5

5!+ · · ·+ (−1)n

x2n+1

(2n+ 1)!+ · · · =

+∞∑

n=0

(−1)nx2n+1

(2n+ 1)!.

António Bento (UBI) Cálculo II 2009/2010 148 / 498

Page 38: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§1.3 Séries de potências e série de Taylor

Exemplos (continuação)

c) De modo semelhante prova-se que a função coseno é analítica naorigem e que

cos x = 1− x2

2!+x4

4!+ · · ·+ (−1)n

x2n

(2n)!+ · · ·

=+∞∑

n=0

(−1)nx2n

(2n)!.

António Bento (UBI) Cálculo II 2009/2010 149 / 498

§1.3 Séries de potências e série de Taylor

Façamos uma lista das principais séries de Taylor deduzidas nestes capítulo.

ex =+∞∑

n=0

xn

n!, x ∈ R

senx =+∞∑

n=0

(−1)nx2n+1

(2n+ 1)!, x ∈ R

cosx =+∞∑

n=0

(−1)nx2n

(2n)!, x ∈ R

11− x =

+∞∑

n=0

xn, x ∈ ]− 1, 1[

ln(1 + x) =+∞∑

n=0

(−1)nxn+1

n+ 1, x ∈ ]− 1, 1[

arc tgx =+∞∑

n=0

(−1)nx2n+1

2n+ 1, x ∈ ]− 1, 1[

António Bento (UBI) Cálculo II 2009/2010 150 / 498

§1.3 Séries de potências e série de Taylor

Observação

Nem todas as funções de classe C∞ num dado intervalo aberto sãoanalíticas nesse intervalo. Por exemplo, se f : R→ R é a funçãodefinida por

f(x) =

{

e−1/x2se x 6= 0

0 se x = 0

pode provar-se que f é de classe C∞ e f (n)(0) = 0. Obviamente, a suasérie de MacLaurin

+∞∑

n=0

f (n)(0)n!

xn = f(0) +f ′(0)

1!x+

f ′′(0)2!

x2 + · · ·+ f (n)(0)n!

xn + · · ·

é identicamente nula e, portanto, é diferente de f em qualquerintervalo da forma ]− r, r[, r > 0. Logo f não é analítica em x = 0.

António Bento (UBI) Cálculo II 2009/2010 151 / 498

Índice

1 Sucessões e séries

2 Funções de Rn em R

m: limites e continuidadeBreves noções de topologia em Rn

Funções de Rn em Rm

LimitesContinuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 152 / 498

Page 39: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

Índice

1 Sucessões e séries

2 Funções de Rn em Rm: limites e continuidadeBreves noções de topologia em Rn

Os espaços Rn

Distâncias e normasBolas e conjuntos limitadosInterior, exterior, fronteira, aderência e derivado de um conjuntoConjuntos abertos e conjuntos fechados

Funções de Rn em Rm

LimitesContinuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 153 / 498

Índice

1 Sucessões e séries

2 Funções de Rn em Rm: limites e continuidadeBreves noções de topologia em Rn

Os espaços Rn

Distâncias e normasBolas e conjuntos limitadosInterior, exterior, fronteira, aderência e derivado de um conjuntoConjuntos abertos e conjuntos fechados

Funções de Rn em Rm

LimitesContinuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 154 / 498

§2.1.1 Os espaços Rn

Recordemos que se identifica o conjunto R dos números reais com arecta

0 a

António Bento (UBI) Cálculo II 2009/2010 155 / 498

§2.1.1 Os espaços Rn

Os elementos do conjunto

R2 = {(x1, x2) : x1, x2 ∈ R}

podem ser representados no plano da seguinte forma

x1

x2

b P (a, b)

a

b

Representação geométrica de um ponto de R2

António Bento (UBI) Cálculo II 2009/2010 156 / 498

Page 40: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§2.1.1 Os espaços Rn

Os elementos do conjunto

R3 = {(x1, x2, x3) : x1, x2, x3 ∈ R}

podem ser representados no espaço da seguinte forma

x2

x1

x3

bP (a, b, c)

a

b

c

Representação geométrica de um ponto de R3

António Bento (UBI) Cálculo II 2009/2010 157 / 498

§2.1.1 Os espaços Rn

Podemos generalizar este género de conjuntos para qualquer númeronatural n. Assim, definimos o conjunto Rn utilizando o produtocartesiano, ou seja,

Rn = R×R× · · · ×R︸ ︷︷ ︸

n vezes

é o conjunto formado por todos os elementos da forma

x = (x1, . . . , xn)

onde xi é um número real para i = 1, . . . , n. A cada elemento xichamamos i-ésima coordenada de x.

António Bento (UBI) Cálculo II 2009/2010 158 / 498

§2.1.1 Os espaços Rn

Em Rn vamos considerar duas operações, a adição (entre elementos deRn) e a multiplicação de um número real por um elemento de Rn,definidas, para cada

x = (x1, . . . , xn) e y = (y1, . . . , yn)

em Rn e para cada λ ∈ R, da seguinte forma:

x+ y = (x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)

eλx = λ (x1, . . . , xn) = (λx1, . . . , λxn) .

António Bento (UBI) Cálculo II 2009/2010 159 / 498

§2.1.1 Os espaços Rn

A adição e a multiplicação verificam, para cada

x = (x1, . . . , xn) , y = (y1, . . . , yn) e z = (z1, . . . , zn)

em Rn e para cada λ, µ em R, as seguintes propriedades:

a) x+ y = y + x;

b) x+ (y + z) = (x+ y) + z;

c) (0, . . . , 0) ∈ Rn é o elemento neutro da adição;

d) −x = (−x1, . . . ,−xn) é o simétrico de x = (x1, . . . , xn), já quex+ (−x) = (0, . . . , 0);

e) λ (µx) = (λµ)x;

f) λ (x+ y) = λx+ λy;

g) (λ+ µ)x = λx+ µx;

h) 1x = x.

Por se verificarem estas propriedades, é costume dizer que Rn é umespaço vectorial.

António Bento (UBI) Cálculo II 2009/2010 160 / 498

Page 41: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§2.1.1 Os espaços Rn

Associada a estas operações está uma outra operação, a subtracção,que é definida, para cada

x = (x1, . . . , xn) e y = (y1, . . . , yn)

em Rn, por

x− y = (x1, . . . , xn)− (y1, . . . , yn) = (x1 − y1, . . . , xn − yn).

Sempre que não haja perigo de confusão, representaremos um elementogenérico de R2 por (x, y) em vez de (x1, x2). Da mesma forma, umelemento genérico de R3 será por vezes representado por (x, y, z) emvez de (x1, x2, x3).

António Bento (UBI) Cálculo II 2009/2010 161 / 498

Índice

1 Sucessões e séries

2 Funções de Rn em Rm: limites e continuidadeBreves noções de topologia em Rn

Os espaços Rn

Distâncias e normasBolas e conjuntos limitadosInterior, exterior, fronteira, aderência e derivado de um conjuntoConjuntos abertos e conjuntos fechados

Funções de Rn em Rm

LimitesContinuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 162 / 498

§2.1.2 Distâncias e normas

Em R, observando a figura que se segue

x y

|x− y|

Distância entre dois números reais x e y

verificamos que a distância entre dois números reais x e y é dada por

d(x, y) = |x− y| .

António Bento (UBI) Cálculo II 2009/2010 163 / 498

§2.1.2 Distâncias e normas

Vejamos como calcular a distância entre dois elementos de R2. Paraisso consideremos dois pontos x = (x1, x2) e y = (y1, y2) e façamos asua representação geométrica.

x1

x2 b

y1

y2 bb

b

d(x,y)

b

b

x1 − y1

b

b

b

b

x2 − y2

b

b

Distância entre dois pontos de R2

Pelo teorema de Pitágoras concluímos que a distância entre x e y édada por

d(x, y) =√

(x1 − y1)2 + (x2 − y2)2.

António Bento (UBI) Cálculo II 2009/2010 164 / 498

Page 42: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§2.1.2 Distâncias e normas

Do mesmo modo, a distância entre dois pontos x = (x1, x2, x3) ey = (y1, y2, y3) é dada por

d(x, y) =√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2.

bx = (x1, x2, x3)

by = (y1, y2, y3)

b

b

b

b

b

b

Distância entre dois pontos de R3

António Bento (UBI) Cálculo II 2009/2010 165 / 498

§2.1.2 Distâncias e normas

De um modo geral, dados x = (x1, . . . , xn) e y = (y1, . . . , yn) em Rn, adistância entre x e y calcula-se usando a seguinte fórmula:

d(x, y) =√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2.

António Bento (UBI) Cálculo II 2009/2010 166 / 498

§2.1.2 Distâncias e normas

Associado à definição de distância temos o conceito de norma. Dadox = (x1, . . . , xn) ∈ Rn, a norma de x é dada por

‖x‖ =√

x21 + x2

2 + · · ·+ x2n.

Repare-se que se representarmos por 0 o vector nulo (0, . . . , 0) temos

‖x‖ = ‖x− 0‖ = d(x, 0)

pelo que a norma de x = (x1, . . . , xn) é apenas o comprimento do vector x, talcomo ilustra a figura seguinte no caso particular de R2:

x1

x2x = (x1, x2)

Além disso, dados x = (x1, . . . , xn) e y = (y1, . . . , yn) em Rn, temos

d(x, y) = ‖x− y‖.

António Bento (UBI) Cálculo II 2009/2010 167 / 498

§2.1.2 Distâncias e normas

Para quaisquer x, y ∈ Rn e para qualquer λ ∈ R, as seguintespropriedades são verdadeiras:

a) ‖x‖ ⩾ 0

b) ‖x‖ = 0 se e só se x = 0;

c) ‖λx‖ = |λ| ‖x‖;d) ‖x+ y‖ ⩽ ‖x‖+ ‖y‖. (desigualdade triangular)

As três primeiras propriedades apresentadas anteriormente são fáceisde verificar. Já a última propriedade é mais difícil de provar.

António Bento (UBI) Cálculo II 2009/2010 168 / 498

Page 43: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

Índice

1 Sucessões e séries

2 Funções de Rn em Rm: limites e continuidadeBreves noções de topologia em Rn

Os espaços Rn

Distâncias e normasBolas e conjuntos limitadosInterior, exterior, fronteira, aderência e derivado de um conjuntoConjuntos abertos e conjuntos fechados

Funções de Rn em Rm

LimitesContinuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 169 / 498

§2.1.3 Bolas e conjuntos limitados

Seja a = (a1, . . . , an) um ponto de Rn. Chama-se bola aberta decentro a e raio r > 0 ao conjunto

Br(a) = {x ∈ Rn : d(x, a) < r}= {x ∈ Rn : ‖x− a‖ < r}

={

x ∈ Rn :√

(x1 − a1)2 + (x2 − a2)2 + · · ·+ (xn − an)2 < r

}

={

x ∈ Rn : (x1 − a1)2 + (x2 − a2)2 + · · ·+ (xn − an)2 < r2}

e bola fechada de centro a e raio r ⩾ 0 ao conjunto

Br[a] = {x ∈ Rn : d(x, a) ⩽ r}= {x ∈ Rn : ‖x− a‖ ⩽ r}

={

x ∈ Rn :√

(x1 − a1)2 + (x2 − a2)2 + · · ·+ (xn − an)2 ⩽ r

}

={

x ∈ Rn : (x1 − a1)2 + (x2 − a2)2 + · · ·+ (xn − an)2⩽ r2

}

.

António Bento (UBI) Cálculo II 2009/2010 170 / 498

§2.1.3 Bolas e conjuntos limitados

O conjunto

Sr(a) = {x ∈ Rn : d(x, a) = r}= {x ∈ Rn : ‖x− a‖ = r}

={

x ∈ Rn :√

(x1 − a1)2 + (x2 − a2)2 + · · ·+ (xn − an)2 = r

}

={

x ∈ Rn : (x1 − a1)2 + (x2 − a2)2 + · · ·+ (xn − an)2 = r2}

designa-se por esfera de centro a e raio r ⩾ 0.

António Bento (UBI) Cálculo II 2009/2010 171 / 498

§2.1.3 Bolas e conjuntos limitados

Em R a distância entre dois elementos é dada pelo módulo da diferençae, por conseguinte, as bolas são intervalos e as esferas conjuntos comdois pontos:

aa− r a+ r aa− r a+ r aa− r a+ r

Bola aberta, bola fechada e esfera de centro a ∈ R e raio r

António Bento (UBI) Cálculo II 2009/2010 172 / 498

Page 44: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§2.1.3 Bolas e conjuntos limitados

A figura seguinte ilustra, em R2, os três conjuntos definidosanteriormente:

b

a1

a2 b

rb

rb

a1

a2

rbb

rb

a1

a2

rb

Bola aberta, bola fechada e esfera de centro (a1, a2) e raio r

António Bento (UBI) Cálculo II 2009/2010 173 / 498

§2.1.3 Bolas e conjuntos limitados

Em R3 a bola de centro a = (a1, a2, a3) e raio r pode ser representadapor

ba rba rb

Representação geométrica em R3 da bola de centro a = (a1, a2, a3) e raio r

António Bento (UBI) Cálculo II 2009/2010 174 / 498

§2.1.3 Bolas e conjuntos limitados

Um subconjunto A de Rn diz-se limitado se estiver contido emalguma bola centrada na origem, isto é,

A ⊆ Br[0] para algum r > 0,

ou seja, se existir r > 0 tal que

‖x‖ ⩽ r para cada x ∈ A.

Os subconjuntos de Rn que não são limitados dizem-se ilimitados

António Bento (UBI) Cálculo II 2009/2010 175 / 498

Índice

1 Sucessões e séries

2 Funções de Rn em Rm: limites e continuidadeBreves noções de topologia em Rn

Os espaços Rn

Distâncias e normasBolas e conjuntos limitadosInterior, exterior, fronteira, aderência e derivado de um conjuntoConjuntos abertos e conjuntos fechados

Funções de Rn em Rm

LimitesContinuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 176 / 498

Page 45: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§2.1.4 Interior, exterior, fronteira, aderência e derivado de um conjunto

Seja A um subconjunto não vazio de Rn. Um ponto a ∈ Rn diz-seinterior a A

se existir ε > 0 tal que Bε(a) ⊆ A.

O ponto a diz-se exterior a A

se existir ε > 0 tal que Bε(a) ⊆ Rn \ A.

Um ponto a ∈ Rn diz-se fronteiro a A

se para cada ε > 0, Bε(a) ∩A 6= ∅ e Bε(a) ∩ (Rn \ A) 6= ∅.

António Bento (UBI) Cálculo II 2009/2010 177 / 498

§2.1.4 Interior, exterior, fronteira, aderência e derivado de um conjunto

A figura que se segue ilustra estes três conceitos.

aa

bb

cc

Pontos interiores, pontos exteriores e pontos fronteiros

O ponto a é um ponto interior ao conjunto, o ponto b é um pontoexterior ao conjunto e o ponto c é um ponto fronteiro ao conjunto.

António Bento (UBI) Cálculo II 2009/2010 178 / 498

§2.1.4 Interior, exterior, fronteira, aderência e derivado de um conjunto

O conjunto dos pontos interiores a A designa-se por interior de A erepresenta-se por intA ou A◦.

O conjunto dos pontos exteriores a A chama-se exterior de A erepresenta-se por extA.

O conjunto dos pontos fronteiros de A diz-se a fronteira de A erepresenta-se por frA.

António Bento (UBI) Cálculo II 2009/2010 179 / 498

§2.1.4 Interior, exterior, fronteira, aderência e derivado de um conjunto

Observações

a) Da definição resulta imediatamente que intA, extA e frA sãoconjuntos disjuntos dois a dois e que

Rn = intA ∪ extA ∪ frA.

b) Outra consequência imediata da definição é a seguinte

intA = ext (Rn \ A) e frA = fr (Rn \ A) .

António Bento (UBI) Cálculo II 2009/2010 180 / 498

Page 46: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§2.1.4 Interior, exterior, fronteira, aderência e derivado de um conjunto

Exemplos

a) Consideremos os conjuntos

A ={

(x, y) ∈ R2 : 1 < x < 2 ∧ 1 < y < 2}

B ={

(x, y) ∈ R2 : 3 ⩽ x ⩽ 4 ∧ 1 ⩽ y ⩽ 2}

C ={

(x, y) ∈ R2 : 5 ⩽ x ⩽ 6 ∧ 1 < y < 2}

Estes conjuntos estão representados na figura seguinte

1

2

1 2 3 4 5 6x

y

A B C

António Bento (UBI) Cálculo II 2009/2010 181 / 498

§2.1.4 Interior, exterior, fronteira, aderência e derivado de um conjunto

Exemplos

a) (continuação) Então o interior destes três conjuntos é dado por

intA ={

(x, y) ∈ R2 : 1 < x < 2 ∧ 1 < y < 2

}

intB ={

(x, y) ∈ R2 : 3 < x < 4 ∧ 1 < y < 2

}

intC ={

(x, y) ∈ R2 : 5 < x < 6 ∧ 1 < y < 2

},

o exterior é dado por

extA ={

(x, y) ∈ R2 : x < 1 ∨ x > 2 ∨ y < 1 ∨ y > 2

}

extB ={

(x, y) ∈ R2 : x < 3 ∨ x > 4 ∨ y < 1 ∨ y > 2

}

extC ={

(x, y) ∈ R2 : x < 5 ∨ x > 6 ∨ y < 1 ∨ y > 2

},

e a fronteira é dada por

frA ={

(x, y) ∈ R2 : ((y = 1 ∨ y = 2) ∧ 1 ⩽ x ⩽ 2) ∨ ((x = 1 ∨ x = 2) ∧ 1 ⩽ y ⩽ 2)

}

frB ={

(x, y) ∈ R2 : ((y = 1 ∨ y = 2) ∧ 3 ⩽ x ⩽ 4) ∨ ((x = 3 ∨ x = 4) ∧ 1 ⩽ y ⩽ 2)

}

frC ={

(x, y) ∈ R2 : ((y = 1 ∨ y = 2) ∧ 5 ⩽ x ⩽ 6) ∨ ((x = 5 ∨ x = 6) ∧ 1 ⩽ y ⩽ 2)

}.

António Bento (UBI) Cálculo II 2009/2010 182 / 498

§2.1.4 Interior, exterior, fronteira, aderência e derivado de um conjunto

Exemplos

b) Dada a bola aberta Br(a) de centro a e raio r > 0 tem-se

int (Br(a)) = Br(a)

ext (Br(a)) = Rn \Br[a]

fr (Br(a)) = Sr(a).

O interior, o exterior e a fronteira da bola fechada Br[a] de centro ae raio r > 0 coincidem, respectivamente, com o interior, o exterior ea fronteira de Br(a).

c) É óbvio que intRn = Rn, extRn = ∅ e frRn = ∅.

d) Também temos int∅ = ∅, ext∅ = Rn e fr∅ = ∅.

António Bento (UBI) Cálculo II 2009/2010 183 / 498

§2.1.4 Interior, exterior, fronteira, aderência e derivado de um conjunto

Um ponto a ∈ Rn diz-se aderente a um subconjunto A ⊆ Rn

se para cada ε > 0, Bε(a) ∩A 6= ∅.

O conjunto dos pontos aderentes de um conjunto A designa-se poraderência ou fecho de A e representa-se por A.

António Bento (UBI) Cálculo II 2009/2010 184 / 498

Page 47: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§2.1.4 Interior, exterior, fronteira, aderência e derivado de um conjunto

Exemplos

a) Considerando novamente os conjuntos

A ={

(x, y) ∈ R2 : 1 < x < 2 ∧ 1 < y < 2}

B ={

(x, y) ∈ R2 : 3 ⩽ x ⩽ 4 ∧ 1 ⩽ y ⩽ 2}

C ={

(x, y) ∈ R2 : 5 ⩽ x ⩽ 6 ∧ 1 < y < 2}

temos

A ={

(x, y) ∈ R2 : 1 ⩽ x ⩽ 2 ∧ 1 ⩽ y ⩽ 2}

B ={

(x, y) ∈ R2 : 3 ⩽ x ⩽ 4 ∧ 1 ⩽ y ⩽ 2}

C ={

(x, y) ∈ R2 : 5 ⩽ x ⩽ 6 ∧ 1 ⩽ y ⩽ 2}

António Bento (UBI) Cálculo II 2009/2010 185 / 498

§2.1.4 Interior, exterior, fronteira, aderência e derivado de um conjunto

Exemplos (continuação)

b) Seja Br(a) a bola aberta de centro a e raio r > 0. Então

Br(a) = Br[a].

c) Também se tem Rn = Rn e ∅ = ∅.

António Bento (UBI) Cálculo II 2009/2010 186 / 498

§2.1.4 Interior, exterior, fronteira, aderência e derivado de um conjunto

É evidente que para qualquer subconjunto A de Rn se tem

A = intA ∪ frA

eintA ⊆ A ⊆ A.

António Bento (UBI) Cálculo II 2009/2010 187 / 498

§2.1.4 Interior, exterior, fronteira, aderência e derivado de um conjunto

Sejam A um subconjunto de Rn e a ∈ Rn. Diz-se que a é um pontode acumulação de A

se para cada ε > 0, Bε(a) ∩ (A \ {a}) 6= ∅.

O conjunto dos pontos de acumulação de um conjunto A representa-sepor A′ e designa-se por derivado.

Os pontos de A que não são pontos de acumulação de A designam-sepor pontos isolados.

António Bento (UBI) Cálculo II 2009/2010 188 / 498

Page 48: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§2.1.4 Interior, exterior, fronteira, aderência e derivado de um conjunto

Exemplos

a) Seja

A ={

(x, y) ∈ R2 : x2 + y2 < 1}

∪ {(2, 2) , (−2, 2)} .

O conjunto A tem a seguinte representação geométrica

x

y

2

2

-2 1

António Bento (UBI) Cálculo II 2009/2010 189 / 498

§2.1.4 Interior, exterior, fronteira, aderência e derivado de um conjunto

Exemplos (continuação)

a) (continuação) Então se

A ={

(x, y) ∈ R2 : x2 + y2 < 1}∪ {(2, 2) , (−2, 2)}

tem-se

intA ={

(x, y) ∈ R2 : x2 + y2 < 1},

extA ={

(x, y) ∈ R2 : x2 + y2 > 1}\ {(2, 2) , (−2, 2)} ,

frA ={

(x, y) ∈ R2 : x2 + y2 = 1}∪ {(2, 2) , (−2, 2)} ,

A ={

(x, y) ∈ R2 : x2 + y2⩽ 1}∪ {(2, 2) , (−2, 2)} ,

A′ ={

(x, y) ∈ R2 : x2 + y2⩽ 1}.

Os pontos (2, 2) e (−2, 2) são pontos isolados de A. Além disso o conjuntoA é limitado porque

A ⊆ B3[0].

b) É óbvio que (Rn)′ = Rn e que (∅)′ = ∅.

António Bento (UBI) Cálculo II 2009/2010 190 / 498

Índice

1 Sucessões e séries

2 Funções de Rn em Rm: limites e continuidadeBreves noções de topologia em Rn

Os espaços Rn

Distâncias e normasBolas e conjuntos limitadosInterior, exterior, fronteira, aderência e derivado de um conjuntoConjuntos abertos e conjuntos fechados

Funções de Rn em Rm

LimitesContinuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 191 / 498

§2.1.5 Conjuntos abertos e conjuntos fechados

Um subconjunto A de Rn diz-se aberto se A = intA e diz-se fechadose A = A.

aa

conjunto aberto

bb

conjunto fechado

Conjuntos abertos e conjuntos fechados

António Bento (UBI) Cálculo II 2009/2010 192 / 498

Page 49: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

Índice

1 Sucessões e séries

2 Funções de Rn em Rm: limites e continuidadeBreves noções de topologia em Rn

Funções de Rn em Rm

Definição e exemplosGráfico, curvas de nível e superfícies de nível

LimitesContinuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 193 / 498

Índice

1 Sucessões e séries

2 Funções de Rn em Rm: limites e continuidadeBreves noções de topologia em Rn

Funções de Rn em Rm

Definição e exemplosGráfico, curvas de nível e superfícies de nível

LimitesContinuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 194 / 498

§2.2.1 Definição e exemplos

Seja D um subconjunto não vazio de Rn. Uma função

f : D ⊆ Rn → Rm

associa a cada elemento x = (x1, . . . , xn) de D um e um só elemento deRm que representaremos por f(x). Como f(x) ∈ Rm, tem-se

f(x) = (f1(x), f2(x), . . . , fm(x))

onde

f1 : D ⊆ Rn → R

f2 : D ⊆ Rn → R

...

fm : D ⊆ Rn → R.

António Bento (UBI) Cálculo II 2009/2010 195 / 498

§2.2.1 Definição e exemplos

Assim, cada função f : D ⊆ Rn → Rm pode ser definida por m funções

f1 : D ⊆ Rn → R

f2 : D ⊆ Rn → R

...

fm : D ⊆ Rn → R,

funções essas que se designam por funções coordenadas de f . Nestascondições escreve-se

f = (f1, f2, . . . , fm) .

António Bento (UBI) Cálculo II 2009/2010 196 / 498

Page 50: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§2.2.1 Definição e exemplos

As funçõesf : D ⊆ Rn → R

designam-se por funções escalares e as funções

f : D ⊆ Rn → Rm, m > 1,

designam-se por funções vectoriais.

O conjunto D no qual está definida a função designa-se por domíniode f e o conjunto de todas as imagens de uma função designa-se porcontradomínio de f , ou seja, o contradomínio de uma função

f : D ⊆ Rn → Rm

é o conjuntof(D) = {f(x) ∈ Rm : x ∈ D} .

António Bento (UBI) Cálculo II 2009/2010 197 / 498

§2.2.1 Definição e exemplos

Exemplos de funções f : D ⊆ Rn → Rm

a) Seja f a função dada por

f(x, y) = (f1(x, y), f2(x, y), f3(x, y))

= (ln(y − x), sen x, 1) .

O domínio de f é o conjunto

D ={

(x, y) ∈ R2 : y − x > 0}

={

(x, y) ∈ R2 : y > x}

Obviamente, f : D ⊆ R2 → R3 e o seu contradomínio é o conjunto

f(D) ={

(a, b, c) ∈ R3 : − 1 ⩽ b ⩽ 1, c = 1}

.

Esta função é uma função vectorial pois o seu contradomínio é umsubconjunto de R3.

António Bento (UBI) Cálculo II 2009/2010 198 / 498

§2.2.1 Definição e exemplos

Exemplos de funções f : D ⊆ Rn → Rm (continuação)

a) (continuação) Façamos a representação geométrica do domínio

D ={

(x, y) ∈ R2 : y > x}

da função f :

x

y

1

1

y = x

D

1

António Bento (UBI) Cálculo II 2009/2010 199 / 498

§2.2.1 Definição e exemplos

Exemplos de funções f : D ⊆ Rn → Rm (continuação)

b) Consideremos a função escalar dada por

f(x, y) = x ln(

y2 − x)

.

O domínio de f é o conjunto

D ={

(x, y) ∈ R2 : y2 − x > 0}

={

(x, y) ∈ R2 : y2 > x}

Assim, f : D ⊆ R2 → R e o contradomínio de f é R.

António Bento (UBI) Cálculo II 2009/2010 200 / 498

Page 51: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§2.2.1 Definição e exemplos

Exemplos de funções f : D ⊆ Rn → Rm (continuação)

b) (continuação) Façamos a representação geométrica do domínio

D ={

(x, y) ∈ R2 : y2 > x}

da função f :

x

y

1 2

1

√2

x = y2D

1

√2

António Bento (UBI) Cálculo II 2009/2010 201 / 498

Índice

1 Sucessões e séries

2 Funções de Rn em Rm: limites e continuidadeBreves noções de topologia em Rn

Funções de Rn em Rm

Definição e exemplosGráfico, curvas de nível e superfícies de nível

LimitesContinuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 202 / 498

§2.2.2 Gráfico, curvas de nível e superfícies de nível

Dada uma função f : D ⊆ Rn → Rm designa-se por gráfico de f oconjunto

G (f) = {(a, f(a)) : a ∈ D} .

António Bento (UBI) Cálculo II 2009/2010 203 / 498

§2.2.2 Gráfico, curvas de nível e superfícies de nível

Gráfico da função dada por f(x, y) = x2 + y2

Seja f a função dada por

f(x, y) = x2 + y2.

O domínio desta função é R2 e o seu contradomínio é [0,+∞[. Ográfico desta função é o conjunto

G (f) ={(

(x, y), x2 + y2)

: (x, y) ∈ R2}

.

Costuma identificar-se o ponto((x, y), x2 + y2

)de R2 ×R com o ponto

(x, y, x2 + y2

)de R3. Assim,

G (f) ={(

x, y, x2 + y2)

: (x, y) ∈ R2}

.

António Bento (UBI) Cálculo II 2009/2010 204 / 498

Page 52: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§2.2.2 Gráfico, curvas de nível e superfícies de nível

Gráfico da função dada por f(x, y) = x2 + y2 (continuação)

Façamos a representação geométrica do gráfico de f :

x

y

f(x, y)

1

2

5b

António Bento (UBI) Cálculo II 2009/2010 205 / 498

§2.2.2 Gráfico, curvas de nível e superfícies de nível

Sejam f : D ⊆ Rn → R uma função e k ∈ R. O conjunto

Ck = {x ∈ D : f(x) = k}

designa-se por conjunto de nível k. Em R2 os conjuntos de níveldesignam-se por curvas de nível e em R3 designam-se porsuperfícies de nível.

António Bento (UBI) Cálculo II 2009/2010 206 / 498

§2.2.2 Gráfico, curvas de nível e superfícies de nível

Curvas de nível da função dada por f(x, y) = x2 + y2

Consideremos novamente a função f : R2 → R dada por

f(x, y) = x2 + y2.

As curvas de nível desta função são

Ck ={

(x, y) ∈ R2 : x2 + y2 = k}

.

Assim, se k < 0 temos Ck = ∅. Se k = 0 temos C0 = {(0, 0)}.Finalmente, para k > 0 a curva de nível é uma circunferência centradaem (0, 0) e de raio

√k.

António Bento (UBI) Cálculo II 2009/2010 207 / 498

§2.2.2 Gráfico, curvas de nível e superfícies de nível

Curvas de nível da função dada por f(x, y) = x2 +y2 (continuação)

As curvas de nível 1, 2 e 3 estão representadas na figura seguinte

x

y

1√

2√

3

António Bento (UBI) Cálculo II 2009/2010 208 / 498

Page 53: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§2.2.2 Gráfico, curvas de nível e superfícies de nível

Curvas de nível da função dada por f(x, y) = x2 +y2 (continuação)

As curvas de nível podem ajudar a representar geometricamente ográfico da função:

x

y

f(x, y)

1

2

3

António Bento (UBI) Cálculo II 2009/2010 209 / 498

Índice

1 Sucessões e séries

2 Funções de Rn em Rm: limites e continuidadeBreves noções de topologia em Rn

Funções de Rn em Rm

Limites

Definição, propriedades e exemplosLimites relativos e limites direccionais

Continuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 210 / 498

Índice

1 Sucessões e séries

2 Funções de Rn em Rm: limites e continuidadeBreves noções de topologia em Rn

Funções de Rn em Rm

Limites

Definição, propriedades e exemplosLimites relativos e limites direccionais

Continuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 211 / 498

§2.3.1 Definição, propriedades e exemplos

Comecemos por recordar a definição de limite para funções

f : D ⊆ R→ R,

ou seja, quando n = m = 1.

Sejam D um subconjunto de R, f : D → R uma função, a um ponto deacumulação de D e b ∈ R. Diz-se que b é o limite (de f) quando xtende para a, e escreve-se

limx→a

f(x) = b,

se para cada ε > 0, existe δ > 0 tal que

|f(x)− b| < ε para qualquer x ∈ D tal que 0 < |x− a| < δ.

Simbolicamente, tem-se o seguinte

limx→a

f(x) = b⇔ ∀ε > 0 ∃δ > 0 ∀x ∈ D (0 < |x− a| < δ ⇒ |f(x)− b| < ε)

António Bento (UBI) Cálculo II 2009/2010 212 / 498

Page 54: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§2.3.1 Definição, propriedades e exemplos

A figura seguinte ilustra o conceito de limite de funções

f : D ⊆ R→ R.

x

y

bb

a

b

f(a)

b−ε

b+ε

b

b

a−δ a+δ

b

a−δ a a+δ

b

a−δ a a+δ

b

xa

b−ε

b+ε

b

b

a−δ a a+δ

b

a−δ a a+δ

b

a−δaa+δ

b

a−δ a a+δ

b−ε

b

b+ε

b

Interpretação geométrica do conceito de limite de uma função real de variável real

António Bento (UBI) Cálculo II 2009/2010 213 / 498

§2.3.1 Definição, propriedades e exemplos

Para generalizarmos o conceito de limite para funções

f : D ⊆ Rn → Rm

temos de utilizar normas em vez de módulos.

Deste modo, sejam D um subconjunto de Rn,

f : D ⊆ Rn → Rm

uma função, a um ponto de acumulação de D e b ∈ Rm. Dizemos que bé o limite de f quando x tende para a, e escreve-se

limx→a

f(x) = b,

se para cada ε > 0, existe δ > 0 tal que

‖f(x)− b‖ < ε para qualquer x ∈ D tal que 0 < ‖x− a‖ < δ.

Simbolicamente, tem-se o seguinte:

limx→a

f(x) = b⇔ ∀ε > 0 ∃δ > 0 ∀x ∈ D (0 < ‖x− a‖ < δ ⇒ ‖f(x)− b‖ < ε) .

António Bento (UBI) Cálculo II 2009/2010 214 / 498

§2.3.1 Definição, propriedades e exemplos

Para interpretar geometricamente a definição de limite basta observar que

‖f(x)− b‖ < ε é equivalente a f(x) ∈ Bε(b)

e que0 < ‖x− a‖ < δ é equivalente a x ∈ Bδ(a) \ {a} .

Rn

DRm

f(D)

f

a

f(a)

bbε

δ a

x f(x)

Interpretação geométrica do limite em a de uma função f : D ⊆ Rn → Rm

António Bento (UBI) Cálculo II 2009/2010 215 / 498

§2.3.1 Definição, propriedades e exemplos

Se a for um ponto isolado do domínio D, então a definição dada atrásnão se pode aplicar porque, quando a é um ponto isolado de D, épossível escolher δ > 0 tal que

0 < ‖x− a‖ < δ

é falso para qualquer x ∈ D.

António Bento (UBI) Cálculo II 2009/2010 216 / 498

Page 55: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§2.3.1 Definição, propriedades e exemplos

Propriedades

a) O limite de uma função (quando existe) é único.

b) Sejam D um subconjunto de Rn,

a = (a1, . . . , an) ∈ Rn

um ponto de acumulação de D e

b = (b1, . . . , bm) ∈ Rm.

Sef : D ⊆ Rn → Rm

uma função tal que

f = (f1, . . . , fm) ,

entãolimx→a

f(x) = b se e só se limx→a

fi(x) = bi, i = 1, . . . ,m.

António Bento (UBI) Cálculo II 2009/2010 217 / 498

§2.3.1 Definição, propriedades e exemplos

Propriedades (continuação)

c) Sejam D ⊆ Rn, f, g : D → Rm, α : D → R e a um ponto de acumulaçãode D. Suponhamos que existem

limx→a

f(x), limx→a

g(x) e limx→a

α(x).

Então

i) existe limx→a

[f(x) + g(x)] e

limx→a

[f(x) + g(x)] = limx→a

f(x) + limx→a

g(x);

ii) existe limx→a

[α(x)f(x)] e

limx→a

[α(x)f(x)] =[

limx→a

α(x)]

.[

limx→a

f(x)]

;

iii) se limx→a

α(x) 6= 0, existe limx→a

1α(x)

e

limx→a

1α(x)

=1

limx→a

α(x).

António Bento (UBI) Cálculo II 2009/2010 218 / 498

§2.3.1 Definição, propriedades e exemplos

Propriedades (continuação)

d) Sejam D um subconjunto de Rn, a um ponto de acumulação de D e

f, g : D ⊆ Rn → R.

Suponhamos quelimx→a

f(x) = 0

e g é uma função limitada numa bola centrada em a. Então

limx→a

[f(x).g(x)] = 0.

António Bento (UBI) Cálculo II 2009/2010 219 / 498

§2.3.1 Definição, propriedades e exemplos

Propriedades (continuação)

e) Sejamf : Df ⊆ Rn → Rm

eg : Dg ⊆ Rm → Rk

duas funções tais quef(Df ) ⊆ Dg.

Suponhamos que a ∈ Rn é um ponto de acumulação de Df e queb ∈ Dg é um ponto de acumulação de Dg. Se

limx→a

f(x) = b e limx→b

g(x) = g(b),

entãolimx→a

(g ◦ f)(x) = limx→a

g(f(x)) = g(b).

António Bento (UBI) Cálculo II 2009/2010 220 / 498

Page 56: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§2.3.1 Definição, propriedades e exemplos

Rn Rm

Df

f

f(Df)

a b = f(a)b b

Rk

b

b = f(a)

f(Df) Dg

g

g (Dg)

g ◦ f

b

g(b) = g(f(a))

Composição de funções

António Bento (UBI) Cálculo II 2009/2010 221 / 498

§2.3.1 Definição, propriedades e exemplos

Exemplos

a) Seja f : R2 → R3 a função definida por

f(x, y) = (x+ y, sen(x+ 2y), cosx) .

Entãof = (f1, f2, f3)

ondef1, f2, f3 : R2 → R

são as funções definidas por

f1(x, y) = x+ y, f2(x, y) = sen(x+ 2y) e f3(x, y) = cos x.

António Bento (UBI) Cálculo II 2009/2010 222 / 498

§2.3.1 Definição, propriedades e exemplos

Exemplos (continuação)

a) (continuação) Como

lim(x,y)→(π/2,0)

f1(x, y) = lim(x,y)→(π/2,0)

x+ y = π/2 + 0 = π/2

lim(x,y)→(π/2,0)

f2(x, y) = lim(x,y)→(π/2,0)

sen(x+ 2y)

= sen(π/2 + 2.0) = sen(π/2) = 1

lim(x,y)→(π/2,0)

f3(x, y) = lim(x,y)→(π/2,0)

cosx = cos(π/2) = 0,

temos

lim(x,y)→(π/2,0)

f(x, y)

=(

lim(x,y)→(π/2,0)

f1(x, y), lim(x,y)→(π/2,0)

f2(x, y), lim(x,y)→(π/2,0)

f3(x, y))

= (π/2, 1, 0) .

António Bento (UBI) Cálculo II 2009/2010 223 / 498

§2.3.1 Definição, propriedades e exemplos

Exemplos (continuação)

b) Seja f : R2 → R a função dada por

f(x, y) =

xy2

x2 + y2se (x, y) 6= (0, 0),

0 se (x, y) = (0, 0).

Esta função pode ser escrita, quando (x, y) 6= (0, 0), da seguinteforma

xy2

x2 + y2.

António Bento (UBI) Cálculo II 2009/2010 224 / 498

Page 57: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§2.3.1 Definição, propriedades e exemplos

Exemplos (continuação)

b) (continuação) Como lim(x,y)→(0,0)

x = 0 ey2

x2 + y2é limitada, pois

0 ⩽y2

x2 + y2⩽y2

y2= 1 para cada (x, y) ∈ R2 \ {(0, 0)} ,

podemos concluir que

lim(x,y)→(0,0)

xy2

x2 + y2= 0.

e, consequentemente,

lim(x,y)→(0,0)

f(x, y) = 0.

António Bento (UBI) Cálculo II 2009/2010 225 / 498

Índice

1 Sucessões e séries

2 Funções de Rn em Rm: limites e continuidadeBreves noções de topologia em Rn

Funções de Rn em Rm

Limites

Definição, propriedades e exemplosLimites relativos e limites direccionais

Continuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 226 / 498

§2.3.2 Limites relativos e limites direccionais

Seja A um subconjunto de D ⊆ Rn e a um ponto de acumulação de A.Chama-se limite relativo a A da função

f : D ⊆ Rn → Rm

no ponto a (ou limite quando x tende para a no conjunto A) aolimite em a (quando exista) da restrição de f a A e usa-se a notação

limx→ax∈A

f(x).

António Bento (UBI) Cálculo II 2009/2010 227 / 498

§2.3.2 Limites relativos e limites direccionais

É evidente para qualquer função

f : D ⊆ Rn → R

se existelimx→a

f(x),

então também existelimx→ax∈A

f(x)

para qualquer subconjunto A de D tal que a é ponto de acumulação deA e

limx→ax∈A

f(x) = limx→a

f(x).

Assim, se existirem dois limites relativos distintos, o limite não existe.

António Bento (UBI) Cálculo II 2009/2010 228 / 498

Page 58: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§2.3.2 Limites relativos e limites direccionais

Além disso, dada uma função

f : D ⊆ Rn → Rm,

se A1 e A2 são dois subconjuntos de Rn tais que a é ponto deacumulação de A1 e de A2,

D \ {a} ⊆ A1 ∪A2

e existem e são iguais os limites

limx→ax∈A1

f(x) e limx→ax∈A2

f(x),

então também existelimx→a

f(x)

elimx→a f(x) = lim

x→ax∈A1

f(x) = limx→ax∈A2

f(x).

António Bento (UBI) Cálculo II 2009/2010 229 / 498

§2.3.2 Limites relativos e limites direccionais

Exemplo

Seja f : R2 \ {(0, 0)} → R a função definida por

f(x, y) =x2 − y2

x2 + y2.

Considerando os conjuntos

A ={

(x, 0) ∈ R2 : x ∈ R \ {0}}

e B ={

(0, y) ∈ R2 : y ∈ R \ {0}}

temos

lim(x,y)→(0,0)

(x,y)∈A

f(x, y) = limx→0

f(x, 0) = limx→0

x2

x2= lim

x→01 = 1

e

lim(x,y)→(0,0)

(x,y)∈B

f(x, y) = limy→0

f(0, y) = limy→0

−y2

y2= lim

y→0−1 = −1.

António Bento (UBI) Cálculo II 2009/2010 230 / 498

§2.3.2 Limites relativos e limites direccionais

Exemplo (continuação)

Comolim

(x,y)→(0,0)(x,y)∈A

f(x, y) 6= lim(x,y)→(0,0)

(x,y)∈B

f(x, y),

não existelim

(x,y)→(0,0)f(x, y).

António Bento (UBI) Cálculo II 2009/2010 231 / 498

§2.3.2 Limites relativos e limites direccionais

Para funções reais de variável real, f : D ⊆ R→ R, considerando osconjuntos

D+a = {x ∈ D : x > a} = D∩ ]a,+∞[

eD−a = {x ∈ D : x < a} = D∩ ]−∞, a[,

obtemos os limites laterais à direita e à esquerda da seguinteforma

limx→a+

f(x) = limx→ax∈D+

a

f(x)

elimx→a−

f(x) = limx→ax∈D−a

f(x),

desde que a seja ponto de acumulação de D+a e de D−a , respectivamente.

António Bento (UBI) Cálculo II 2009/2010 232 / 498

Page 59: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§2.3.2 Limites relativos e limites direccionais

A generalização natural dos limites laterais a funções

f : D ⊆ Rn → Rm

é dada pelos limites direccionais. Se a e v são elementos de Rn, com v 6= 0,então

{x ∈ Rn : x = a+ tv, t ∈ R+

}

é a semi-recta de origem a e com a direcção e o sentido de v. Dada uma função

f : D ⊆ Rn → Rm,

fazendoA =

{x ∈ D : x = a+ tv, t ∈ R+

},

e supondo que a é ponto de acumulação de A, chama-se a

limx→ax∈A

f(x)

limite (direccional) de f no ponto a segundo v. Este limite obtém-secalculando

limt→0+

f(a+ tv).

António Bento (UBI) Cálculo II 2009/2010 233 / 498

§2.3.2 Limites relativos e limites direccionais

Observações

a) Sejam D um subconjunto de Rn,

f : D ⊆ Rn → R

uma função e a, v ∈ Rn. Se existe

limt→0+

f(a+ tv),

então, fazendo u = λv, λ ∈ R+, também existe

limt→0+

f(a+ tu)

e

limt→0+

f(a+ tv) = limt→0+

f(a+ tu).

b) Tendo em conta a observação anterior, para calcular os limitesdireccionais basta considerar vectores de norma um. Assim, para funções

f : D ⊆ R2 → R,

basta considerar vectoresv = (cosα, senα) , α ∈ [0, 2π[.

António Bento (UBI) Cálculo II 2009/2010 234 / 498

§2.3.2 Limites relativos e limites direccionais

Exemplo

Consideremos novamente a função f : R2 \ {(0, 0)} → R definida por

f(x, y) =x2 − y2

x2 + y2.

Fazendov = (cosα, sen α) ,

com α ∈ [0, 2π[, temos

limt→0+

f(0 + t cosα, 0 + t senα) = limt→0+

t2 cos2 α− t2 sen2 α

t2 cos2 α+ t2 sen2 α

= cos2 α− sen2 α

e, como os limites direccionais dependem do vector v, podemos concluirque não existe

lim(x,y)→(0,0)

f(x, y).

António Bento (UBI) Cálculo II 2009/2010 235 / 498

§2.3.2 Limites relativos e limites direccionais

Para funções f : D ⊆ R→ R é fácil provar que se existem

limx→a+

f(x) e limx→a−

f(x)

elimx→a+

f(x) = limx→a−

f(x),

então também existelimx→a

f(x)

elimx→a

f(x) = limx→a+

f(x) = limx→a−

f(x).

No entanto, para funções

f : D ⊆ Rn → Rm, n > 1,

é possível existirem e serem iguais todos os limites direccionais, sem queo limite da função exista. Vejamos um exemplo em que isso acontece.

António Bento (UBI) Cálculo II 2009/2010 236 / 498

Page 60: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§2.3.2 Limites relativos e limites direccionais

Exemplo – f(x, y) = x2y/(x4 + y2)

No ponto (0, 0) todos os limites direccionais da função

f : R2 \ {(0, 0)} → R

definida por

f(x, y) =x2y

x4 + y2

são iguais a zero. De facto, fazendo

v = (cosα, sen α) ,

com α ∈ [0, 2π[, temos, para α ∈]0, π[∪]π, 2π[,

limt→0+

f((0, 0) + tv) = limt→0+

f(t cosα, t sen α) = limt→0+

t3 cos2 α senαt4 cos4 α+ t2 sen2 α

= limt→0+

t cos2 α senαt2 cos4 α+ sen2 α

=0

0 + sen2 α= 0.

António Bento (UBI) Cálculo II 2009/2010 237 / 498

§2.3.2 Limites relativos e limites direccionais

Exemplo (continuação) – f(x, y) = x2y/(x4 + y2)

Se α = 0 vem

limt→0+

f(t, 0) = limt→0+

t20t4 + 02

= limt→0+

0 = 0.

e se α = π temos

limt→0+

f(−t, 0) = limt→0+

(−t)20(−t)4 + 02

= limt→0+

0 = 0.

Assim, todos os limites direccionais são iguais a zero.

António Bento (UBI) Cálculo II 2009/2010 238 / 498

§2.3.2 Limites relativos e limites direccionais

Exemplo (continuação) – f(x, y) = x2y/(x4 + y2)

No entanto, considerando o conjunto

A ={

(x, y) ∈ R2 \ {(0, 0)} : y = x2}

temos

lim(x,y)→(0,0)

x∈A

f(x, y) = limx→0

f(x, x2) = limx→0

x2.x2

x4 + (x2)2

= limx→0

x4

2x4= lim

x→0

12

=12

que é diferente dos limites direccionais. Logo não existe

lim(x,y)→(0,0)

x2y

x4 + y2.

António Bento (UBI) Cálculo II 2009/2010 239 / 498

Índice

1 Sucessões e séries

2 Funções de Rn em Rm: limites e continuidadeBreves noções de topologia em Rn

Funções de Rn em Rm

LimitesContinuidade

Definição, propriedades e exemplosTeorema de Weierstrass

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 240 / 498

Page 61: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

Índice

1 Sucessões e séries

2 Funções de Rn em Rm: limites e continuidadeBreves noções de topologia em Rn

Funções de Rn em Rm

LimitesContinuidade

Definição, propriedades e exemplosTeorema de Weierstrass

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 241 / 498

§2.4.1 Definição, propriedades e exemplos

Sejam D um subconjunto de Rn,

f : D ⊆ Rn → Rm

uma função e a ∈ D. Diz-se que f é contínua no ponto a se paracada ε > 0, existir δ > 0 tal que

‖f(x)− f(a)‖ < ε para qualquer x ∈ D tal que ‖x− a‖ < δ.

Simbolicamente,

f é contínua em a

⇔ ∀ε > 0 ∃δ > 0 ∀x ∈ D (‖x− a‖ < δ ⇒ ‖f(x)− f(a)‖ < ε) .

António Bento (UBI) Cálculo II 2009/2010 242 / 498

§2.4.1 Definição, propriedades e exemplos

Assim temos a seguinte interpretação geométrica de continuidade numponto.

Rn

DRm

f(D)

f

a

f(a)f(a)ε

δ a

x f(x)

Função de Rn em R

m contínua no ponto a

António Bento (UBI) Cálculo II 2009/2010 243 / 498

§2.4.1 Definição, propriedades e exemplos

Dizemos que a ∈ D é um ponto de descontinuidade de

f : D ⊆ Rn → Rm

se f não é contínua em a.

Uma funçãof : D ⊆ Rn → Rm

é contínua se for contínua em todos os pontos de D.

António Bento (UBI) Cálculo II 2009/2010 244 / 498

Page 62: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§2.4.1 Definição, propriedades e exemplos

Observações

a) Ao contrário do que acontece na definição de limite, só faz sentidoconsiderar pontos do domínio D quando estamos a investigar acontinuidade de uma função.

b) Se a é um ponto isolado de D, então a função f : D → Rm é contínua ema. De facto, dado ε > 0, basta escolher δ > 0 tal que

Bδ(a) ∩D = {a} .Assim, a condição

x ∈ D ∧ ‖x− a‖ < δ é equivalente a x = a

e, por conseguinte,

‖f(x)− f(a)‖ = 0 < ε.

Em particular, se D só tem pontos isolados, então qualquer funçãof : D → Rm é contínua.

c) Se a ∈ D é um ponto de acumulação de D, então f : D → Rm é contínuaem a se e só se

limx→a

f(x) = f(a).

António Bento (UBI) Cálculo II 2009/2010 245 / 498

§2.4.1 Definição, propriedades e exemplos

Exemplos

a) Num exemplo anterior estudamos a função

f : R2 → R3

dada porf(x, y) = (x+ y, sen(x+ 2y), cos x)

e vimos quelim

(x,y)→(π/2,0)f(x, y) = (π/2, 1, 0) .

Comof(π/2, 0) = (π/2, 1, 0) ,

a função é contínua no ponto (π/2, 0).

António Bento (UBI) Cálculo II 2009/2010 246 / 498

§2.4.1 Definição, propriedades e exemplos

Exemplos (continuação)

b) Seja f : R2 → R a função é definida por

f(x, y) =

x2 − y2

x2 + y2se (x, y) 6= (0, 0)

0 se (x, y) = (0, 0).Fazendo

A ={

(x, y) ∈ R2 : x = 0}

e B ={

(x, y) ∈ R2 : y = 0},

temos

lim(x,y)→(0,0)x∈A

f(x, y) = limy→0

f(0, y) = limy→0

02 − y2

02 + y2= limy→0

−y2

y2= limy→0−1 = −1

e

lim(x,y)→(0,0)x∈B

f(x, y) = limx→0

f(x, 0) = limx→0

x2 − 02

x2 + 02= limx→0

x2

x2= limx→0

1 = 1.

António Bento (UBI) Cálculo II 2009/2010 247 / 498

§2.4.1 Definição, propriedades e exemplos

Exemplos (continuação)

b) (continuação) Como

lim(x,y)→(0,0)

x∈A

f(x, y) 6= lim(x,y)→(0,0)

x∈B

f(x, y),

não existe

lim(x,y)→(0,0)

x2 − y2

x2 + y2.

Logo a função não é contínua em (0, 0).

No entanto, em qualquer ponto (a, b) 6= (0, 0) esta função é contínuaporque

lim(x,y)→(a,b)

x2 − y2

x2 + y2=a2 − b2

a2 + b2= f(a, b).

António Bento (UBI) Cálculo II 2009/2010 248 / 498

Page 63: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§2.4.1 Definição, propriedades e exemplos

Propriedades

a) Sejamf : D ⊆ Rn → Rm

uma função tal quef = (f1, . . . , fm)

e a um elemento de D. Então

f é contínua em a

se e só se todas as suas funções coordenadas

fi são contínuas em a.

António Bento (UBI) Cálculo II 2009/2010 249 / 498

§2.4.1 Definição, propriedades e exemplos

Propriedades (continuação)

b) Sejamf, g : D ⊆ Rn → Rm

duas funções contínuas em a ∈ D e

α : D → R

uma função contínua em a. Então

f + g e αf são contínuas em a

e, se α(a) 6= 0, então

é contínua em a.

António Bento (UBI) Cálculo II 2009/2010 250 / 498

§2.4.1 Definição, propriedades e exemplos

Propriedades (continuação)

c) Sejamf : Df ⊆ Rn → Rm

eg : Dg ⊆ Rm → Rk

duas funções tais que f(Df ) ⊆ Dg. Se

f é contínua em a ∈ Df

eg é contínua em f(a),

entãog ◦ f é contínua em a.

António Bento (UBI) Cálculo II 2009/2010 251 / 498

§2.4.1 Definição, propriedades e exemplos

Exemplo

Seja f : R2 → R a função dada por

f(x, y) =

x2y

x4 + y2se (x, y) 6= (0, 0),

0 se (x, y) = (0, 0).

Já vimos num exemplo anterior que fazendo

A ={

(x, y) ∈ R2 : y = 0}

e B ={

(x, y) ∈ R2 : y = x2},

temoslim

(x,y)→(0,0)x∈A

f(x, y) = limx→0

f(x, 0) = limx→0

x2 0x4 + 02

= limx→0

0x4

= limx→0

0 = 0

e

lim(x,y)→(0,0)x∈B

f(x, y) = limx→0

f(x, x2) = limx→0

x2 x2

x4 + (x2)2= limx→0

x4

2x4= limx→0

12

=12.

António Bento (UBI) Cálculo II 2009/2010 252 / 498

Page 64: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§2.4.1 Definição, propriedades e exemplos

Exemplo (continuação)

Comolim

(x,y)→(0,0)x∈A

f(x, y) 6= lim(x,y)→(0,0)

x∈B

f(x, y),

não existe

lim(x,y)→(0,0)

x2y

x4 + y2

e, portanto, a função não é contínua em (0, 0).

No entanto, em qualquer ponto (a, b) 6= (0, 0) esta função é contínuaporque pode ser escrita como a composição de funções contínuas.

Outra forma de provarmos que f é contínua em qualquer pontos(a, b) 6= (0, 0) é observarmos que

lim(x,y)→(a,b)

x2y

x4 + y2=

a2b

a4 + b2= f(a, b).

António Bento (UBI) Cálculo II 2009/2010 253 / 498

Índice

1 Sucessões e séries

2 Funções de Rn em Rm: limites e continuidadeBreves noções de topologia em Rn

Funções de Rn em Rm

LimitesContinuidade

Definição, propriedades e exemplosTeorema de Weierstrass

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 254 / 498

§2.4.2 Teorema de Weierstrass

Seja f : D ⊆ Rn → R uma função escalar e A um subconjunto nãovazio de D. Dizemos que f tem um máximo (absoluto) no pontoa ∈ A ou que f(a) é um máximo (absoluto) de f em A se

f(x) ⩽ f(a) para todo o x ∈ A.

Quandof(x) ⩾ f(a) para todo o x ∈ A,

dizemos que f tem um mínimo (absoluto) no ponto a ∈ A ou quef(a) é um mínimo (absoluto) de f em A. Os máximos e mínimos(absolutos) de f em a dizem-se extremos absolutos de f em A.

António Bento (UBI) Cálculo II 2009/2010 255 / 498

§2.4.2 Teorema de Weierstrass

Teorema de Weierstrass

Sejaf : D ⊆ Rn → R

uma função contínua num subconjunto não vazio, fechado e limitadoA ⊆ D. Então f tem máximo e mínimo em A.

António Bento (UBI) Cálculo II 2009/2010 256 / 498

Page 65: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§2.4.2 Teorema de Weierstrass

Exemplo

SejamA =

{

(x, y) ∈ R2 : |x| ⩽ 1, |y| ⩽ 1}

e f a função dada por

f(x, y) = x+ y sen x.

A função f é contínua em R2 e, portanto, é contínua em A. Como A éfechado e limitado, f tem máximo e mínimo no conjunto A.

António Bento (UBI) Cálculo II 2009/2010 257 / 498

Índice

1 Sucessões e séries

2 Funções de Rn em R

m: limites e continuidade

3 Cálculo diferencial em Rn

Derivadas parciais e derivadas direccionaisDiferenciabilidade de funções de Rn em Rm

Derivada da função compostaDerivadas de ordem superior. Teorema de SchwarzTeorema da função implícitaExtremos locais e extremos absolutosExtremos condicionados: método dos multiplicadores de Lagrange

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 258 / 498

Índice

1 Sucessões e séries

2 Funções de Rn em R

m: limites e continuidade

3 Cálculo diferencial em Rn

Derivadas parciais e derivadas direccionaisDiferenciabilidade de funções de Rn em Rm

Derivada da função compostaDerivadas de ordem superior. Teorema de SchwarzTeorema da função implícitaExtremos locais e extremos absolutosExtremos condicionados: método dos multiplicadores de Lagrange

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 259 / 498

§3.1 Derivadas parciais e derivadas direccionais

Comecemos por recordar como se define derivada de funções reais devariável real. Sejam D um subconjunto não vazio de R, f : D → R ea ∈ D um ponto de acumulação de D. Diz-se que f é derivável oudiferenciável em a se existe (e é finito) o limite:

limx→a

f(x)− f(a)x− a .

Tal limite (quando existe) diz-se a derivada de f no ponto a e

representa-se por f ′(a), Df(a) ou ainda pordf

dx(a). Fazendo a

mudança de variável x = a+ h, temos

f ′(a) = limh→0

f(a+ h)− f(a)h

.

Aqui têm apenas de se considerar os valores de h tais que a+ h ∈ D.

António Bento (UBI) Cálculo II 2009/2010 260 / 498

Page 66: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.1 Derivadas parciais e derivadas direccionais

Diz-se que a função f : D → R é derivável ou diferenciável em D sefor derivável em todo o ponto de D e à nova função

f ′ : D → R,

que a cada ponto x ∈ D faz corresponder f ′(x), chama-se derivada de

f e representa-se também por Df oudf

dx.

António Bento (UBI) Cálculo II 2009/2010 261 / 498

§3.1 Derivadas parciais e derivadas direccionais

O quocientef(a+ h)− f(a)

hrepresenta o declive da recta que passa pelos pontos

(a, f(a)) e (a+ h, f(a+ h)) .

Fazendo h tender para zero, a recta que passa nos pontos

(a, f(a)) e (a+ h, f(a+ h)) ,

vai tender para a recta tangente ao gráfico de f e que passa no pontos(a, f(a)). Assim, geometricamente, a derivada de uma função numponto do domínio é o declive da recta tangente ao gráfico da função noponto considerado. Portanto, a recta tangente ao gráfico de umafunção f no ponto (a, f(a)) é a recta de equação

y = f(a) + f ′(a)(x − a).

António Bento (UBI) Cálculo II 2009/2010 262 / 498

§3.1 Derivadas parciais e derivadas direccionais

b

a

f(a)

b

a+ h

f(a + h)

b

b

a

f(a)

b

b

bb

a+ h

f(a + h)

b

b

a

f(a) b

bb

b

a+ h

f(a + h)

b

b

a

f(a) b

bb

b

b

a+ h

f(a + h)

b

b

b

y = f(a) + f ′(a)(x − a)

α

f ′(a) = tgα

Interpretação geométrica do conceito de derivada

António Bento (UBI) Cálculo II 2009/2010 263 / 498

§3.1 Derivadas parciais e derivadas direccionais

Pretendemos generalizar o conceito de derivada a funções

f : D ⊆ Rn → Rm.

Por uma questão de economia de escrita, consideraremos, inicialmente,funções

f : D ⊆ R2 → R.

Como habitualmente, escreveremos (x, y) em vez de (x1, x2) pararepresentar os elementos de R2.

António Bento (UBI) Cálculo II 2009/2010 264 / 498

Page 67: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.1 Derivadas parciais e derivadas direccionais

Sejam D um subconjunto não vazio de R2 e f : D ⊆ R2 → R uma função.

A derivada parcial de f em relação a x (ou em ordem a x) é a função∂f

∂xque se obtém derivando (caso a derivada exista) f em relação a x,

tratando y como se fosse uma constante. Por exemplo, se f : R2 → R é afunção definida por

f(x, y) = 2x3y − 4x sen(πy),

temos∂f

∂x(x, y) = 6x2y − 4 sen(πy).

De igual modo, a derivada parcial de f em relação a y (ou em ordem a

y) é a função∂f

∂yque se obtém derivando (caso a derivada exista) f em

relação a y, tratando x como se fosse uma constante. Assim, no exemplo dadotemos

∂f

∂y(x, y) = 2x3 − 4πx cos(πy).

António Bento (UBI) Cálculo II 2009/2010 265 / 498

§3.1 Derivadas parciais e derivadas direccionais

Vejamos como definir de modo mais formal as derivadas parciais.Sejam D um subconjunto de R2, f : D ⊆ R2 → R uma função e(a, b) ∈ D. Suponhamos que (a, b) é um ponto de acumulação de

{(x, y) ∈ D : y = b} .

Representa-se por

∂f

∂x(a, b), f ′x(a, b) ou Dxf(a, b),

a derivada parcial de f em relação a x (ou em ordem a x) noponto (a, b) e define-se da seguinte forma

∂f

∂x(a, b) = lim

h→0

f(a+ h, b) − f(a, b)h

quando este limite exista (e seja finito).

António Bento (UBI) Cálculo II 2009/2010 266 / 498

§3.1 Derivadas parciais e derivadas direccionais

Analogamente, se (a, b) ∈ D é ponto de acumulação de

{(x, y) ∈ D : x = a} ,

representa-se por

∂f

∂y(a, b), f ′y(a, b) ou Dyf(a, b),

a derivada parcial de f em ordem a y no ponto (a, b) e define-seda seguinte forma

∂f

∂y(a, b) = lim

k→0

f(a, b+ k)− f(a, b)k

,

quando este limite existe.

António Bento (UBI) Cálculo II 2009/2010 267 / 498

§3.1 Derivadas parciais e derivadas direccionais

x

y

z

b

a

b

f(a, b)

bb

α

∂f

∂x(a, b) = tgα

b

β

∂f

∂y(a, b) = tg β

Interpretação geométrica das derivadas parciais

António Bento (UBI) Cálculo II 2009/2010 268 / 498

Page 68: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.1 Derivadas parciais e derivadas direccionais

Seja f : D ⊆ R2 → R uma função. A função que a cada (x, y) associa∂f

∂x(x, y) designa-se por (função) derivada parcial de f em ordem

a x e representa-se por

∂f

∂x, f ′x ou Dxf.

Obviamente, o seu domínio é o conjunto{

(x, y) ∈ D : existe∂f

∂x(x, y)

}

.

Do mesmo modo, define-se (função) derivada parcial de f emordem a y que se representa por

∂f

∂y, f ′y ou Dyf.

António Bento (UBI) Cálculo II 2009/2010 269 / 498

§3.1 Derivadas parciais e derivadas direccionais

Exemplos de derivadas parciais

a) Considerando a função f : R2 → R definida por

f(x, y) = x2 + y2 + sen(xy)

temos∂f

∂x(x, y) = 2x+ y cos(xy)

e∂f

∂y(x, y) = 2y + x cos(xy).

António Bento (UBI) Cálculo II 2009/2010 270 / 498

§3.1 Derivadas parciais e derivadas direccionais

Exemplos de derivadas parciais (continuação)

b) A função f : R2 → R definida por

f(x, y) = sen(

x2 + y3)

+ ex−cos(xy)

tem as seguintes derivadas parciais

∂f

∂x(x, y) = 2x cos

(

x2 + y3)

+ (1 + y sen (xy)) ex−cos(xy)

e∂f

∂y(x, y) = 3y2 cos

(

x2 + y3)

+ x sen (xy) ex−cos(xy) .

António Bento (UBI) Cálculo II 2009/2010 271 / 498

§3.1 Derivadas parciais e derivadas direccionais

Exemplos de derivadas parciais (continuação)

c) Seja f : R2 → R a função definida por

f(x, y) =

(x− 1)y2

(x− 1)2 + y2se (x, y) 6= (1, 0),

0 se (x, y) = (1, 0).

Então

∂f

∂x(1, 0) = lim

h→0

f(1 + h, 0)− f(1, 0)h

= limh→0

(1+h−1)02

(1+h−1)2+02 − 0

h

= limh→0

0h2

h= limh→0

0h

= limh→0

0 = 0

e

∂f

∂y(1, 0) = lim

k→0

f(1, 0 + k)− f(1, 0)k

= limk→0

(1−1)k2

(1−1)2+k2 − 0

k

= limk→0

0k2

k= limk→0

0k

= limk→0

0 = 0.

António Bento (UBI) Cálculo II 2009/2010 272 / 498

Page 69: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.1 Derivadas parciais e derivadas direccionais

Exemplos de derivadas parciais (continuação)

d) Seja f : R2 → R a função dada por

f(x, y) =

x2

x2 + y2se (x, y) 6= (0, 0),

0 se (x, y) = (0, 0).

Então

∂f

∂x(0, 0) = lim

h→0

f(0 + h, 0)− f(0, 0)h

= limh→0

h2

h2+02 − 0

h= limh→0

h2

h2

h= limh→0

1h

e este limite não existe. Logo f não tem derivada parcial em ordem a x noponto (0, 0). Por outro lado,

∂f

∂y(0, 0) = lim

k→0

f(0, 0 + k)− f(0, 0)k

= limk→0

02

02+k2 − 0

k

= limk→0

0k2

k= limk→0

0k

= limk→0

0 = 0.

António Bento (UBI) Cálculo II 2009/2010 273 / 498

§3.1 Derivadas parciais e derivadas direccionais

Nas definições de derivadas parciais, dadas atrás, consideramosacréscimos da função quando o ponto do domínio percorre segmentosparalelos aos eixos. Este facto sugere que generalizemos a definição dederivadas parcial segundo qualquer direcção.

Dados um subconjunto D de R2, uma função

f : D ⊆ R2 → R,

a = (a1, a2) ∈ D e u = (u1, u2) um vector de R2, chama-se derivadade f no ponto a segundo o vector u ao limite, quando existe,

limt→0

f(a+ tu)− f(a)t

= limt→0

f(a1 + tu1, a2 + tu2)− f(a1, a2)t

e representa-se porf ′u(a) ou Duf(a).

António Bento (UBI) Cálculo II 2009/2010 274 / 498

§3.1 Derivadas parciais e derivadas direccionais

Quando‖u‖ = 1

as derivadas segundo vectores costumam designar-se por derivadasdireccionais, se bem que será mais correcto falar em derivada dirigidaou derivada radial segundo u pois a derivada, para além de dependerda direcção, também depende do sentido de u.

António Bento (UBI) Cálculo II 2009/2010 275 / 498

§3.1 Derivadas parciais e derivadas direccionais

x

y

z

b

a

b

f(a, b)

b

uu

b

α

f ′u(a, b) = tgα

Interpretação geométrica da derivada segundo um vector

António Bento (UBI) Cálculo II 2009/2010 276 / 498

Page 70: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.1 Derivadas parciais e derivadas direccionais

Exemplo

Consideremos a função f : R2 → R definida por

f(x, y) =

xy2

x2 + y2se (x, y) 6= (0, 0)

0 se (x, y) = (0, 0)

Fazendo u = (cosα, sen α), α ∈ [0, 2π[, temos

f ′u(0, 0) = limt→0

f(0 + t cosα, 0 + t senα)− f(0, 0)t

= limt→0

t cosα t2 sen2 α

t2 cos2 α+ t2 sen2 αt

= limt→0

t3 cosα sen2 α

t3 (cos2 α+ sen2 α)

= sen2 α cosα.

António Bento (UBI) Cálculo II 2009/2010 277 / 498

§3.1 Derivadas parciais e derivadas direccionais

Dada uma função f : D ⊆ R2 → R e considerando os vectorese1 = (1, 0) e e2 = (0, 1), temos

f ′e1(a) = lim

t→0

f(a+ te1)− f(a)t

= limt→0

f(a1 + t, a2)− f(a1, a2)t

=∂f

∂x(a)

e

f ′e2(a) = lim

t→0

f(a+ te2)− f(a)t

= limt→0

f(a1, a2 + t)− f(a1, a2)t

=∂f

∂y(a).

António Bento (UBI) Cálculo II 2009/2010 278 / 498

§3.1 Derivadas parciais e derivadas direccionais

No caso geral em que temos uma função

f : D ⊆ Rn → Rm

definimos, para a = (a1, . . . , an), as seguintes derivadas parciais:

∂f

∂x1(a) =

∂f

∂x1(a1, . . . , an) = lim

h→0

f(a1 + h, a2, . . . , an)− f(a1, . . . , an)h

∂f

∂x2(a) =

∂f

∂x2(a1, . . . , an) = lim

h→0

f(a1, a2 + h, a3, . . . , an)− f(a1, . . . , an)h

...

∂f

∂xn(a) =

∂f

∂xn(a1, . . . , an) = lim

h→0

f(a1, . . . , an−1, an + h)− f(a1, . . . , an)h

António Bento (UBI) Cálculo II 2009/2010 279 / 498

§3.1 Derivadas parciais e derivadas direccionais

A função que a cada x = (x1, . . . , xn) associa∂f

∂x1(x) designa-se por

(função) derivada parcial de f em ordem a x1 e representa-se por

∂f

∂x1, f ′x1

ou Dx1f.

Obviamente, o seu domínio é o conjunto{

x ∈ D : existe∂f

∂x1(x)}

.

Do mesmo modo, define-se (função) derivada parcial de f emordem a xi, i = 2, . . . , n, que se representa por

∂f

∂xi, f ′xi ou Dxif.

António Bento (UBI) Cálculo II 2009/2010 280 / 498

Page 71: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.1 Derivadas parciais e derivadas direccionais

Também podemos definir derivadas segundo vectores para funções

f : D ⊆ Rn → Rm.

Assim, sef : D ⊆ Rn → Rm

e a = (a1, . . . , an) ∈ D chama-se derivada de f no ponto a segundo ovector u = (u1, . . . , un) ∈ Rn ao limite, caso este exista,

limt→0

f(a+ tu)− f(a)

t= limt→0

f(a1 + tu1, a2 + tu2, . . . , an + tun)− f(a1, a2, . . . , an)

t

e representa-se porf ′u(a) ou Duf(a).

António Bento (UBI) Cálculo II 2009/2010 281 / 498

§3.1 Derivadas parciais e derivadas direccionais

Quando‖u‖ = 1,

as derivadasf ′u(a)

designam-se por derivadas direccionais, se bem que o mais correctoseria falar em derivada dirigida ou derivada radial segundo u, pois estaderivada para além de depender da direcção também depende dosentido de u.

António Bento (UBI) Cálculo II 2009/2010 282 / 498

§3.1 Derivadas parciais e derivadas direccionais

Se considerarmos em Rn os vectores e1 = (1, 0, . . . , 0),e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) temos

f ′e1(a) =

∂f

∂x1(a)

f ′e2(a) =

∂f

∂x2(a)

...

f ′en(a) =∂f

∂xn(a).

António Bento (UBI) Cálculo II 2009/2010 283 / 498

§3.1 Derivadas parciais e derivadas direccionais

Das propriedades dos limites resulta imediatamente que se

f : D ⊆ Rn → Rm e f = (f1, . . . , fm) , m > 1

temos∂f

∂x1(a) =

(∂f1

∂x1(a),

∂f2

∂x1(a), . . . ,

∂fm∂x1

(a))

∂f

∂x2(a) =

(∂f1

∂x2(a),

∂f2

∂x2(a), . . . ,

∂fm∂x2

(a))

...

∂f

∂xn(a) =

(∂f1

∂xn(a),

∂f2

∂xn(a), . . . ,

∂fm∂xn

(a))

e para cada vector u ∈ Rn,

f ′u(a) =(

(f1)′u (a), (f2)′u (a), . . . , (fm)′u (a))

.

António Bento (UBI) Cálculo II 2009/2010 284 / 498

Page 72: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

Índice

1 Sucessões e séries

2 Funções de Rn em R

m: limites e continuidade

3 Cálculo diferencial em Rn

Derivadas parciais e derivadas direccionaisDiferenciabilidade de funções de Rn em Rm

Derivada da função compostaDerivadas de ordem superior. Teorema de SchwarzTeorema da função implícitaExtremos locais e extremos absolutosExtremos condicionados: método dos multiplicadores de Lagrange

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 285 / 498

§3.2 Diferenciabilidade de funções de Rn em Rm

Uma das primeiras propriedades do cálculo diferencial de funções reaisde variável real diz que se uma função tem derivada num ponto, entãoa função é contínua nesse ponto. Para funções com mais do que umavariável isso não acontece. É possível existirem todas as derivadasdireccionais, sem que a função seja contínua nesse ponto. Vejamos umexemplo em que isso acontece.

António Bento (UBI) Cálculo II 2009/2010 286 / 498

§3.2 Diferenciabilidade de funções de Rn em Rm

Exemplo

Consideremos a função f : R2 → R definida por

f(x, y) =

x2y

x4 + y2se (x, y) 6= (0, 0),

0 se (x, y) = (0, 0).

Comecemos por calcular as derivadas parciais

∂f

∂x(0, 0) = lim

h→0

f(h, 0) − f(0, 0)h

= limh→0

0− 0h

= limh→0

0h

= limh→0

0 = 0

e

∂f

∂y(0, 0) = lim

k→0

f(0, k)− f(0, 0)k

= limk→0

0− 0k

= limk→0

0k

= limk→0

0 = 0.

António Bento (UBI) Cálculo II 2009/2010 287 / 498

§3.2 Diferenciabilidade de funções de Rn em Rm

Exemplo (continuação)

Por outro lado, fazendou = (cosα, senα) , α ∈ [0, 2π[,

temos

f ′u(0, 0) = limt→0

f(0 + t cosα, 0 + t senα)− f(0, 0)t

= limt→0

t2 cos2 α t senαt4 cos4 α+ t2 cos2 α

t

= limt→0

cos2 α senαt2 cos4 α+ sen2 α

=

cos2 α

senαse α ∈ [0, 2π[\ {0, π},

0 se α ∈ {0, π}.

António Bento (UBI) Cálculo II 2009/2010 288 / 498

Page 73: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.2 Diferenciabilidade de funções de Rn em Rm

Exemplo (continuação)

Vejamos que a função f não é contínua em (0, 0). Fazendo

A ={

(x, y) ∈ R2 : y = 0}

e B ={

(x, y) ∈ R2 : y = x2}

,

temos

lim(x,y)→(0,0)

x∈A

f(x, y) = limx→0

f(x, 0) = limx→0

x2 0x4 + 02

= limx→0

0x4

= limx→0

0 = 0

e

lim(x,y)→(0,0)x∈B

f(x, y) = limx→0

f(x, x2) = limx→0

x2 x2

x4 + (x2)2= limx→0

x4

2x4= limx→0

12

=12,

o que mostra que não existe limite no ponto (0, 0) e, portanto, a funçãonão é contínua nesse ponto.

António Bento (UBI) Cálculo II 2009/2010 289 / 498

§3.2 Diferenciabilidade de funções de Rn em Rm

Este exemplo mostra que uma função ter derivadas parciais ouderivadas direccionais não é uma condição suficiente para que umafunção seja contínua num ponto. É, portanto, necessário um conceitomais forte.

António Bento (UBI) Cálculo II 2009/2010 290 / 498

§3.2 Diferenciabilidade de funções de Rn em Rm

Pode-se provar que

Uma função f : D ⊆ R→ R tem derivada no ponto a ∈ D de

acumulação de D se e só se existem um número real c e uma

função r : D∗ → R tais que

f(a+ h) = f(a) + ch+ r(h) para cada h ∈ D∗

e

limh→0

r(h)h

= 0,

onde

D∗ = {h ∈ R : a+ h ∈ D} .Além disso, nas condições anteriores tem-se c = f ′(a).

António Bento (UBI) Cálculo II 2009/2010 291 / 498

§3.2 Diferenciabilidade de funções de Rn em Rm

Assim, dados uma função

f : D ⊆ R2 → R

e um ponto (a, b) interior a D, dizemos que f é diferenciável em (a, b)se existirem as derivadas parciais de f no ponto (a, b) e existir umafunção

r : D∗ → R,

ondeD∗ =

{

(h, k) ∈ R2 : (a+ h, b+ k) ∈ D}

,

tal que

lim(h,k)→(0,0)

r(h, k)‖(h, k)‖ = 0

e

f(a+ h, b+ k) = f(a, b) +∂f

∂x(a, b)h+

∂f

∂y(a, b)k + r(h, k)

para quaisquer (h, k) ∈ D∗.António Bento (UBI) Cálculo II 2009/2010 292 / 498

Page 74: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.2 Diferenciabilidade de funções de Rn em Rm

Fazendo (h, k)→ (0, 0) em

f(a+ h, b+ k) = f(a, b) +∂f

∂x(a, b)h+

∂f

∂y(a, b)k + r(h, k)

temos

lim(h,k)→(0,0)

f(a+ h, b+ k)

= lim(h,k)→(0,0)

[

f(a, b) +∂f

∂x(a, b)h +

∂f

∂y(a, b)k + r(h, k)

]

= f(a, b)

o que mostra que uma função é contínua nos pontos onde édiferenciável!

António Bento (UBI) Cálculo II 2009/2010 293 / 498

§3.2 Diferenciabilidade de funções de Rn em Rm

Exemplos

a) Seja f : R2 → R a função definida por

f(x, y) =

x2y2

x2 + y2se (x, y) 6= (0, 0),

0 se (x, y) = (0, 0),

e estudemos a diferenciabilidade de f no ponto (0, 0). Para f serdiferenciável em (0, 0) tem de existir r : R2 → R tal que

lim(h,k)→(0,0)

r(h, k)√h2 + k2

= 0

e

f(h, k) = f(0, 0) +∂f

∂x(0, 0)h +

∂f

∂y(0, 0) k + r(h, k)

para qualquer (h, k) ∈ R2.

António Bento (UBI) Cálculo II 2009/2010 294 / 498

§3.2 Diferenciabilidade de funções de Rn em Rm

Exemplos (continuação)

a) (continuação) Assim, calculemos as derivadas parciais de f noponto (0, 0):

∂f

∂x(0, 0) = lim

h→0

f(h, 0)− f(0, 0)h

= limh→0

h2.02

h2 + 02− 0

h= limh→0

0h

= limh→0

0 = 0,

∂f

∂y(0, 0) = lim

k→0

f(0, k)− f(0, 0)k

= limk→0

02.k2

02 + k2− 0

k= limk→0

0k

= limk→0

0 = 0.

De

f(h, k) = f(0, 0) +∂f

∂x(0, 0)h +

∂f

∂y(0, 0) k + r(h, k)

resulta queh2k2

h2 + k2= r(h, k).

António Bento (UBI) Cálculo II 2009/2010 295 / 498

§3.2 Diferenciabilidade de funções de Rn em Rm

Exemplos (continuação)

a) (continuação) Como

lim(h,k)→(0,0)

r(h, k)√h2 + k2

= lim(h,k)→(0,0)

h2k2

h2+k2√h2 + k2

= lim(h,k)→(0,0)

h2k2

(h2 + k2)√h2 + k2

= lim(h,k)→(0,0)

kh2

h2 + k2

k√h2 + k2

= 0

pois as funçõesh2

h2 + k2e

k√h2 + k2

são limitadas, podemos

concluir que a função é diferenciável em (0, 0).

António Bento (UBI) Cálculo II 2009/2010 296 / 498

Page 75: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.2 Diferenciabilidade de funções de Rn em Rm

Exemplos (continuação)

b) Estudemos no ponto (0, 0) a diferenciabilidade da funçãof : R2 → R dada por

f(x, y) =

x2y

x2 + y2se (x, y) 6= (0, 0),

0 se (x, y) = (0, 0).

Comecemos por calcular as derivadas parciais de f no ponto (0, 0):

∂f

∂x(0, 0) = lim

h→0

f(h, 0)− f(0, 0)h

= limh→0

h2.0h2 + 02

− 0

h= limh→0

0h

= limh→0

0 = 0

e

∂f

∂y(0, 0) = lim

k→0

f(0, k)− f(0, 0)k

= limk→0

02.k

02 + k2− 0

k= limk→0

0k

= limk→0

0 = 0.

António Bento (UBI) Cálculo II 2009/2010 297 / 498

§3.2 Diferenciabilidade de funções de Rn em Rm

Exemplos (continuação)

b) (continuação) Para f ser diferenciável no ponto (0, 0) tem de existir

r : R2 → R tal que lim(h,k)→(0,0)

r(h, k)√h2 + k2

= 0 e

f(h, k) = f(0, 0) +∂f

∂x(0, 0)h +

∂f

∂y(0, 0) k + r(h, k).

Desta última igualdade vem

r(h, k) =h2k

h2 + k2.

Vejamos que não existe

lim(h,k)→(0,0)

r(h, k)√h2 + k2

= lim(h,k)→(0,0)

h2k

(h2 + k2)√h2 + k2

.

António Bento (UBI) Cálculo II 2009/2010 298 / 498

§3.2 Diferenciabilidade de funções de Rn em Rm

Exemplos (continuação)

b) (continuação) Fazendo A ={

(h, k) ∈ R2 : h = k}

temos

lim(h,k)→(0,0)

(h,k)∈A

r(h, k)√h2 + k2

= limh→0

r(h, h)√h2 + h2

= limh→0

h3

2h2√

2h2= lim

h→0

h

2√

2|h|

e este último limite não existe porque

limh→0+

h

2√

2|h|=

1

2√

2e lim

h→0−

h

2√

2|h|= − 1

2√

2.

Logo não existe

lim(h,k)→(0,0)

r(h, k)√h2 + k2

e, portanto, f não é diferenciável em (0, 0).

António Bento (UBI) Cálculo II 2009/2010 299 / 498

§3.2 Diferenciabilidade de funções de Rn em Rm

Dada uma função f : D ⊆ R2 → R diferenciável num ponto (a, b)interior a D, chama-se plano tangente ao gráfico de f no ponto(a, b, f(a, b)) ao plano definido pela equação

z = f(a, b) +∂f

∂x(a, b)(x− a) +

∂f

∂y(a, b)(y − b).

Por exemplo, para a função f : R2 → R definida por

f(x, y) =

x2y2

x2 + y2se (x, y) 6= (0, 0),

0 se (x, y) = (0, 0),

que já vimos ser diferenciável em (0, 0), o plano tangente ao gráfico def no ponto (0, 0, f(0, 0)) é dado pela equação

z = 0.

António Bento (UBI) Cálculo II 2009/2010 300 / 498

Page 76: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.2 Diferenciabilidade de funções de Rn em Rm

Se f : D ⊆ R2 → R diferenciável num ponto (a, b) interior a D, a

L(x, y) = f(a, b) +∂f

∂x(a, b)(x− a) +

∂f

∂y(a, b)(y − b)

chamamos aproximação linear de f no ponto (a, b) e costumaescrever-se

f(x, y) ≈ f(a, b) +∂f

∂x(a, b)(x − a) +

∂f

∂y(a, b)(y − b).

António Bento (UBI) Cálculo II 2009/2010 301 / 498

§3.2 Diferenciabilidade de funções de Rn em Rm

Exemplo

Seja f : R2 → R a função dada por f(x, y) = x ey + sen y. Esta função édiferenciável no ponto (0, 0). Como

∂f

∂x(x, y) = ey e

∂f

∂y(x, y) = x ey + cos y

temos∂f

∂x(0, 0) = 1 e

∂f

∂y(0, 0) = 1.

Tendo em conta que f(0, 0) = 0, uma equação do plano tangente aográfico de f no ponto (0, 0, f(0, 0)) = (0, 0, 0) é

z = f(0, 0) +∂f

∂x(0, 0)(x − 0) +

∂f

∂y(0, 0)(y − 0)

= x+ y.

António Bento (UBI) Cálculo II 2009/2010 302 / 498

§3.2 Diferenciabilidade de funções de Rn em Rm

Exemplo (continuação)

A aproximação linear de f no ponto (0, 0) é dada por

f(x, y) ≈ f(0, 0) +∂f

∂x(0, 0)(x − 0) +

∂f

∂y(0, 0)(y − 0)

≈ x+ y.

Usando a aproximação linear temos

f(0.1, 0.2) ≈ 0.1 + 0.2 = 0.3 e f(1, 1) ≈ 1 + 1 = 2.

De facto,

f(0.1, 0.2) = 0.3208096066... e f(1, 1) = 3.559752813...

ou seja, a primeira aproximação é bastante melhor do que a segunda.Tal deve-se ao facto de a distância de (0.1, 0.2) a (0, 0) ser menor doque a distância de (1, 1) a (0, 0).

António Bento (UBI) Cálculo II 2009/2010 303 / 498

§3.2 Diferenciabilidade de funções de Rn em Rm

Uma função f : D ⊆ Rn → R diz-se diferenciável num ponto interiora = (a1, . . . , an) de D se existirem todas as derivadas parciais de f noponto a e uma função r : D∗ → R, onde

D∗ = {h = (h1, . . . , hn) ∈ Rn : a+ h ∈ D} ,tal que

lim‖h‖→0

r(h)‖h‖ = 0

e

f(a+ h) = f(a) +∂f

∂x1(a)h1 + · · ·+ ∂f

∂xn(a)hn + r(h),

isto é,f(a1 + h1, . . . , an + hn)

= f(a1, . . . , an) +∂f

∂x1(a1, . . . , an)h1 + · · ·+

∂f

∂xn(a1, . . . , an)hn + r(h1, . . . , hn),

para cada vector h = (h1, . . . , hn) ∈ D∗.

António Bento (UBI) Cálculo II 2009/2010 304 / 498

Page 77: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.2 Diferenciabilidade de funções de Rn em Rm

Tal como acontecia para funções de R2 para R, se f é diferenciável ema ∈ D, então f é contínua em a.

António Bento (UBI) Cálculo II 2009/2010 305 / 498

§3.2 Diferenciabilidade de funções de Rn em Rm

Uma função f : D ⊆ Rn → Rm, com f = (f1, . . . , fm), diz-sediferenciável num ponto a = (a1, . . . , an) interior a D se todas asfunções f1, . . . , fm são diferenciáveis em a.Assim, f é diferenciável em a se as funções f1, . . . , fm admitem, noponto a, derivadas parciais em relação a todas as variáveis e existemfunções r1, . . . , rm : D∗ → R tais que

f1(a+ h) = f1(a) +∂f1

∂x1(a)h1 + · · · + ∂f1

∂xn(a)hn + r1(h)

...

fm(a+ h) = fm(a) +∂fm∂x1

(a)h1 + · · · + ∂fm∂xn

(a)hn + rm(h)

para cada h = (h1, . . . , hn) ∈ D∗ = {h = (h1, . . . , hn) ∈ Rn : a+ h ∈ D}e

lim‖h‖→0

r1(h)‖h‖ = · · · = lim

‖h‖→0

rm(h)‖h‖ = 0.

António Bento (UBI) Cálculo II 2009/2010 306 / 498

§3.2 Diferenciabilidade de funções de Rn em Rm

Usando matrizes temos que f é diferenciável em a = (a1, . . . , an) se e sóse as funções f1, . . . , fm admitem, no ponto a, derivadas parciais emrelação a todas as variáveis e existem funções r1, . . . , rm : D∗ → R taisque

f1(a+ h)

...

fm(a+ h)

=

f1(a)

...

fm(a)

+

∂f1

∂x1(a) · · · ∂f1

∂xn(a)

.... . .

...∂fm∂x1

(a) · · · ∂fm∂xn

(a)

.

h1

...

hn

+

r1(h)

...

rm(h)

para cada h ∈ D∗ e

lim‖h‖→0

r1(h)‖h‖ = · · · = lim

‖h‖→0

rm(h)‖h‖ = 0.

António Bento (UBI) Cálculo II 2009/2010 307 / 498

§3.2 Diferenciabilidade de funções de Rn em Rm

A matriz

Ja(f) =

∂f1

∂x1(a) · · · ∂f1

∂xn(a)

.... . .

...∂fm∂x1

(a) · · · ∂fm∂xn

(a)

diz-se a matriz jacobiana de f no ponto a.

Quando f é diferenciável em a a matriz jacobiana de f em a designa-sepor derivada de f no ponto a e representa-se por

f ′(a) ou Df(a).

Quando n = m, o determinante de J diz-se o jacobiano da função f erepresenta-se por

∂ (f1, . . . , fn)∂ (x1, . . . , xn)

.

António Bento (UBI) Cálculo II 2009/2010 308 / 498

Page 78: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.2 Diferenciabilidade de funções de Rn em Rm

Propriedades

a) Se f, g : D ⊆ Rn → Rm são diferenciáveis num ponto a interior a D,entãoi) f + g é diferenciável em a e

(f + g)′(a) = f ′(a) + g′(a);

ii) para qualquer λ ∈ R, λf é diferenciável em a e

(λf)′(a) = λf ′(a).

António Bento (UBI) Cálculo II 2009/2010 309 / 498

§3.2 Diferenciabilidade de funções de Rn em Rm

Propriedades

b) Se f, g : D ⊆ Rn → R são diferenciáveis num ponto a interior a D,entãoi) f.g é diferenciável em a e

(f.g)′(a) = f ′(a)g(a) + f(a)g′(a);

ii) se g(a) 6= 0,f

gé diferenciável em a e

(f

g

)′(a) =

f ′(a)g(a) − f(a)g′(a)

[g(a)]2.

António Bento (UBI) Cálculo II 2009/2010 310 / 498

§3.2 Diferenciabilidade de funções de Rn em Rm

Propriedades

c) Se f : D ⊆ Rn → Rm é diferenciável em a e u = (u1, . . . , un) ∈ Rn,então existe f ′u(a) e

f ′u(a) =[

f ′(a)]

.u =

∂f1

∂x1(a) · · · ∂f1

∂xn(a)

.... . .

...∂fm∂x1

(a) · · · ∂fm∂xn

(a)

.

u1

...

un

d) Sejam D um subconjunto de Rn e f : D ⊆ Rn → R uma funçãopara a qual existem todas as derivadas parciais. Então f édiferenciável em todos os pontos em que n− 1 dessas derivadasparciais são contínuas. Em particular, se todas as derivadas parciaissão contínuas num ponto, a função é diferenciável nesse ponto.

António Bento (UBI) Cálculo II 2009/2010 311 / 498

§3.2 Diferenciabilidade de funções de Rn em Rm

Dada uma funçãof : D ⊆ Rn → R,

chama-se gradiente de f no ponto a ∈ D, e representa-se por

(∇f) (a) ou (grad f) (a),

ao vector

(∇f) (a) =(∂f

∂x1(a), . . . ,

∂f

∂xn(a))

,

desde que existam todas as derivadas parciais (de primeira ordem) de fno ponto a.

António Bento (UBI) Cálculo II 2009/2010 312 / 498

Page 79: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.2 Diferenciabilidade de funções de Rn em Rm

É de notar que se f : D ⊆ Rn → R é uma função diferenciável numponto a interior a D, a propriedade c) que vimos anteriormente fica

f ′u(a) =[∂f

∂x1(a) · · · ∂f

∂xn(a)]

·

u1

...

un

=∂f

∂x1(a)u1 + · · ·+ ∂f

∂xn(a)un.

Recordando que dados b = (b1, . . . , bn) e c = (c1, . . . , cn) em Rn, oproduto escalar ou interno entre b e c é dado por

〈b, c〉 = b1c1 + b2c2 + · · · + bncn,

tem-se

f ′u(a) =∂f

∂x1(a)u1 + · · ·+ ∂f

∂xn(a)un = 〈(∇f)(a), u〉 .

António Bento (UBI) Cálculo II 2009/2010 313 / 498

Índice

1 Sucessões e séries

2 Funções de Rn em R

m: limites e continuidade

3 Cálculo diferencial em Rn

Derivadas parciais e derivadas direccionaisDiferenciabilidade de funções de Rn em Rm

Derivada da função compostaDerivadas de ordem superior. Teorema de SchwarzTeorema da função implícitaExtremos locais e extremos absolutosExtremos condicionados: método dos multiplicadores de Lagrange

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 314 / 498

§3.3 Derivada da função composta

Derivada da função composta

Sejamf : Df ⊆ Rn → Rm e g : Dg ⊆ Rm → Rk

funções tais que f(Df ) ⊆ Dg. Suponhamos que a é um ponto interiorde Df . Se

f é diferenciável em a e g é diferenciável em f(a),

entãog ◦ f é diferenciável em a

e(g ◦ f)′ (a) = g′ (f(a)) · f ′(a).

António Bento (UBI) Cálculo II 2009/2010 315 / 498

§3.3 Derivada da função composta

Fazendo

x = (x1, . . . , xn) , f(x) = y = (y1, . . . , ym) e g(y) = z = (z1, . . . , zk)

resulta que a matriz jacobiana de f no ponto a é

Ja(f) =

∂f1

∂x1(a) · · · ∂f1

∂xn(a)

.... . .

...∂fm∂x1

(a) · · · ∂fm∂xn

(a)

e a matriz jacobiana de g no ponto b = f(a) é a matriz

Jb(g) =

∂g1

∂y1(b) · · · ∂g1

∂ym(b)

.... . .

...∂gk∂y1

(b) · · · ∂gk∂ym

(b)

.

António Bento (UBI) Cálculo II 2009/2010 316 / 498

Page 80: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.3 Derivada da função composta

Pondo h = g ◦ f , como

h′(a) = (g ◦ f)′ (a) = g′ (f(a)) · f ′(a) = g′(b) · f ′(a),

tem-seJa(h) = Jb(g) · Ja(f).

Assim,

∂h1

∂x1(a) · · · ∂h1

∂xn(a)

.... . .

...∂hk∂x1

(a) · · · ∂hk∂xn

(a)

=

∂g1

∂y1(b) · · · ∂g1

∂ym(b)

.... . .

...∂gk∂y1

(b) · · · ∂gk∂ym

(b)

.

∂f1

∂x1(a) · · · ∂f1

∂xn(a)

.... . .

...∂fm∂x1

(a) · · · ∂fm∂xn

(a)

e, portanto,

∂hi∂xj

(a) =∂gi∂y1

(b)∂f1

∂xj(a) +

∂gi∂y2

(b)∂f2

∂xj(a) + · · ·+ ∂gi

∂ym(b)

∂fm∂xj

(a).

para i = 1, . . . , k e j = 1, . . . , n.António Bento (UBI) Cálculo II 2009/2010 317 / 498

§3.3 Derivada da função composta

Omitindo os pontos onde estamos a calcular as derivadas parciais esubstituindo as notações

∂hi∂xj

,∂gi∂yℓ

e∂fℓ∂xj

por∂zi∂xj

,∂zi∂yℓ

e∂yℓ∂xj

,

respectivamente, a última igualdade do slide anterior fica

∂zi∂xj

=∂zi∂y1

∂y1

∂xj+∂zi∂y2

∂y2

∂xj+ · · ·+ ∂zi

∂ym

∂ym∂xj

.

António Bento (UBI) Cálculo II 2009/2010 318 / 498

§3.3 Derivada da função composta

Exemplo

Sejam f : R2 → R3 e g : R3 → R2 as funções dadas por

f(x, y) =(

x2, 3xy, sen(x+ y))

e g(u, v,w) = (u+ v − w, 2uv) .

Estas duas funções são diferenciáveis em todo o seu domínio. Então∂f1

∂x(x, y) = 2x,

∂f1

∂y(x, y) = 0,

∂f2

∂x(x, y) = 3y,

∂f2

∂y(x, y) = 3x,

∂f3

∂x(x, y) = cos(x+ y),

∂f3

∂y(x, y) = cos(x+ y),

pelo que

J(x,y)(f) =

2x 03y 3x

cos(x+ y) cos(x+ y)

.

António Bento (UBI) Cálculo II 2009/2010 319 / 498

§3.3 Derivada da função composta

Exemplo (continuação)

Quanto à função g, atendendo que g(u, v,w) = (u+ v − w, 2uv), temos

∂g1

∂u(u, v,w) = 1,

∂g1

∂v(u, v,w) = 1,

∂g1

∂w(u, v,w) = −1,

e∂g2

∂u(u, v,w) = 2v,

∂g2

∂v(u, v,w) = 2u

∂g2

∂w(u, v,w) = 0

e, consequentemente,

J(u,v,w)(g) =

[

1 1 −12v 2u 0

]

.

António Bento (UBI) Cálculo II 2009/2010 320 / 498

Page 81: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.3 Derivada da função composta

Exemplo (continuação)

Fazendo h = g ◦ f , temos

J(x,y)(h) = Jf(x,y)(g) · J(x,y)(f)

e, portanto, vem

J(x,y)(h) =

[

1 1 −16xy 2x2 0

]

.

2x 03y 3x

cos(x+ y) cos(x+ y)

=

[

2x+ 3y − cos(x+ y) 3x− cos(x+ y)18x2y 6x3

]

António Bento (UBI) Cálculo II 2009/2010 321 / 498

§3.3 Derivada da função composta

Exemplo (continuação)

Este resultado pode ser confirmado directamente pois, mantendoh = g ◦ f , temos

h(x, y) = (g ◦ f)(x, y)

= g(f(x, y))

= g(x2, 3xy, sen(x+ y))

= (x2 + 3xy − sen(x+ y), 6x3y)

pelo que

J(x,y)(h) =

[

2x+ 3y − cos(x+ y) 3x− cos(x+ y)18x2y 6x3

]

António Bento (UBI) Cálculo II 2009/2010 322 / 498

Índice

1 Sucessões e séries

2 Funções de Rn em R

m: limites e continuidade

3 Cálculo diferencial em Rn

Derivadas parciais e derivadas direccionaisDiferenciabilidade de funções de Rn em Rm

Derivada da função compostaDerivadas de ordem superior. Teorema de SchwarzTeorema da função implícitaExtremos locais e extremos absolutosExtremos condicionados: método dos multiplicadores de Lagrange

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 323 / 498

§3.4 Derivadas de ordem superior. Teorema de Schwarz

Sejam D um subconjunto de R2 e

f : D ⊆ R2 → R

uma função. Suponhamos existe a derivada parcial (de primeiraordem) de f em relação a x. Designaremos por

f ′′x2, f ′′xx,∂2f

∂x2, D2

x2f ou D2xxf

a derivada (f ′x)′x ≡∂

∂x

(∂f

∂x

)

, caso exista, e chamar-lhe-emos derivada

parcial de segunda ordem da função f duas vezes em ordem a x.

António Bento (UBI) Cálculo II 2009/2010 324 / 498

Page 82: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.4 Derivadas de ordem superior. Teorema de Schwarz

Do mesmo modo se definem a derivada de segunda ordem de f duasvezes em relação a y:

f ′′y2 ≡ f ′′yy ≡∂2f

∂y2≡ D2

y2f ≡ D2yyf =

(

f ′y)′

y=

∂y

(∂f

∂y

)

;

a derivada de segunda ordem de f em relação a x e depois em relação ay:

f ′′xy ≡∂2f

∂y∂x≡ D2

xyf =(

f ′x)′y =

∂y

(∂f

∂x

)

;

a derivada de segunda ordem de f em relação a y e depois em relação ax:

f ′′yx ≡∂2f

∂x∂y≡ D2

yxf =(

f ′y)′

x=

∂x

(∂f

∂y

)

.

António Bento (UBI) Cálculo II 2009/2010 325 / 498

§3.4 Derivadas de ordem superior. Teorema de Schwarz

A partir das derivadas de segunda ordem podemos definir as derivadas deterceira ordem, e assim sucessivamente como é ilustrado no esquema seguinte.

f

f ′x ≡∂f

∂x

f ′y ≡∂f

∂y

f ′′x2 ≡∂2f

∂x2

f ′′xy ≡∂2f

∂y∂x

f ′′yx ≡∂2f

∂x∂y

f ′′y2 ≡∂2f

∂y2

f ′′′x3 ≡∂3f

∂x3

f ′′′x2y ≡∂3f

∂y∂x2

f ′′′xyx ≡∂3f

∂x∂y∂x

f ′′′xy2 ≡∂3f

∂y2∂x

f ′′′yx2 ≡∂3f

∂x2∂y

f ′′′yxy ≡∂3f

∂y∂x∂y

f ′′′y2x ≡∂3f

∂x∂y2

f ′′′y3 ≡∂3f

∂y3

António Bento (UBI) Cálculo II 2009/2010 326 / 498

§3.4 Derivadas de ordem superior. Teorema de Schwarz

Sejam D um subconjunto de Rn, n > 1, e

f : D ⊆ Rn → Rm

uma função. Dados dois inteiros positivos i e j inferiores ou iguais a n,

supondo que existe∂f

∂xi, representaremos por

∂2f

∂xj∂xiou f ′′xixj

a derivada parcial de∂f

∂xiem ordem a xj , caso exista, e

chamar-lhe-emos derivada parcial de segunda ordem de fprimeiro em relação a xi e depois em relação a xj .

De forma semelhante podemos definir as derivadas de ordem três, deordem quatro, etc.

António Bento (UBI) Cálculo II 2009/2010 327 / 498

§3.4 Derivadas de ordem superior. Teorema de Schwarz

Exemplos

a) Seja f : R2 → R a função dada por f(x, y) = x4 + 3xy2 + 4y3. Então

∂f

∂x(x, y) = 4x3 + 3y2 e

∂f

∂y(x, y) = 6xy + 12y2.

Assim,

∂2f

∂x2(x, y) = 12x2 e

∂2f

∂y∂x(x, y) = 6y,

enquanto que

∂2f

∂x∂y(x, y) = 6y e

∂2f

∂y2(x, y) = 6x+ 24y.

Este exemplo parece sugerir que as derivadas cruzadas (ou mistas)∂2f

∂y∂xe∂2f

∂x∂ysão iguais.

António Bento (UBI) Cálculo II 2009/2010 328 / 498

Page 83: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.4 Derivadas de ordem superior. Teorema de Schwarz

Exemplos (continuação)

b) Seja f : R2 → R a função definida por

f(x, y) =

x3y

x2 + y2se (x, y) 6= (0, 0),

0 se (x, y) = (0, 0).

Vamos calcular f ′′xy(0, 0) e f ′′yx(0, 0). Como

f ′′xy(0, 0) = limk→0

f ′x(0, k) − f ′x(0, 0)k

e

f ′′yx(0, 0) = limh→0

f ′y(h, 0) − f ′y(0, 0)

h,

temos de calcular f ′x(0, y) e f ′y(x, 0).

António Bento (UBI) Cálculo II 2009/2010 329 / 498

§3.4 Derivadas de ordem superior. Teorema de Schwarz

Exemplos (continuação)

b) (continuação) Atendendo a que, para y 6= 0,

f ′x(0, y) = limh→0

f(h, y)−f(0, y)h

= limh→0

h3y

h2+y2−0

h= limh→0

h2y

h2+y2=

0y2

= 0

e

f ′x(0, 0) = limh→0

f(h, 0)− f(0, 0)h

= limh→0

h3.0h2 + 02

− 0

h= limh→0

0h

= limh→0

0 = 0

temosf ′x(0, y) = 0.

António Bento (UBI) Cálculo II 2009/2010 330 / 498

§3.4 Derivadas de ordem superior. Teorema de Schwarz

Exemplos (continuação)

b) (continuação) Por outro lado, para x 6= 0, tem-se

f ′y(x, 0) = limk→0

f(x, k)−f(x, 0)k

= limk→0

x3k

x2+k2−0

k= limk→0

x3

x2+k2=x3

x2= x

e

f ′y(0, 0) = limk→0

f(0, k)− f(0, 0)k

= limk→0

03.k

02 + k2− 0

k= limk→0

0k

= limk→0

0 = 0

temosf ′y(x, 0) = x.

António Bento (UBI) Cálculo II 2009/2010 331 / 498

§3.4 Derivadas de ordem superior. Teorema de Schwarz

Exemplos (continuação)

b) (continuação) Usando o facto de

f ′x(0, y) = 0 e f ′y(x, 0) = x,

tem-se

f ′′xy(0, 0) = limk→0

f ′x(0, k)− f ′x(0, 0)k

= limk→0

0− 0k

= limk→0

0k

= limk→0

0 = 0

e

f ′′yx(0, 0) = limh→0

f ′y(h, 0)− f ′y(0, 0)

h= limh→0

h− 0h

= limh→0

h

h= limh→0

1 = 1,

o que prova que as derivadas mistas (ou cruzadas) f ′′xy e f ′′yx podemser diferentes!

António Bento (UBI) Cálculo II 2009/2010 332 / 498

Page 84: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.4 Derivadas de ordem superior. Teorema de Schwarz

Exemplos (continuação)

b) (continuação) Para esta função f : R2 → R que, recorde-se, é dadapor

f(x, y) =

x3y

x2 + y2se (x, y) 6= (0, 0),

0 se (x, y) = (0, 0),

se tem

f ′x(x, y) =

x4y + 2x2y3

(x2 + y2)2 se (x, y) 6= (0, 0),

0 se (x, y) = (0, 0),

e

f ′y(x, y) =

x5 − x3y2

(x2 + y2)2 se (x, y) 6= (0, 0),

0 se (x, y) = (0, 0).

António Bento (UBI) Cálculo II 2009/2010 333 / 498

§3.4 Derivadas de ordem superior. Teorema de Schwarz

Exemplos (continuação)

b) (continuação) Além disso,

f ′′xx(x, y) =

6xy5 − 2x3y3

(x2 + y2)3se (x, y) 6= (0, 0),

0 se (x, y) = (0, 0),

f ′′xy(x, y) =

x6 + 6x4y2 − 3x2y4

(x2 + y2)3se (x, y) 6= (0, 0),

0 se (x, y) = (0, 0),

f ′′yx(x, y) =

x6 + 6x4y2 − 3x2y4

(x2 + y2)3se (x, y) 6= (0, 0),

1 se (x, y) = (0, 0),

f ′′yy(x, y) =

2x3y3 − 6x5y

(x2 + y2)3se (x, y) 6= (0, 0),

0 se (x, y) = (0, 0).

António Bento (UBI) Cálculo II 2009/2010 334 / 498

§3.4 Derivadas de ordem superior. Teorema de Schwarz

Acabámos de ver que as derivadas mistas podem não ser iguais. Noentanto, há casos em que é possível garantir à partida que as derivadasmistas são iguais. O próximo teorema, conhecido como teorema deSchwarz ou de Clairaut, dá-nos condições em que tal facto acontece.

Teorema de Schwarz

Sejam D um subconjunto aberto de Rn, n > 1, e f : D ⊆ Rn → R umafunção. As derivadas

f ′′xixj e f ′′xjxi

são iguais em todos os pontos em que f ′xi e f ′xj sejam diferenciáveis.

António Bento (UBI) Cálculo II 2009/2010 335 / 498

§3.4 Derivadas de ordem superior. Teorema de Schwarz

Seja D um subconjunto aberto de Rn. Uma função f : D ⊆ Rn → R

diz-se de classe Ck, k ∈ N, se existem todas as derivadas parciais de faté à ordem k e todas essas derivadas são contínuas.

Corolário do Teorema de Schwarz

Seja D um subconjunto aberto de Rn. Se f : D ⊆ Rn → R é umafunção de classe C2, então

f ′′xixj (x) = f ′′xjxi(x)

para qualquer x ∈ D.

Corolário do Teorema de Schwarz

Sejam D um subconjunto aberto de Rn e f : D ⊆ Rn → R uma funçãode classe Ck. Então é indiferente a ordem de derivação até à ordem k.

António Bento (UBI) Cálculo II 2009/2010 336 / 498

Page 85: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

Índice

1 Sucessões e séries

2 Funções de Rn em R

m: limites e continuidade

3 Cálculo diferencial em Rn

Derivadas parciais e derivadas direccionaisDiferenciabilidade de funções de Rn em Rm

Derivada da função compostaDerivadas de ordem superior. Teorema de SchwarzTeorema da função implícitaExtremos locais e extremos absolutosExtremos condicionados: método dos multiplicadores de Lagrange

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 337 / 498

§3.5 Teorema da função implícita

Existem funções que não são definidas explicitamente, são apenasdefinidas implicitamente. Por exemplo, a equação

(1 + x2)y + sen x = 0

define implicitamente y como função de x, aliás podemos inclusivedefinir explicitamente y como função de x pois a equação dada éequivalente a

y = − senx1 + x2

.

Será que a equação(1 + x2)y + sen(xy) = 0

também define y como função de x? Neste segundo caso nãoconseguimos resolver a equação em ordem a y e, por conseguinte, nãopodemos fazer o que fizemos no caso anterior.

O teorema da função implícita permite-nos responder a este tipo dequestões. Além disso, permite-nos também calcular a derivada dafunção.

António Bento (UBI) Cálculo II 2009/2010 338 / 498

§3.5 Teorema da função implícita

Teorema da função implícita (n = 2)

Sejam D um subconjunto aberto de R2 e

F : D ⊆ R2 → R

uma função com derivadas parciais de primeira ordem contínuas.Suponhamos que existe (a, b) ∈ D tal que

F (a, b) = 0 e∂F

∂y(a, b) 6= 0.

Então existem um aberto O ⊆ R que contém a e uma e uma só função

f : O ⊆ R→ R

com derivada contínua tal que

f(a) = b

e

F (x, f(x)) = 0 para qualquer x ∈ O.

António Bento (UBI) Cálculo II 2009/2010 339 / 498

§3.5 Teorema da função implícita

Nas condições do teorema anterior diz-se que

F (x, y) = 0

define implicitamente y como função de x e usa-se a notação

y(x),dy

dxou y′

em vez de

f(x),df

dxou f ′,

respectivamente.

António Bento (UBI) Cálculo II 2009/2010 340 / 498

Page 86: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.5 Teorema da função implícita

Além disso, comoF (x, y(x)) = 0

temos pela derivada da função composta

∂F

∂x(x, y) +

∂F

∂y(x, y)

dy

dx(x) = 0

pelo que

dy

dx(x) = −

∂F

∂x(x, y(x))

∂F

∂y(x, y(x))

.

António Bento (UBI) Cálculo II 2009/2010 341 / 498

§3.5 Teorema da função implícita

Exemplo

Consideremos a função F : R2 → R definida por

F (x, y) = x3 + 2xy + y4 − 4.

As derivadas parciais de F são

∂F

∂x(x, y) = 3x2 + 2y e

∂F

∂y(x, y) = 2x+ 4y3.

Como as derivadas parciais de F são funções contínuas,

F (1, 1) = 0 e∂F

∂y(1, 1) = 2 · 1 + 4 · 13 = 6 6= 0,

pelo teorema da função implícita, F (x, y) = 0 define implicitamente y comofunção de x num aberto O ⊆ R ao qual 1 pertence e y(1) = 1. Além disso,

dy

dx(1) = −

∂F

∂x(1, y(1))

∂F

∂y(1, y(1))

= −∂F

∂x(1, 1)

∂F

∂y(1, 1)

= −56.

António Bento (UBI) Cálculo II 2009/2010 342 / 498

§3.5 Teorema da função implícita

Vamos agora generalizar o teorema da função implícita para funções

F : D ⊆ Rn+1 → R, n > 1.

Por uma questão de simplicidade de escrita vamos escrever

F (a1, . . . , an, b) e F (x1, . . . , xn, y)

em vez de

F (a1, . . . , an, an+1) e F (x1, . . . , xn, xn+1),

respectivamente.

António Bento (UBI) Cálculo II 2009/2010 343 / 498

§3.5 Teorema da função implícita

Teorema da função implícita

Sejam D um subconjunto aberto de Rn+1 e

F : D ⊆ Rn+1 → R

uma função com derivadas parciais de primeira ordem contínuas.Suponhamos que existe (a1, . . . , an, b) ∈ D tal que

F (a1, . . . , an, b) = 0 e∂F

∂y(a1, . . . , an, b) 6= 0.

Então existem um aberto O ⊆ Rn que contém (a1, . . . , an) e uma euma só função

f : O ⊆ Rn → R

com derivadas parciais contínuas tal que

f(a1, . . . , an) = b

e

F (x1, . . . , xn, f(x1, . . . , xn)) = 0 para qualquer (x1, . . . , xn) ∈ O.António Bento (UBI) Cálculo II 2009/2010 344 / 498

Page 87: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.5 Teorema da função implícita

Tal como no caso n+ 1 = 2 dizemos que

F (x1, . . . , xn, y) = 0

define implicitamente y como função de (x1, . . . , xn) e usamos a notação

y(x1, . . . , xn) e∂y

∂xi,

em vez de

f(x1, . . . , xn) e∂f

∂xi,

respectivamente.

António Bento (UBI) Cálculo II 2009/2010 345 / 498

§3.5 Teorema da função implícita

Da equaçãoF (x1, . . . , xn, y(x1, . . . , xn)) = 0,

pela derivada da função composta tem-se

∂F

∂xi(x1, . . . , xn, y(x1, . . . , xn)) +

∂F

∂y(x1, . . . , xn, y(x1, . . . , xn))

∂y

∂xi(x1, . . . , xn) = 0

e, portanto,

∂y

∂xi(x1, . . . , xn) = −

∂F

∂xi(x1, . . . , xn, y(x1, . . . , xn))

∂F

∂y(x1, . . . , xn, y(x1, . . . , xn))

.

António Bento (UBI) Cálculo II 2009/2010 346 / 498

§3.5 Teorema da função implícita

Exemplo

Vejamos que a equação

xyz sen(x+ 2y − z) = π

define implicitamente z como função de x e de y numa vizinhança do ponto(π/2, 1, 2). Para isso consideremos a função

F (x, y, z) = xyz sen(x+ 2y − z)− π.

Calculemos as derivadas parciais de F :

∂F

∂x(x, y, z) = yz sen(x+ 2y − z) + xyz cos(x+ 2y − z),

∂F

∂y(x, y, z) = xz sen(x+ 2y − z) + 2xyz cos(x+ 2y − z),

∂F

∂z(x, y, z) = xy sen(x+ 2y − z)− xyz cos(x+ 2y − z).

António Bento (UBI) Cálculo II 2009/2010 347 / 498

§3.5 Teorema da função implícita

Exemplo (continuação)

Como as derivadas parciais de F são contínuas,

F(π

2, 1, 2

)

= π sen(π

2+ 2 · 1− 2

)

− π = π − π = 0

e∂F

∂z

2, 1, 2

)

= π/2 sen(π

2+ 2 · 1− 2

)

− π cos(π

2+ 2 · 1− 2

)

= π/2,

pelo teorema da função implícita, a equação F (x, y, z) = 0 defineimplicitamente z como função de x e de y. Além disso,

∂z

∂x

2, 1)

= −∂F

∂x

2, 1, 2

)

∂F

∂z

2, 1, 2

) = − 2π/2

= − 4π

e

∂z

∂y

2, 1)

= −

∂F

∂y

2, 1, 2

)

∂F

∂z

2, 1, 2

) = − π

π/2= −2.

António Bento (UBI) Cálculo II 2009/2010 348 / 498

Page 88: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

Índice

1 Sucessões e séries

2 Funções de Rn em R

m: limites e continuidade

3 Cálculo diferencial em Rn

Derivadas parciais e derivadas direccionaisDiferenciabilidade de funções de Rn em Rm

Derivada da função compostaDerivadas de ordem superior. Teorema de SchwarzTeorema da função implícitaExtremos locais e extremos absolutosExtremos condicionados: método dos multiplicadores de Lagrange

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 349 / 498

§3.6 Extremos locais e extremos absolutos

Recordemos os conceitos de máximo e de mínimo absoluto.

Sejaf : D ⊆ Rn → R

uma função escalar e A um subconjunto não vazio de D. Dizemos quef tem um máximo (absoluto) no ponto a ∈ A ou que f(a) é ummáximo (absoluto) de f em A se

f(x) ⩽ f(a) para todo o x ∈ A.

Quandof(x) ⩾ f(a) para todo o x ∈ A,

dizemos que f tem um mínimo (absoluto) no ponto a ∈ A ou quef(a) é um mínimo (absoluto) de f em A.

António Bento (UBI) Cálculo II 2009/2010 350 / 498

§3.6 Extremos locais e extremos absolutos

Recordemos também o Teorema de Weierstrass.

Teorema de Weierstrass

Sejaf : D ⊆ Rn → R

uma função contínua num subconjunto não vazio, fechado e limitadoA ⊆ D. Então f tem máximo e mínimo em A.

António Bento (UBI) Cálculo II 2009/2010 351 / 498

§3.6 Extremos locais e extremos absolutos

Sejam D um subconjunto não vazio de Rn e

f : D ⊆ Rn → R

uma função escalar. Dizemos que f tem um máximo local no pontoa ∈ D se existir ε > 0 tal que

f(x) ⩽ f(a) para qualquer x ∈ D ∩Bε(a)

e que f tem um mínimo local no ponto a ∈ D se existir ε > 0 tal que

f(x) ⩾ f(a) para qualquer x ∈ D ∩Bε(a).

António Bento (UBI) Cálculo II 2009/2010 352 / 498

Page 89: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.6 Extremos locais e extremos absolutos

Um ponto do domínio de uma função em que é atingido um valor demáximo designa-se por ponto de máximo ou ponto maximizante.

Do mesmo modo, um ponto do domínio de uma função em que éatingido o valor de mínimo designa-se por ponto de mínimo ouponto minimizante.

Os máximos e os mínimos de uma função dizem-se extremos dafunção e os pontos onde a função atinge os extremos designam-se porpontos de extremo ou extremantes.

António Bento (UBI) Cálculo II 2009/2010 353 / 498

§3.6 Extremos locais e extremos absolutos

Teorema de Fermat

Sejaf : D ⊆ Rn → R

uma função diferenciável num ponto a interior a D. Se f(a) é umextremo local de f , então

∂f

∂x1(a) =

∂f

∂x2(a) = · · · = ∂f

∂xn(a) = 0.

António Bento (UBI) Cálculo II 2009/2010 354 / 498

§3.6 Extremos locais e extremos absolutos

Os pontos a ∈ D tais que

∂f

∂x1(a) =

∂f

∂x2(a) = · · · = ∂f

∂xn(a) = 0

designam-se por pontos de estacionaridade ou por pontos críticos.

Os pontos de estacionaridade que não são extremantes designam-se porpontos de sela.

António Bento (UBI) Cálculo II 2009/2010 355 / 498

§3.6 Extremos locais e extremos absolutos

Assim, a primeira coisa que temos de fazer para determinar osextremos locais de uma função

f : D ⊆ Rn → R

diferenciável é resolver o sistema

∂f

∂x1(a) = 0,

∂f

∂x2(a) = 0,

...

∂f

∂xn(a) = 0.

António Bento (UBI) Cálculo II 2009/2010 356 / 498

Page 90: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.6 Extremos locais e extremos absolutos

Exemplo

Seja f : R2 → R a função definida por

f(x, y) = x3 + 3x2 − y2.

Esta função é diferenciável em todo o seu domínio. Atendendo a que

∂f

∂x(x, y) = 3x2 + 6x e

∂f

∂y(x, y) = −2y,

calculemos os seus pontos de estacionaridade:

∂f

∂x= 0

∂f

∂y= 0

3x2 + 6x = 0

−2y = 0⇔

3x(x + 2) = 0

y = 0⇔

x = 0

y = 0∨

x = −2

y = 0

Assim, os pontos de estacionaridade de f são (0, 0) e (−2, 0). Será quealgum deles é extremante?

António Bento (UBI) Cálculo II 2009/2010 357 / 498

§3.6 Extremos locais e extremos absolutos

Exemplo (continuação)

Fazendo y =√

3x em

f(x, y) = x3 + 3x2 − y2.

temosf(x,√

3x) = x3 + 3x2 − 3x2 = x3

e, comof(x,√

3x) > 0 se x > 0

ef(x,√

3x) < 0 se x < 0,

tendo em conta que f(0, 0) = 0, concluímos que (0, 0) não éextremante, ou seja, é um ponto de sela.

António Bento (UBI) Cálculo II 2009/2010 358 / 498

§3.6 Extremos locais e extremos absolutos

Exemplo (continuação)

Por outro lado,

f(x, y)− f(−2, 0) = x3 + 3x2 − y2 − 4

= x3 + 2x2 + x2 − 4− y2

= x2(x+ 2) + (x− 2)(x+ 2)− y2

= (x2 + x− 2)(x+ 2)− y2

= (x− 1)(x+ 2)(x + 2) − y2

= (x− 1)(x+ 2)2 − y2

e, como

(x− 1)(x+ 2)2 − y2⩽ 0 para qualquer x ∈ B1((−2, 0)),

o ponto (−2, 0) é um ponto de máximo.

António Bento (UBI) Cálculo II 2009/2010 359 / 498

§3.6 Extremos locais e extremos absolutos

A forma como no exemplo anterior verificámos que (0, 0) não eraextremante e que (−2, 0) era um maximizante não é muito prática.

Vejamos uma forma mais prática de o fazer. Para isso precisamos damatriz hessiana. Dada uma função f : D ⊆ Rn → R de classe C2

chama-se matriz hessiana de f num ponto a ∈ D à matriz

Hf (a) =

∂2f

∂x1∂x1(a)

∂2f

∂x2∂x1(a) · · · ∂2f

∂xn∂x1(a)

∂2f

∂x1∂x2(a)

∂2f

∂x2∂x2(a) · · · ∂2f

∂xn∂x2(a)

......

. . ....

∂2f

∂x1∂xn(a)

∂2f

∂x2∂xn(a) · · · ∂2f

∂xn∂xn(a)

.

António Bento (UBI) Cálculo II 2009/2010 360 / 498

Page 91: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.6 Extremos locais e extremos absolutos

Suponhamos que a é um ponto de estacionaridade de f e por facilidadede escrita representemos a matriz hessiana de f no ponto a por

Hf (a) =

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

......

. . ....

an,1 an,2 · · · an,n

António Bento (UBI) Cálculo II 2009/2010 361 / 498

§3.6 Extremos locais e extremos absolutos

Façamos

∆0 = 1

∆1 = a1,1

∆2 = det[a1,1 a1,2

a2,1 a2,2

]

=∣∣∣∣

a1,1 a1,2

a2,1 a2,2

∣∣∣∣

∆3 = det

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

=

∣∣∣∣∣∣

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

∣∣∣∣∣∣

...

∆n = det

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

......

. . ....

an,1 an,2 · · · an,n

=

∣∣∣∣∣∣∣∣∣

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

......

. . ....

an,1 an,2 · · · an,n

∣∣∣∣∣∣∣∣∣

= detHf (a).

Os ∆i, i = 1, . . . , n, chamam-se menores principais da matriz Hf (a).

António Bento (UBI) Cálculo II 2009/2010 362 / 498

§3.6 Extremos locais e extremos absolutos

Então

a) se em∆0 = 1, ∆1, ∆2, . . . , ∆n

só houver permanências de sinal, ou seja, todos os ∆i, i = 1, . . . , n,são positivos, então f(a) é um mínimo local de f ;

b) se em∆0 = 1, ∆1, ∆2, . . . , ∆n

só houver variações de sinal, ou seja, (−1)i∆i > 0, i = 1, . . . , n,então f(a) é um máximo local de f ;

c) se em∆0 = 1, ∆1, ∆2, . . . , ∆n

houver permanências de sinal e variações de sinal, então a é umponto de sela.

António Bento (UBI) Cálculo II 2009/2010 363 / 498

§3.6 Extremos locais e extremos absolutos

Exemplos

a) Voltando ao exemplo inicial da função definida por

f(x, y) = x3 + 3x2 − y2

já vimos que∂f

∂x(x, y) = 3x2 + 6x e

∂f

∂y(x, y) = −2y

e que os pontos de estacionaridade são (0, 0) e (−2, 0) pois

∂f

∂x= 0

∂f

∂y= 0

3x2 + 6x = 0

−2y = 0⇔

3x(x+ 2) = 0

y = 0⇔

x = 0

y = 0∨

x = −2

y = 0.

Além disso, a matriz hessiana de f é

Hf (x, y) =

[6x+ 6 0

0 −2

]

.

António Bento (UBI) Cálculo II 2009/2010 364 / 498

Page 92: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.6 Extremos locais e extremos absolutos

Exemplos (continuação)

a) (continuação) Assim,

Hf (0, 0) =

[6 0

0 −2

]

e, como∆0 = 1, ∆1 = 6 e ∆2 = −12,

o ponto (0, 0) é um ponto de sela. Por outro lado

Hf (−2, 0) =

[−6 0

0 −2

]

e atendendo a que

∆0 = 1, ∆1 = −6 e ∆2 = 12

o ponto (−2, 0) é um ponto de máximo local.

António Bento (UBI) Cálculo II 2009/2010 365 / 498

§3.6 Extremos locais e extremos absolutos

Exemplos (continuação)

b) Seja f : R3 → R a função dada por

f(x, y, z) = x2 + y2 + 3z2 + yz + 2xz − xy.Os pontos de estacionaridade de f são dados por

∂f

∂x= 0

∂f

∂y= 0

∂f

∂z= 0

2x+ 2z − y = 0

2y + z − x = 0

6z + y + 2x = 0

2x− y + 2z = 0

−x+ 2y + z = 0

2x+ y + 6z = 0

x = 0

y = 0

z = 0

e a matriz hessiana é

Hf (x, y, z) =

2 −1 2− 1 2 12 1 6

.

António Bento (UBI) Cálculo II 2009/2010 366 / 498

§3.6 Extremos locais e extremos absolutos

Exemplos (continuação)

b) (continuação) Para esta matriz hessiana

Hf (0, 0, 0) =

2 −1 2−1 2 12 1 6

,

temos

∆0 = 1, ∆1 = 2, ∆2 =∣∣∣∣

2 −1−1 2

∣∣∣∣

= 3, ∆3 =

∣∣∣∣∣∣

2 −1 2−1 2 12 1 6

∣∣∣∣∣∣

= 4,

pelo que f tem um mínimo local no ponto (0, 0, 0).

António Bento (UBI) Cálculo II 2009/2010 367 / 498

§3.6 Extremos locais e extremos absolutos

Observações

a) Se f(a) é um mínimo local de f , então

∆1 ⩾ 0, ∆2 ⩾ 0, . . . , ∆n ⩾ 0.

b) Se f(a) é um máximo local de f , então

∆1 ⩽ 0, ∆2 ⩾ 0, . . . , (−1)n∆n ⩾ 0.

c) O recíproco das duas alíneas anteriores é falso.

d) Outro processo de determinar se um ponto de estacionaridade éextremante utiliza os valores próprios da matriz hessiana.

i) Se os valores próprios da matriz hessiana são todos positivos, entãotemos um ponto de mínimo.

ii) Se os valores próprios da matriz hessiana são todos negativos, entãotemos um ponto de máximo.

iii) Se a matriz hessiana tiver valores próprios positivos e valores própriosnegativos, então temos um ponto de sela.

iv) Se a matriz hessiana tiver valores próprios nulos, e os valores própriosnão nulos tiverem todos o mesmo sinal nada se pode concluir.

António Bento (UBI) Cálculo II 2009/2010 368 / 498

Page 93: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.6 Extremos locais e extremos absolutos

Exemplo

Calculemos os pontos de estacionaridade da função dada por

f(x, y) = x2y − y.

Para isso temos de resolver o sistema

∂f

∂x= 0

∂f

∂y= 0

2xy = 0

x2 − 1 = 0⇔

y = 0

x = 1∨

y = 0

x = −1.

Assim, os pontos de estacionaridade de f são (1, 0) e (−1, 0). A matrizhessiana de f é

Hf (x, y) =[

2y 2x2x 0

]

.

António Bento (UBI) Cálculo II 2009/2010 369 / 498

§3.6 Extremos locais e extremos absolutos

Exemplo (continuação)

Assim,

Hf (1, 0) =[

0 22 0

]

e, portanto,∆0 = 1, ∆1 = 0 e ∆2 = −4.

Pelas alíneas a) e b) das observações concluímos que (1, 0) é um ponto de sela.Por outro lado,

Hf (−1, 0) =[

0 −2−2 0

]

e para este caso também temos

∆0 = 1, ∆1 = 0 e ∆2 = −4

o que permite concluir do mesmo modo que (−1, 0) é um ponto de sela.Podíamos ter chegado à mesma conclusão verificando que os valores própriosde ambas as matrizes são −2 e 2.

António Bento (UBI) Cálculo II 2009/2010 370 / 498

Índice

1 Sucessões e séries

2 Funções de Rn em R

m: limites e continuidade

3 Cálculo diferencial em Rn

Derivadas parciais e derivadas direccionaisDiferenciabilidade de funções de Rn em Rm

Derivada da função compostaDerivadas de ordem superior. Teorema de SchwarzTeorema da função implícitaExtremos locais e extremos absolutosExtremos condicionados: método dos multiplicadores de Lagrange

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 371 / 498

§3.7 Extremos condicionados: método dos multiplicadores de Lagrange

Suponhamos que pretendemos determinar quais as dimensões dorectângulo de perímetro igual a 2 que tem a área máxima. Designemoscomprimentos dos lados do rectângulo por x e y,

x

y

O que pretendemos é determinar o valor máximo da função

A(x, y) = xy

no conjunto dos pontos (x, y) (ambos não negativos) que verificam

2x+ 2y = 2,ou seja

x+ y = 1.

António Bento (UBI) Cálculo II 2009/2010 372 / 498

Page 94: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.7 Extremos condicionados: método dos multiplicadores de Lagrange

Como x+ y = 1 é equivalente a y = 1− x, obtemos para os pontos queverificam esta condição A(x, y) = A(x, 1 − x) = x(1− x). Bastaportanto determinar o valor de x ∈ [0, 1] que maximiza a funçãoA(x, 1− x). Como

A′(x, 1− x) = 0 ⇔ [x(1 − x)]′ = 0 ⇔ 1− 2x = 0 ⇔ x =12,

podemos construir o seguinte quadro

0 1/2 2A′(x, 1− x) + + 0 − −A(x, 1 − x) ր max ց

Concluímos que x = 1/2 corresponde a um ponto de máximo da funçãocuja segunda coordenada é y = 1− 1/2 = 1/2. O tal rectângulo é umquadrado de lado 1/2.

António Bento (UBI) Cálculo II 2009/2010 373 / 498

§3.7 Extremos condicionados: método dos multiplicadores de Lagrange

Na resolução anterior foi fundamental conseguirmos resolver a equação

x+ y = 1

em ordem a y. Como fazer se tal não for possível? A resposta é dadapelo método dos multiplicadores de Lagrange. Vejamos umexemplo.

António Bento (UBI) Cálculo II 2009/2010 374 / 498

§3.7 Extremos condicionados: método dos multiplicadores de Lagrange

Exemplo

Pretendemos determinar os extremos absolutos da função

f(x, y) = x2 + ysujeita à condição

x2 + y2 = 1.

Para isso consideramos uma nova função

L(x, y, λ) = x2 + y + λ(x2 + y2 − 1),

e calculamos os seus pontos de estacionaridade:

∂L∂x (x, y, λ) = 0∂L∂y (x, y, λ) = 0∂L∂λ (x, y, λ) = 0

2x+ 2xλ = 01 + 2yλ = 0x2 + y2 − 1 = 0

2x(1 + λ) = 0——–——–

x = 0——–y2 = 1

λ = −1y = 1/2x2 = 3/4

x = 0λ = −1/2y = ±1

λ = −1y = 1/2x = ±

√3/2

António Bento (UBI) Cálculo II 2009/2010 375 / 498

§3.7 Extremos condicionados: método dos multiplicadores de Lagrange

Exemplo (continuação)

Os candidatos a extremo absoluto são

(0, 1), (0,−1), (√

3/2, 1/2) e (−√

3/2, 1/2).

Como sabemos que o conjunto

C ={

(x, y) ∈ R2 : x2 + y2 = 1}

é fechado e limitado e a função

f(x, y) = x2 + y

é contínua, o Teorema de Weierstrass garante-nos que temos um máximo eum mínimo absoluto de f em C. Como

f(0, 1) = 1, f(0,−1) = −1 e f(−√

3/2, 1/2) = f(√

3/2, 1/2) = 5/4,

concluímos que o máximo absoluto é 5/4 e o mínimo absoluto é −1.

António Bento (UBI) Cálculo II 2009/2010 376 / 498

Page 95: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.7 Extremos condicionados: método dos multiplicadores de Lagrange

Vamos agora descrever o método geral para determinar os pontoscandidatos a extremo. Dada uma função de classe C1,

f : D ⊆ Rn → R,

para determinar os extremos desta função sujeita às m ⩽ n condições

φ1(x1, . . . , xn) = 0, . . . , φm(x1, . . . , xn) = 0,

com φ1, . . . , φm funções de classe C1, consideramos a função

L(x1, . . . , xn, λ1, . . . , λm)

= f(x1, . . . , xn) + λ1φ1(x1, . . . , xn) + · · · + λmφm(x1, . . . , xn).

Determinamos os pontos de estacionaridade desta nova função. Entreestes pontos encontram-se pontos tais que as primeiras n coordenadascorrespondem às coordenadas dos pontos de extremo da função f , casoestes existam.Os λi que surgem na função L designam-se por multiplicadores deLagrange.

António Bento (UBI) Cálculo II 2009/2010 377 / 498

§3.7 Extremos condicionados: método dos multiplicadores de Lagrange

Exemplos

a) Pretendemos determinar, utilizando os multiplicadores deLagrange, os extremos absolutos da função

f(x, y, z) = x+ 2ysujeita às restrições

x+ y + z = 1 e y2 + z2 = 4.Como o conjunto

{

(x, y, z) ∈ R3 : x+ y + z = 1 ∧ y2 + z2 = 4}

é um conjunto limitado e fechado e a função f é contínua, peloTeorema de Weierstrass, f tem máximo e mínimo absolutos nesteconjunto.Vamos determiná-los usando o método dos multiplicadores deLagrange. Escrevemos a nova função

L(x, y, z, λ, µ) = x+ 2y + λ(x+ y + z − 1) + µ(y2 + z2 − 4).

António Bento (UBI) Cálculo II 2009/2010 378 / 498

§3.7 Extremos condicionados: método dos multiplicadores de Lagrange

Exemplos (continuação)

a) (continuação) Temos

∂L∂x (x, y, z, λ, µ) = 0∂L∂y (x, y, z, λ, µ) = 0∂L∂z (x, y, z, λ, µ) = 0∂L∂λ (x, y, z, λ, µ) = 0∂L∂µ (x, y, z, λ, µ) = 0

1 + λ = 0

2 + λ+ 2µy = 0

λ+ 2µz = 0

x+ y + z = 1

y2 + z2 = 4

λ = −1

2µy = −1

2µz = 1

λ = −1

µ = −√

2/4

z = −√

2

x = 1

y =√

2

λ = 1

µ =√

2/4

z =√

2

x = 1

y = −√

2

António Bento (UBI) Cálculo II 2009/2010 379 / 498

§3.7 Extremos condicionados: método dos multiplicadores de Lagrange

Exemplos (continuação)

a) (continuação) Obtivemos dois candidatos a ponto de extremo:

(1,√

2,−√

2) e (1,−√

2,√

2).

Uma vez quef(1,√

2,−√

2) = 1 + 2√

2

ef(1,−

√2,√

2) = 1− 2√

2,

concluímos que 1 + 2√

2 é máximo absoluto e que 1− 2√

2 é mínimoabsoluto.

António Bento (UBI) Cálculo II 2009/2010 380 / 498

Page 96: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.7 Extremos condicionados: método dos multiplicadores de Lagrange

Exemplos (continuação)

b) Pretendemos determinar os extremos absolutos da função

f(x, y, z) = x2 + 2xy − 4x+ 8yno conjunto

C = {(x, y) : 0 ⩽ x ⩽ 1 ∧ 0 ⩽ y ⩽ 2} .Como o conjunto C é um conjunto limitado e fechado e a função f écontínua, pelo Teorema de Weierstrass f tem máximo e mínimo absolutosneste conjunto. Os extremos absolutos podem estar no interior ou nafronteira de C.Começamos por determinar todos os extremos locais de f no interior doconjunto C. Para tal começamos por determinar os pontos deestacionaridade de f que estão em C:

{∂f∂x (x, y) = 0∂f∂y (x, y) = 0

⇔{

2x+ 2y − 4 = 02x+ 8 = 0

⇔{

y = 6x = −4

.

Como o ponto (−4, 6) não está no interior de C concluímos que não háextremos no interior de C.

António Bento (UBI) Cálculo II 2009/2010 381 / 498

§3.7 Extremos condicionados: método dos multiplicadores de Lagrange

Exemplos (continuação)

b) (continuação) Vamos agora determinar os pontos de estacionaridade nafronteira recorrendo ao método dos multiplicadores de Lagrange.

Para o segmento de recta

S1 = {(x, y) : y = 0 ∧ 0 ⩽ x ⩽ 1}escrevemos a função

L1(x, y, λ) = x2 + 2xy − 4x+ 8y + λy.

Temos

∂L1

∂x (x, y, λ) = 0∂L1

∂y (x, y, λ) = 0∂L1

∂λ (x, y, λ) = 0

2x+ 2y − 4 = 02x+ 8 + λ = 0y = 0

x = 2y = 0λ = −12

.

Obtivemos o ponto (2, 0) no entanto (2, 0) /∈ S1 pelo que não o devemosconsiderar.

António Bento (UBI) Cálculo II 2009/2010 382 / 498

§3.7 Extremos condicionados: método dos multiplicadores de Lagrange

Exemplos (continuação)

b) (continuação) Para o segmento de recta

S2 = {(x, y) : y = 2 ∧ 0 ⩽ x ⩽ 1}

escrevemos a função

L2(x, y, λ) = x2 + 2xy − 4x+ 8y + λ(y − 2).

Temos

∂L2∂x (x, y, λ) = 0∂L2∂y (x, y, λ) = 0∂L2∂λ (x, y, λ) = 0

2x+ 2y − 4 = 0

2x+ 8 + λ = 0

y − 2 = 0

x = 0

λ = −8

y = 2

.

Obtivemos o ponto (0, 2) e, como (0, 2) ∈ S2, este ponto é umcandidato a extremo global.

António Bento (UBI) Cálculo II 2009/2010 383 / 498

§3.7 Extremos condicionados: método dos multiplicadores de Lagrange

Exemplos (continuação)

b) (continuação) Para o segmento de recta

S3 = {(x, y) : x = 0 ∧ 0 ⩽ y ⩽ 2}

escrevemos a função

L3(x, y, λ) = x2 + 2xy − 4x+ 8y + λx.

Temos

∂L3∂x (x, y, λ) = 0∂L3∂y (x, y, λ) = 0∂L3∂λ (x, y, λ) = 0

2x+ 2y − 4 + λ = 0

2x+ 8 = 0

x = 0

x = −4

x = 0

λ = −12

.

O sistema é impossível pelo que não obtemos candidatos a extremoneste caso.

António Bento (UBI) Cálculo II 2009/2010 384 / 498

Page 97: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§3.7 Extremos condicionados: método dos multiplicadores de Lagrange

Exemplos (continuação)

b) (continuação) Para o segmento de recta

S4 = {(x, y) : x = 1 ∧ 0 ⩽ y ⩽ 2}

escrevemos a função

L4(x, y, λ) = x2 + 2xy − 4x+ 8y + λ(x− 1).

Temos

∂L4∂x (x, y, λ) = 0∂L4∂y (x, y, λ) = 0∂L4∂λ (x, y, λ) = 0

2x+ 2y − 4 + λ = 0

2x+ 8 = 0

x− 1 = 0

x = −4

x = 1

λ = −12

.

O sistema é impossível pelo que não obtemos candidatos a extremoneste caso.

António Bento (UBI) Cálculo II 2009/2010 385 / 498

§3.7 Extremos condicionados: método dos multiplicadores de Lagrange

Exemplos (continuação)

b) (continuação) Assim, temos apenas como candidatos a extremos ospontos de intersecção de cada par de segmentos, isto é os vérticesdo rectângulo C:

(0, 2), (0, 0), (1, 0) e (1, 2).

Como referimos, de acordo com o Teorema de Weierstrass, entre asimagens destes quatro pontos estão os extremos absolutos de f emC.Atendendo a que

f(0, 2) = 16, f(0, 0) = 0, f(1, 0) = −3 e f(1, 2) = 17,

concluímos que o máximo absoluto é 17 e o mínimo absoluto é −3.

António Bento (UBI) Cálculo II 2009/2010 386 / 498

Índice

1 Sucessões e séries

2 Funções de Rn em R

m: limites e continuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

Integrais em Rn: definição, exemplos e propriedadesTeorema de FubiniIntegrais em conjuntos mais geraisMudança de coordenadasAplicações ao cálculo de áreas e de volumes

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 387 / 498

Índice

1 Sucessões e séries

2 Funções de Rn em R

m: limites e continuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

Integrais em Rn: definição, exemplos e propriedadesTeorema de FubiniIntegrais em conjuntos mais geraisMudança de coordenadasAplicações ao cálculo de áreas e de volumes

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 388 / 498

Page 98: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§4.1 Integrais em Rn: definição, exemplos e propriedades

Para definirmos o conceito de integral é necessário explorar primeiro oconceito de partição de um intervalo fechado e limitado de Rn.

Dados a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn, com ai < bi, i = 1, . . . , n,designamos os conjuntos da forma

[a, b] = {(x1, . . . , xn) ∈ Rn : ai ⩽ xi ⩽ bi, i = 1, . . . , n}= [a1, b1]× · · · × [an, bn]

por intervalo fechado e limitado de Rn.

É fácil de verificar que quando n = 1, os intervalos fechados e limitadoscoincidem com os habituais intervalos fechados e limitados de R;quando n = 2 os intervalos fechados e limitados são rectângulos equando n = 3 os intervalos fechados e limitados são paralelepípedosrectângulos.

António Bento (UBI) Cálculo II 2009/2010 389 / 498

§4.1 Integrais em Rn: definição, exemplos e propriedades

Dado um intervalo (fechado e limitado) I = [a, b] de Rn, coma = (a1, . . . , an) e b = (b1, . . . , bn), definimos o volume elementar deI, que denotamos por vol(I), por

vol(I) =n∏

i=1

(bi − ai).

Verifica-se imediatamente que quando n = 1 o volume elementar é ocomprimento do intervalo, para n = 2 o volume elementar é a área dorectângulo e que quando n = 3 o volume elementar é o volume usual doparalelepípedo.

António Bento (UBI) Cálculo II 2009/2010 390 / 498

§4.1 Integrais em Rn: definição, exemplos e propriedades

Dado um intervalo fechado e limitado I de Rn, designa-se porpartição ou subdivisão de I qualquer colecção

P = {I1, . . . , Ik} ,

onde os Ij são intervalos fechados e limitados de Rn não sobrepostos(i.e. sem pontos interiores comuns) e cuja reunião é I, ou seja,

int Ii ∩ int Ij = ∅ para i, j = 1, . . . , n e i 6= j

e

I =k⋃

i=1

Ii.

É evidente que nestas condições se tem

vol(I) =k∑

i=1

vol(Ii).

António Bento (UBI) Cálculo II 2009/2010 391 / 498

§4.1 Integrais em Rn: definição, exemplos e propriedades

Exemplo

O conjuntoP = {I1, I2, I3, I4, I5}

onde I1 =[

0, 14

]

×[

0, 13

]

, I2 =[

0, 14

]

×[

13 ,

23

]

, I3 =[

0, 14

]

×[

23 , 1]

,

I4 =[

14 , 1]

×[

0, 13

]

e I5 =[

14 , 1]

×[

13 , 1]

constitui uma partição dointervalo [0, 1] × [0, 1].

I1

I2

I3

I4

I5

0 1

1

António Bento (UBI) Cálculo II 2009/2010 392 / 498

Page 99: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§4.1 Integrais em Rn: definição, exemplos e propriedades

Sejam I um intervalo (fechado e limitado) de Rn, P = {I1, . . . , Ik} umapartição de I e f : I ⊆ Rn → R uma função limitada. Chama-se somasuperior de Darboux relativa à partição P ao número real

S(f, P ) =k∑

i=1

M(f, Ii) vol(Ii),

ondeM(f, Ii) = sup {f(x) : x ∈ Ii} = sup

x∈Iif(x).

Analogamente, chama-se soma inferior de Darboux relativa àpartição P ao número real

s(f, P ) =k∑

i=1

m(f, Ii) vol(Ii),

ondem(f, Ii) = inf {f(x) : x ∈ Ii} = inf

x∈Iif(x).

António Bento (UBI) Cálculo II 2009/2010 393 / 498

§4.1 Integrais em Rn: definição, exemplos e propriedades

x

y

a b

b

b

∥x0

x1 x2 x3 x4 x5 x6 x7∥x8

m1

m2=m4=m8

m3

m5

m6

m7

b

b

Interpretação geométrica das somas inferiores de Darboux para funçõesf : I ⊆ R→ R

António Bento (UBI) Cálculo II 2009/2010 394 / 498

§4.1 Integrais em Rn: definição, exemplos e propriedades

x

y

a b

b

b

∥x0

x1 x2 x3 x4 x5 x6 x7∥x8

b

b

Interpretação geométrica das somas superiores de Darboux parafunções f : I ⊆ R→ R

António Bento (UBI) Cálculo II 2009/2010 395 / 498

§4.1 Integrais em Rn: definição, exemplos e propriedades

M(f, B)

m(f, B)

B

M(f, B)

m(f, B)

B

Interpretação geométrica das somas inferiores e das somas superioresde Darboux para funções f : I ⊆ R2 → R

António Bento (UBI) Cálculo II 2009/2010 396 / 498

Page 100: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§4.1 Integrais em Rn: definição, exemplos e propriedades

Exemplos de somas superiores e de somas inferiores

a) Seja I um intervalo de Rn e consideremos a funçãof : I ⊆ Rn → R

definida por

f(x) = c.

Dada uma partição P = {I1, . . . , Ik} de I temos

m(f, Ii) = c e M(f, Ii) = c

e, consequentemente,

s(f, P ) =k∑

i=1

m(f, Ii) vol(Ii) =k∑

i=1

c vol(Ii) = c

k∑

i=1

vol(Ii) = c vol(I)

e

S(f, P ) =k∑

i=1

M(f, Ii) vol(Ii) =k∑

i=1

c vol(Ii) = c

k∑

i=1

vol(Ii) = c vol(I).

António Bento (UBI) Cálculo II 2009/2010 397 / 498

§4.1 Integrais em Rn: definição, exemplos e propriedades

Exemplos de somas superiores e de somas inferiores (continuação)

b) Sejam I um intervalo de Rn e

f : I ⊆ Rn → Ra função definida por

f(x) =

{

0 se x ∈ I ∩Qn,

1 se x 6∈ I ∩Qn.

Para qualquer partição P = {I1, . . . Ik} de I temos

m(f, Ii) = 0 e M(f, Ii) = 1,

pelo que

s(f, P ) =k∑

i=1

m(f, Ii) vol(Ii) =k∑

i=1

0 vol(Ii) = 0

e

S(f, P ) =k∑

i=1

M(f, Ii) vol(Ii) =k∑

i=1

1 vol(Ii) = vol(I).

António Bento (UBI) Cálculo II 2009/2010 398 / 498

§4.1 Integrais em Rn: definição, exemplos e propriedades

Seja I um intervalo fechado e limitado de Rn. Uma função

f : I ⊆ Rn → R

diz-se integrável à Riemann em I se existir um e um só número Atal que

s(f, P ) ⩽ A ⩽ S(f, P ) para qualquer partição P de I.

O único número A que verifica a desigualdade anterior designa-se porintegral de Riemann de f em I e representa-se por

If(x) dx.

António Bento (UBI) Cálculo II 2009/2010 399 / 498

§4.1 Integrais em Rn: definição, exemplos e propriedades

Exemplos do integral de Riemann

a) Consideremos novamente a função f : I ⊆ Rn → R definida por

f(x) = c.

Já vimos que para qualquer partição P de I tem-se

s(f, P ) = c vol(I) = S(f, P ).

Assim,s(f, P ) ⩽ c vol(I) ⩽ S(f, P ) para qualquer partição P de I

ec vol(I)

é o único número real que verifica as estas desigualdades. Logo f éintegrável à Riemann em I e

If(x) dx = c vol(I).

António Bento (UBI) Cálculo II 2009/2010 400 / 498

Page 101: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§4.1 Integrais em Rn: definição, exemplos e propriedades

Exemplos do integral de Riemann (continuação)

b) Já vimos que para a função f : I ⊆ Rn → R, definida por

f(x) =

{

0 se x ∈ I ∩Qn,

1 se x 6∈ I ∩Qn

se tems(f, P ) = 0 e S(f, P ) = vol(I)

qualquer que seja a partição P de I. Portanto, se A ∈ [0, vol(I)]tem-se

0 = s(f, P ) ⩽ A ⩽ S(f, P ) = vol(I)

para qualquer partição P de I, o que mostra que f não é integrávelà Riemann em [0, 1].

António Bento (UBI) Cálculo II 2009/2010 401 / 498

§4.1 Integrais em Rn: definição, exemplos e propriedades

É também comum escrever∫

If(x1, . . . , xn) dx1 · · · dxn

para designar o integral de Riemann de f no intervalo fechado I. Éainda usual escrever

∫ bn

an· · ·∫ b1

a1

f(x1, . . . , xn) dx1 · · · dxn

para designar∫

[a1,b1]×···×[an,bn]f(x1, . . . , xn) dx1 · · · dxn.

António Bento (UBI) Cálculo II 2009/2010 402 / 498

§4.1 Integrais em Rn: definição, exemplos e propriedades

Em dimensão dois é usual escrever f(x, y) em vez de f(x1, x2) edenota-se assim o integral de Riemann em I por

∫∫

If(x, y) dx dy.

Analogamente em dimensão três usa-se frequentemente a notação∫∫∫

If(x, y, z) dx dy dz.

Facilmente se verifica que, no caso n = 1, o conceito de integral aquiapresentado coincide com o conceito de integral de Riemann definidoem Cálculo I.

António Bento (UBI) Cálculo II 2009/2010 403 / 498

§4.1 Integrais em Rn: definição, exemplos e propriedades

Propriedades dos integrais

Seja I um intervalo fechado e limitado de Rn.

a) Sef, g : I ⊆ Rn → R

são funções integráveis em I, então f + g é integrável em I e∫

I[f(x) + g(x)] dx =

If(x) dx+

Ig(x) dx.

b) Se λ é um número real e

f : I ⊆ Rn → R

é uma função integrável em I, então λ f é integrável em I e∫

Iλ f(x) dx = λ

If(x) dx.

António Bento (UBI) Cálculo II 2009/2010 404 / 498

Page 102: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§4.1 Integrais em Rn: definição, exemplos e propriedades

Propriedades dos integrais (continuação)

c) Sejam I1 e I2 dois intervalos (fechados e limitados) de Rn nãosobrepostos e tais que

I = I1 ∪ I2

e sejaf : I ⊆ Rn → R.

Entãof é integrável em I

se e só seé integrável em I1 e em I2.

Além disso, nas condições anteriores, temos∫

If(x) dx =

I1

f(x) dx+∫

I2

f(x) dx.

António Bento (UBI) Cálculo II 2009/2010 405 / 498

§4.1 Integrais em Rn: definição, exemplos e propriedades

Propriedades dos integrais (continuação)

d) Sef, g : I ⊆ Rn → R

são duas funções integráveis em I tais que

f(x) ⩽ g(x) para cada x ∈ I,

então ∫

If(x) dx ⩽

Ig(x) dx.

António Bento (UBI) Cálculo II 2009/2010 406 / 498

§4.1 Integrais em Rn: definição, exemplos e propriedades

Propriedades dos integrais (continuação)

e) Sejaf : I ⊆ Rn → R

uma função integrável. Então |f | é integrável em I e∣∣∣∣

If(x) dx

∣∣∣∣ ⩽

I|f(x)| dx.

f) Sef : I ⊆ Rn → R

é uma função contínua, excepto num número finito de pontos, entãof é integrável. Em particular, as funções contínuas são integráveis.

António Bento (UBI) Cálculo II 2009/2010 407 / 498

Índice

1 Sucessões e séries

2 Funções de Rn em R

m: limites e continuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

Integrais em Rn: definição, exemplos e propriedadesTeorema de FubiniIntegrais em conjuntos mais geraisMudança de coordenadasAplicações ao cálculo de áreas e de volumes

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 408 / 498

Page 103: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§4.2 Teorema de Fubini

Teorema de Fubini

Sejam I um intervalo fechado e limitado de Rn, J um intervalo fechadoe limitado de Rm e

f : I × J ⊆ Rn ×Rm → R

uma função limitada e integrável. Se f é integrável (como função de x)em I para qualquer y ∈ J , então

I×Jf(x, y) dx dy =

J

[∫

If(x, y) dx

]

dy.

António Bento (UBI) Cálculo II 2009/2010 409 / 498

§4.2 Teorema de Fubini

Teorema de Fubini para funções contínuas

Sejam I um intervalo fechado e limitado de Rn, J um intervalo fechadoe limitado de Rm e

f : I × J ⊆ Rn ×Rm → R

uma função contínua e, consequentemente, integrável à Riemann emI × J . Então

a) f é integrável (como função de x) em I para qualquer y ∈ J ;

b) a função

g(y) =∫

If(x, y) dx

é integrável em I e∫

I×Jf(x, y) dx dy =

J

[∫

If(x, y) dx

]

dy.

António Bento (UBI) Cálculo II 2009/2010 410 / 498

§4.2 Teorema de Fubini

Exemplos

a) Calculemos o integral∫

[0,1]×[2,3]xy2 dx dy. Então

[0,1]×[2,3]xy2 dx dy =

∫ 3

2

∫ 1

0xy2 dx dy

=∫ 3

2

[

x2y2

2

]x=1

x=0

dy

=∫ 3

2

y2

2− 0 dy

=

[

y3

6

]y=3

y=2

=276− 8

6=

196.

António Bento (UBI) Cálculo II 2009/2010 411 / 498

§4.2 Teorema de Fubini

Exemplos (continuação)

a) (continuação) Este integral também pode ser calculado da seguinteforma:

[0,1]×[2,3]

xy2 dx dy =∫ 1

0

∫ 3

2

xy2 dy dx

=∫ 1

0

[xy3

3

]y=3

y=2

dx

=∫ 1

0

27x3− 8x

3dx

=∫ 1

0

19x3

dx

=[

19x2

6

]x=1

x=0

=196− 0 =

196.

António Bento (UBI) Cálculo II 2009/2010 412 / 498

Page 104: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§4.2 Teorema de Fubini

Exemplos (continuação)

b) Calculemos∫

[0,1]×[0,2]×[1,3]xy2z dx dy dz:

[0,1]×[0,2]×[1,3]xy2z dx dy dz =

∫ 3

1

∫ 2

0

∫ 1

0xy2z dx dy dz

=∫ 3

1

∫ 2

0

[

x2y2z

2

]x=1

x=0

dy dz

=∫ 3

1

∫ 2

0

y2z

2dy dz =

∫ 3

1

[

y3z

6

]y=2

y=0

dz

=∫ 3

1

8z6dz =

[

8z2

12

]z=3

z=1

=7212− 8

12=

163

António Bento (UBI) Cálculo II 2009/2010 413 / 498

§4.2 Teorema de Fubini

Exemplos (continuação)

b) (continuação) Outro processo seria

[0,1]×[0,2]×[1,3]xy2z dx dy dz =

∫ 3

1

∫ 2

0

∫ 1

0xy2z dx dy dz

=∫ 3

1z dz

∫ 2

0y2 dy

∫ 1

0x dx

=

[

z2

2

]z=3

z=1

[

y3

3

]y=2

y=0

[

x2

2

]x=1

x=0

=(

92− 1

2

)83

12

=163

António Bento (UBI) Cálculo II 2009/2010 414 / 498

Índice

1 Sucessões e séries

2 Funções de Rn em R

m: limites e continuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

Integrais em Rn: definição, exemplos e propriedadesTeorema de FubiniIntegrais em conjuntos mais geraisMudança de coordenadasAplicações ao cálculo de áreas e de volumes

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 415 / 498

§4.3 Integrais em conjuntos mais gerais

Sejaf : D ⊆ Rn → R

uma função limitada definida num subconjunto limitado D ⊆ Rn.Sejam I um intervalo de Rn fechado e limitado tal que D está contidono interior de I e

f̃ : I ⊆ Rn → R

a função dada por

f̃(x) =

{

f(x) se x ∈ D0 se x ∈ I \D

Dizemos que f é integrável em D se f̃ for integrável em I e definimos ointegral de f em D por

Df(x) dx =

If̃(x) dx.

António Bento (UBI) Cálculo II 2009/2010 416 / 498

Page 105: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§4.3 Integrais em conjuntos mais gerais

Verifica-se facilmente que a escolha do intervalo I não influencia adefinição anterior, nem o valor

Df(x) dx.

As propriedades que vimos para integrais de funções definidas emintervalos também se verificam para este tipo de integrais. Veremos emseguida essas propriedades.

António Bento (UBI) Cálculo II 2009/2010 417 / 498

§4.3 Integrais em conjuntos mais gerais

Propriedades dos integrais

Seja D um subconjunto limitado de Rn.

a) Sef, g : D ⊆ Rn → R

são funções integráveis em D, então f + g é integrável em D e∫

D[f(x) + g(x)] dx =

Df(x) dx+

Dg(x) dx.

b) Se λ é um número real e

f : D ⊆ Rn → R

é uma função integrável em D, então λ f é integrável em D e∫

Dλ f(x) dx = λ

Df(x) dx.

António Bento (UBI) Cálculo II 2009/2010 418 / 498

§4.3 Integrais em conjuntos mais gerais

Propriedades dos integrais (continuação)

c) Sejam D1 e D2 dois subconjuntos limitados de Rn tais que

int (D1 ∩D2) = ∅ e D = D1 ∪D2

e sejaf : D ⊆ Rn → R.

Sef é integrável em D1, em D2 e em D,

então ∫

Df(x) dx =

D1

f(x) dx+∫

D2

f(x) dx.

António Bento (UBI) Cálculo II 2009/2010 419 / 498

§4.3 Integrais em conjuntos mais gerais

Propriedades dos integrais (continuação)

d) Sef, g : D ⊆ Rn → R

são duas funções integráveis em D tais que

f(x) ⩽ g(x) para cada x ∈ D,

então ∫

Df(x) dx ⩽

Dg(x) dx.

António Bento (UBI) Cálculo II 2009/2010 420 / 498

Page 106: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§4.3 Integrais em conjuntos mais gerais

Propriedades dos integrais (continuação)

e) Sejaf : D ⊆ Rn → R

uma função integrável. Então

|f | é integrável em D

e ∣∣∣∣

Df(x) dx

∣∣∣∣ ⩽

D|f(x)| dx.

António Bento (UBI) Cálculo II 2009/2010 421 / 498

§4.3 Integrais em conjuntos mais gerais

Seja D um subconjunto limitado de R2 da forma

D ={

(x, y) ∈ R2 : a ⩽ x ⩽ b ∧ ϕ1(x) ⩽ y ⩽ ϕ2(x)},

ondeϕ1, ϕ2 : [a, b] ⊆ R→ R

são funções limitadas em [a, b].

x

y

a b

y = ϕ2(x)

y = ϕ1(x)

D

António Bento (UBI) Cálculo II 2009/2010 422 / 498

§4.3 Integrais em conjuntos mais gerais

Sef : D ⊆ R2 → R

é uma função limitada e integrável em

D ={

(x, y) ∈ R2 : a ⩽ x ⩽ b ∧ ϕ1(x) ⩽ y ⩽ ϕ2(x)}

,

recorrendo ao teorema de Fubini, temos

∫∫

Df(x, y) dx dy =

∫ b

a

(∫ ϕ2(x)

ϕ1(x)f(x, y) dy

)

dx,

desde que a função f(x, y) seja (como função de y) integrável em[ϕ1(x), ϕ2(x)] para qualquer x ∈ [a, b]. Este integral também secostuma representar por

∫∫

Df(x, y) dA.

É de referir que se as funções ϕ1, ϕ2 e f são contínuas, excepto numnúmero finito de pontos, então f é integrável em D.

António Bento (UBI) Cálculo II 2009/2010 423 / 498

§4.3 Integrais em conjuntos mais gerais

Analogamente, se D é um subconjunto limitado de Rn da forma

D ={

(x, y) ∈ R2 : ψ1(y) ⩽ x ⩽ ψ2(y) ∧ c ⩽ y ⩽ d}

,

ondeψ1, ψ2 : [c, d] ⊆ R→ R,

tem-se∫∫

Df(x, y) dx dy =

∫ d

c

(∫ ψ2(y)

ψ1(y)f(x, y) dx

)

dy.

António Bento (UBI) Cálculo II 2009/2010 424 / 498

Page 107: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§4.3 Integrais em conjuntos mais gerais

Exemplos

a) Seja D ⊆ R2 o conjunto dos pontos de [0, 1] × [0, 1] que estão entrea parábola de equação y = x2 e a recta de equação y = x.

x

y

b

1

1 by = x

b

y = x2

b

Calculemos ∫∫

Dxy2 dA.

António Bento (UBI) Cálculo II 2009/2010 425 / 498

§4.3 Integrais em conjuntos mais gerais

Exemplos (continuação)

a) (continuação) Então

∫∫

Dxy2 dA =

∫ 1

0

∫ x

x2xy2 dy dx =

∫ 1

0

[

xy3

3

]y=x

y=x2

dx

=∫ 1

0

x · x3

3− x(x2)3

3dx =

∫ 1

0

x4

3− x7

3dx

=

[

x5

15− x8

24

]x=1

x=0

=115− 1

24− (0− 0)

=24− 1515 · 24

=9

15 · 24

=1

5 · 8 =140.

António Bento (UBI) Cálculo II 2009/2010 426 / 498

§4.3 Integrais em conjuntos mais gerais

Exemplos (continuação)

a) (continuação) Este integral também podia ter sido calculado daseguinte forma:

∫∫

Dxy2 dA =

∫ 1

0

∫ √y

yxy2 dx dy =

∫ 1

0

[

x2y2

2

]x=√y

x=y

dy

=∫ 1

0

(√y)2y2

2− y2y2

2dy =

∫ 1

0

y3

2− y4

2dy

=

[

y4

8− y5

10

]y=1

y=0

=18− 1

10− (0− 0)

=540− 4

40=

140.

António Bento (UBI) Cálculo II 2009/2010 427 / 498

§4.3 Integrais em conjuntos mais gerais

Exemplos (continuação)

b) A função f : R2 → R dada por

f(x, y) = xy3

é contínua em R2 e o conjunto

D ={

(x, y) ∈ R2 : x ⩾ 0 ∧ y ⩾ 0 ∧ x ⩽ −4y2 + 3}

também pode ser também definido por

D =

{

(x, y) ∈ R2 : 0 ⩽ y ⩽

√3

2∧ 0 ⩽ x ⩽ −4y2 + 3

}

.

Logo f é integrável em D.

António Bento (UBI) Cálculo II 2009/2010 428 / 498

Page 108: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§4.3 Integrais em conjuntos mais gerais

Exemplos (continuação)

b) (continuação) Assim,∫∫

Df(x, y) dx dy =

∫√

32

0

∫ 3−4y2

0xy3 dx dy

=∫√

32

0

[12x2y3

]x=3−4y2

x=0dy

=∫√

32

0

(92− 12y2 + 8y4

)

y3 dy

=∫√

32

0

92y3 − 12y5 + 8y7 dy

=[

98y4 − 2y6 + y8

]√

32

0

=27256

.

António Bento (UBI) Cálculo II 2009/2010 429 / 498

§4.3 Integrais em conjuntos mais gerais

Exemplos (continuação)

b) (continuação) Também podíamos ter definido D da seguinte forma

D =

{

(x, y) ∈ R2 : 0 ⩽ x ⩽ 3 ∧ 0 ⩽ y ⩽

3− x4

}

e, portanto,

∫∫

Df(x, y) dy dx =

∫ 3

0

∫√

3−x4

0xy3 dy dx =

∫ 3

0

[

xy4

4

]y=√

3−x4

y=0

dx

=∫ 3

0

x

4

(3− x

4

)2

dx =∫ 3

0

9x64− 3x2

32+x3

64dx

=

[

9x2

128− x3

32+

x4

256

]x=3

x=0

=27256

.

António Bento (UBI) Cálculo II 2009/2010 430 / 498

§4.3 Integrais em conjuntos mais gerais

Situações semelhantes às anteriores ocorrem noutras dimensões. Emparticular, em R3, por exemplo numa região da forma

D ={

(x, y, z) ∈ R3 : a ⩽ x ⩽ b ∧ ϕ1(x) ⩽ y ⩽ ϕ2(x) ∧ ψ1(x, y) ⩽ z ⩽ ψ2(x, y)

},

ondeϕ1, ϕ2 : [a, b]→ R

eψ1, ψ2 : {(x, y) ∈ R2 : a ⩽ x ⩽ b ∧ ϕ1(x) ⩽ y ⩽ ϕ2(x)} → R

são funções limitadas. Temos nesse caso

∫∫∫

Df(x, y, z) dx dy dz =

∫ b

a

(∫ ϕ2(x)

ϕ1(x)

(∫ ψ2(x,y)

ψ1(x,y)f(x, y, z) dz

)

dy

)

dx

desde que os integrais interiores existam.

Podemos estabelecer resultados semelhantes para regiões como a acimaonde os papeis das variáveis “estejam trocados”.

António Bento (UBI) Cálculo II 2009/2010 431 / 498

§4.3 Integrais em conjuntos mais gerais

Exemplo

A função f : R3 → R dada por f(x, y, z) = xy é contínua em R3 e, portanto, éintegrável na região

D ={

(x, y, z) ∈ R3 : 0 ⩽ y ⩽ 1 ∧ 0 ⩽ x ⩽ y ∧ 0 ⩽ z ⩽ x+ 2y}.

Além disso,

∫∫∫

D

f(x, y, z) dx dy dz =∫ 1

0

∫ y

0

∫ x+2y

0

xy dz dx dy

=∫ 1

0

∫ y

0

[xyz

]z=x+2y

z=0dx dy =

∫ 1

0

∫ y

0

xy(x+ 2y) dx dy

=∫ 1

0

∫ y

0

x2y + 2xy2 dx dy =∫ 1

0

[

x3y

3+ x2y2

]x=y

x=0

dy

=∫ 1

0

y4

3+ y4 dy =

[

y5

15+y5

5

]y=1

y=0

=415

António Bento (UBI) Cálculo II 2009/2010 432 / 498

Page 109: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§4.3 Integrais em conjuntos mais gerais

Situações semelhantes podem ser resolvidas de forma correspondenteem Rn, n ⩾ 4.

Muitas vezes queremos calcular integrais em regiões que se podemdecompor-se em regiões mais simples. Naturalmente, se em cada umadestas regiões mais simples conseguirmos calcular o integral, apelandoà linearidade do integral relativamente à região de integração, podemoscalcular integral original. O próximo exemplo ilustra esta forma deproceder.

António Bento (UBI) Cálculo II 2009/2010 433 / 498

§4.3 Integrais em conjuntos mais gerais

Exemplo

A função f : R2 → R dada por

f(x, y) = 2x2y

é contínua em R2 e, portanto, é integrável no conjunto

D ={

(x, y) ∈ R2 : |x| ⩽ y ⩽ 2− x2}

pois as funções |x| e 2− x2 são contínuas. Para calcularmos o integralde f em D vamos dividir D em duas regiões:

D1 ={

(x, y) ∈ R2 : 0 ⩽ x ⩽ 1 ∧ x ⩽ y ⩽ 2− x2}

e

D2 ={

(x, y) ∈ R2 : − 1 ⩽ x ⩽ 0 ∧ −x ⩽ y ⩽ 2− x2}

Como D = D1 ∪D2 e int (D1 ∩D2) = ∅, podemos calcular o integralde f em D à custa dos integrais de f em D1 e D2.

António Bento (UBI) Cálculo II 2009/2010 434 / 498

§4.3 Integrais em conjuntos mais gerais

Exemplo (continuação)

Assim, porque∫∫

D1

f(x, y) dx dy =∫ 1

0

∫ 2−x2

x

2x2y dy dx =∫ 1

0

[x2y2

]y=2−x2

y=xdx

=∫ 1

0

4x2 − 5x4 + x6 dx =[

4x3

3− x5 +

x7

7

]x=1

x=0

=1021

e∫∫

D2

f(x, y) dx dy =∫ 0

−1

∫ 2−x2

−x

2x2y dy dx =∫ 0

−1

[x2y2

]y=2−x2

y=−xdx

=∫ 1

0

4x2 − 5x4 + x6 dx =[

4x3

3− x5 +

x7

7

]x=0

x=−1

=1021

concluímos que∫∫

D

f(x, y) dx dy =∫∫

D1

f(x, y) dx dy +∫∫

D2

f(x, y) dx dy =2021.

António Bento (UBI) Cálculo II 2009/2010 435 / 498

Índice

1 Sucessões e séries

2 Funções de Rn em R

m: limites e continuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

Integrais em Rn: definição, exemplos e propriedadesTeorema de FubiniIntegrais em conjuntos mais geraisMudança de coordenadasAplicações ao cálculo de áreas e de volumes

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 436 / 498

Page 110: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§4.4 Mudança de coordenadas

Muitas vezes é necessário recorrer a outros sistemas de coordenadaspara calcular determinados integrais pois a geometria da região deintegração ou determinadas simetrias da função que queremos integrartornam o cálculo consideravelmente mais fácil em determinadascoordenadas e não noutras.

António Bento (UBI) Cálculo II 2009/2010 437 / 498

§4.4 Mudança de coordenadas

Seja U ⊆ Rn um conjunto aberto. Dizemos que uma função

g : U ⊆ Rn → Rn

é uma mudança de coordenadas em U se verificar as seguintescondições:

a) g é de classe C1;

b) g é injectiva;

c) det g′(x) 6= 0 para todo o x ∈ U .

António Bento (UBI) Cálculo II 2009/2010 438 / 498

§4.4 Mudança de coordenadas

Teorema de mudança de coordenadas

Sejam U ⊆ Rn um conjunto aberto,

f : D ⊆ Rn → R

uma função integrável em D e

g : U ⊆ Rn → Rn

uma mudança de coordenadas tal que

g(U) = D.

Então

f ◦ g : U ⊆ Rn → R

é integrável em U e∫

Df(y) dy =

Uf(g(x))

∣∣det g′(x)

∣∣ dx.

António Bento (UBI) Cálculo II 2009/2010 439 / 498

§4.4 Mudança de coordenadas

No caso particular n = 1 recuperamos a fórmula de integração porsubstituição, que vimos no Cálculo I. De facto, sejam

f : [a, b]→ R

uma função integrável em [a, b] (com a < b) e

g : [c, d] → R

uma mudança de coordenadas com

g([c, d]) = [a, b], g(c) = a e g(d) = b.

António Bento (UBI) Cálculo II 2009/2010 440 / 498

Page 111: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§4.4 Mudança de coordenadas

Como g é uma mudança de coordenadas, temos que

det g′(x) = g′(x) 6= 0 para todo x ∈ D.

Porque g′ é continua (uma vez que g é de classe C1 em U) concluímosque g não muda de sinal em [c, d].

Atendendo a queg(c) = a < b = g(d)

temos g′(x) > 0 para todo o x ∈ [c, d]. Assim, |g′(x)| = g′(x) e portanto

∫ b

af(x) dx =

∫ d

cf(g(t))|g′(t)| dt =

∫ d

cf(g(t))g′(t) dt.

António Bento (UBI) Cálculo II 2009/2010 441 / 498

§4.4 Mudança de coordenadas

Em seguida vamos ver as três mudanças de coordenadas mais usadas:

• as coordenadas polares;

• as coordenadas cilíndricas;

• e as coordenadas esféricas.

António Bento (UBI) Cálculo II 2009/2010 442 / 498

§4.4 Mudança de coordenadas

bb

x

y

r

θ

As coordenadas polares sãocoordenadas em R2 definidas por

{

x = r cos θ

y = r sen θ

com r ∈ ]0,+∞[ e θ ∈ ]0, 2π[. As variáveisr e θ correspondem, respectivamente, à distância à origem e ao ânguloformado pelo vector (x, y) e o semi-eixo positivo dos xx.

António Bento (UBI) Cálculo II 2009/2010 443 / 498

§4.4 Mudança de coordenadas

SejaU =

{

(r, θ) ∈ R2 : r > 0 e θ ∈ ]0, 2π[}

e g : U ⊆ R2 → R2 dada por

g(r, θ) = (r cos θ, r sen θ) = (x, y).

Em U podemos concluir que g é injectiva notando que para cadar0 > 0 fixo, a função

h(θ) = (r0 cos θ, r0 sen θ)

é injectiva (descreve a circunferência de raio r0 com excepção do ponto(x, y) = (r0, 0)). Note-se que quando r = 0 perdemos a injectividade.

António Bento (UBI) Cálculo II 2009/2010 444 / 498

Page 112: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§4.4 Mudança de coordenadas

Temos ainda

det g′(r, θ) = det

[

cos θ −r sen θsen θ r cos θ

]

= r(cos2 θ + sen2 θ) = r

pelo que podemos concluir que g é de classe C1 em U e que

det g′(r, θ) 6= 0 para todo o (r, θ) ∈ U.

Obtemos o seguinte caso particular do teorema de mudança decoordenadas para o caso das coordenadas polares

∫∫

Df(x, y) dx dy =

∫∫

D1

f(r cos θ, r sen θ)r dr dθ

com D1 tal queg(D1) = D.

António Bento (UBI) Cálculo II 2009/2010 445 / 498

§4.4 Mudança de coordenadas

Exemplo de mudança para coordenadas polares

Consideremos a região

D ={

(x, y) ∈ R2 : x2 + y2⩽ 4 e x ⩾ y e y ⩾ 0

}

,

cuja representação geométrica é

x

y

x2 + y2 = 4

2

2 y = x

António Bento (UBI) Cálculo II 2009/2010 446 / 498

§4.4 Mudança de coordenadas

Exemplo de mudança para coordenadas polares (continuação)

Temos que∫∫

Dex

2+y2dx dy =

∫ 2

0

∫ π/4

0er

2r dθ dr =

∫ 2

0er

2r[

θ]θ=π/4

θ=0dr

4

∫ 2

0er

2r dr =

π

4

[

er2

2

]r=2

r=0

8(e4 − 1).

É de notar que a mudança de coordenadas que fizemos não está nascondições do Teorema de mudança de coordenadas. No entanto, paraestarmos nas condições do Teorema de mudança de coordenadasbastaria considerar um conjunto “ligeiramente” mais pequeno e, porisso, o valor do integral não se altera.

António Bento (UBI) Cálculo II 2009/2010 447 / 498

§4.4 Mudança de coordenadas

b

x

y

z

b

As coordenadas cilíndricas sãocoordenadas em R3 definidas por

x = r cos θ

y = r sen θ

z = z

com z ∈ R, r ∈ ]0,+∞[ e θ ∈ ]0, 2π[ eque correspondem de alguma formaa considerar coordenadas polares emcada plano z = z0. As variáveis r, θcorrespondem, respectivamente, à distância do ponto (x, y, 0) à origeme ao ângulo que vector (x, y, 0) faz com o semi-eixo positivo dos xx. Avariável z continua a corresponder à coordenada cartesiana z.

António Bento (UBI) Cálculo II 2009/2010 448 / 498

Page 113: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§4.4 Mudança de coordenadas

SejaU =

{

(r, θ, z) ∈ R3 : r > 0, θ ∈ ]0, 2π[ e z ∈ R}

e g : U ⊆ R3 → R3 dada por

g(r, θ, z) = (r cos θ, r sen θ, z) = (x, y, z).

Em U podemos concluir que g é injectiva notando que para cada r0 > 0e z0 fixos, a função h(θ) = (r0 cos θ, r0 sen θ, z0) é injectiva (descreve noplano z = z0 a circunferência de raio r0 centrada em (0, 0, z0) comexcepção do ponto = (r0, 0, z0)). Note-se que se r = 0 perdemos ainjectividade. Além disso, que não poderíamos por exemplo considerarθ ∈ [0, 2π[ uma vez que deixaríamos de ter um conjunto aberto.

António Bento (UBI) Cálculo II 2009/2010 449 / 498

§4.4 Mudança de coordenadas

Atendendo a que

det g′(r, θ, z) = det

cos θ −r sen θ 0sen θ r cos θ 0

0 0 1

= r(cos2 θ + sen2 θ) = r

concluímos que g é de classe C1 em U e que

det g′(r, θ, z) 6= 0 para todo o (r, θ, z) ∈ U.

Obtemos assim o seguinte caso particular do teorema de mudança decoordenadas para coordenadas cilíndricas:

∫∫∫

Df(x, y, z) dx dy dz =

∫∫∫

D1

f(r cos θ, r sen θ, z)r dr dθ dz

onde D1 é tal queg(D1) = D.

António Bento (UBI) Cálculo II 2009/2010 450 / 498

§4.4 Mudança de coordenadas

Exemplo de mudança para coordenadas cilíndricas

Consideremos a região

D ={

(x, y, z) ∈ R3 : x2 + y2⩽ 4 ∧ 1 ⩽ z ⩽ 2

}

.

Temos que a função f : R3 → R dada por

f(x, y, z) = cos(x2 + y2 + z)

é integrável em D e usando coordenadas cilíndricas temos∫∫∫

Dcos(x2 + y2 + z) dx dy dz

=∫ 2

1

∫ 2π

0

∫ 2

0cos(r2 + z)r dr dθ dz =

∫ 2

1

∫ 2π

0

12

[

sen(r2 + z)]r=2

r=0dθ dz

=∫ 2

1

∫ 2π

0

12

(sen(4 + z)− sen z) dθ dz =∫ 2

1π(sen(4 + z)− sen z) dz

= π[

− cos(4 + z) + cos z]z=2

z=1= π(− cos 6 + cos 2 + cos 5− cos 1).

António Bento (UBI) Cálculo II 2009/2010 451 / 498

§4.4 Mudança de coordenadas

Tal como aconteceu com o exemplo da mudança para coordenadaspolares, é de notar que a mudança de coordenadas que fizemos noexemplo anterior não está nas condições do Teorema de mudança decoordenadas. No entanto, para estarmos nas condições do Teorema demudança de coordenadas bastaria considerar um conjunto“ligeiramente” mais pequeno e, por isso, o valor do integral não sealtera.

António Bento (UBI) Cálculo II 2009/2010 452 / 498

Page 114: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§4.4 Mudança de coordenadas

x

y

z

b

r

θ

ϕ

As coordenadas esféricas sãocoordenadas em R3 definidas por

x = r cos θ senϕ

y = r sen θ senϕ

z = r cosϕ

com r ∈ ]0,+∞[, θ ∈ ]0, 2π[e ϕ ∈ ]0, π[. As variáveis r, θ eϕ correspondem, respectivamente, àdistância do ponto (x, y, z) à origem,ao ângulo que o vector (x, y, 0) faz com semi-eixo positivo dos xx e aoângulo que o vector (x, y, z) faz com o semi-eixo positivo dos zz.

António Bento (UBI) Cálculo II 2009/2010 453 / 498

§4.4 Mudança de coordenadas

SejaU =

{

(r, θ, ϕ) ∈ R3 : r > 0, θ ∈ ]0, 2π[ e ϕ ∈ ]0, π[}

eg : U ⊆ R3 → R3

dada por

g(r, θ, ϕ) = (r cos θ senϕ, r sen θ senϕ, r cosϕ) = (x, y, z).

Em U a aplicação g é injectiva. De facto, para cada r0 > 0 fixo, asvariáveis θ ∈ ]0, 2π[ e ϕ ∈ ]0, π[ geram uma esfera de raio r0 comexcepção do meridiano que passa pelo ponto (x, y, z) = (r0, 0, 0).

António Bento (UBI) Cálculo II 2009/2010 454 / 498

§4.4 Mudança de coordenadas

Atendendo a que

det g′(r, θ, ϕ) = det

cos θ senϕ −r sen θ senϕ r cos θ cosϕsen θ senϕ r cos θ senϕ r cosϕ sen θ

cosϕ 0 −r senϕ

= −r2 senϕ

concluímos que g é de classe C1 em U e que

det g′(r, θ, ϕ) 6= 0 para todo o (r, θ, ϕ) ∈ U.Obtemos portanto o seguinte caso particular do teorema de mudançade coordenadas para o caso das coordenadas esféricas:

∫∫∫

Df(x, y, z) dx dy dz

=∫∫∫

D1

f(r cos θ senϕ, r sen θ senϕ, r cosϕ)r2 senϕdr dθ dϕ

com D1 tal queg(D1) = D.

António Bento (UBI) Cálculo II 2009/2010 455 / 498

§4.4 Mudança de coordenadas

Exemplo de mudança para coordenadas esféricas

Se D ={(x, y, z) ∈ R3 : 1 ⩽ x2 + y2 + z2 ⩽ 4

}, então usando

coordenadas esféricas temos∫∫∫

D

(x2 + y2 + z2)2 dx dy dz =∫ 2

1

∫ 2π

0

∫ π

0

r4r2 senϕdϕdθ dr

=∫ 2

1

∫ 2π

0

r6[− cosϕ

]ϕ=π

ϕ=0dθ dr

=∫ 2

1

2r6[θ]θ=2π

θ=0dr = 4π

[

r7

7

]r=2

r=1

=5087π.

Também neste exemplo se verifica algo de semelhante ao que aconteceunos exemplos de coordenadas polares e de coordenadas cilíndricas, ouseja, não estamos nas condições do Teorema de mudança decoordenadas, mas isso não causa problemas pelas mesmas razões quetambém não causava nas duas outras mudanças de coordenadas.

António Bento (UBI) Cálculo II 2009/2010 456 / 498

Page 115: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

Índice

1 Sucessões e séries

2 Funções de Rn em R

m: limites e continuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

Integrais em Rn: definição, exemplos e propriedadesTeorema de FubiniIntegrais em conjuntos mais geraisMudança de coordenadasAplicações ao cálculo de áreas e de volumes

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 457 / 498

§4.5 Aplicações ao cálculo de áreas e de volumes

Como se deduz da construção feita na primeira secção deste capítulo, ointegral de uma função f não negativa com n variáveis, x1, . . . , xn,integrável numa dada região limitada R é numericamente igual aovolume ((n + 1)-dimensional) da região (n+ 1)-dimensionalcompreendida entre o seu gráfico e o plano n-dimensional de equação

xn+1 = 0.

Assim concluímos que o volume VR de uma região R ⊆ Rn limitada édado por

VR =∫

R1 dx1 · · · dxn,

caso o integral exista.

António Bento (UBI) Cálculo II 2009/2010 458 / 498

§4.5 Aplicações ao cálculo de áreas e de volumes

Em particular, se C ⊆ R2 é uma região limitada, a sua área AC é dadapor

AC =∫∫

C1 dx dy

e se D ⊆ R3 é um sólido limitado, o seu volume VD é dado por

VD =∫∫∫

D1 dx dy dz,

desde que os integrais considerados existam.

António Bento (UBI) Cálculo II 2009/2010 459 / 498

§4.5 Aplicações ao cálculo de áreas e de volumes

Exemplos

a) SejaC =

{

(x, y) ∈ R2 : x2 + y2⩽ 1 e y ⩾ |x|

}

.

A área da região C é dada por

AC =∫∫

C1 dx dy

=∫ 1

0

∫ 3π4

π4

r dθ dr

=∫ 1

0r[

θ]θ= 3π

4

θ=π4

dr

2

[

r2

2

]r=1

r=0

4.

António Bento (UBI) Cálculo II 2009/2010 460 / 498

Page 116: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§4.5 Aplicações ao cálculo de áreas e de volumes

Exemplos (continuação)

b) Seja D a região compreendida entre as esferas de raio 1 e de raio 2.O volume da região D é dado por

VD =∫∫∫

D1 dx dy dz

=∫ 2

1

∫ 2π

0

∫ π

0r2 senϕdϕdθ dr

=∫ 2

1

∫ 2π

0r2[

− cosϕ]ϕ=π

ϕ=0dθ dr

=∫ 2

12r2

[

θ]θ=2π

θ=0dr

= 4π

[

r3

3

]r=2

r=1

=28π3.

António Bento (UBI) Cálculo II 2009/2010 461 / 498

Índice

1 Sucessões e séries

2 Funções de Rn em R

m: limites e continuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linhaCaminhos e linhasIntegral de linha de um campo escalarIntegral de linha de um campo vectorialTeorema de Green

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 462 / 498

Índice

1 Sucessões e séries

2 Funções de Rn em R

m: limites e continuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linhaCaminhos e linhasIntegral de linha de um campo escalarIntegral de linha de um campo vectorialTeorema de Green

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 463 / 498

§5.1 Caminhos e linhas

Sejam a, b ∈ R, a < b. Uma função contínua

γ : [a, b]→ Rn

diz-se um caminho e a imagem do caminho, isto é, o conjunto γ([a, b])diz-se uma linha ou curva.

Dada uma curva Γ, seγ : [c, d]→ R

for um caminho tal queγ([c, d]) = Γ,

então γ diz-se uma parametrização de Γ.

António Bento (UBI) Cálculo II 2009/2010 464 / 498

Page 117: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§5.1 Caminhos e linhas

Exemplos

a) A função

γ1 : [0, 1]→ R2

dada por

γ1(t) = (t, t2)

é um caminho.1

1

Linha associada ao caminho γ1

b) A função

γ2 : [1, 2]→ R2

dada por

γ2(t) = (t, 2− t)é um caminho.

1 2

1

Linha associada ao caminho γ2

António Bento (UBI) Cálculo II 2009/2010 465 / 498

§5.1 Caminhos e linhas

Dados dois caminhos

γ1 : [a, b]→ Rn e γ2 : [b, c]→ Rn

tais queγ1(b) = γ2(b),

definimos a sua justaposição como sendo o caminho

γ : [a, c]→ Rn

definido por

γ(t) =

{

γ1(t) se t ∈ [a, b]

γ2(t) se t ∈ [b, c]

Escreve-se neste caso γ = γ1 ∨ γ2. Analogamente se define ajustaposição de um número finito de caminhos.

António Bento (UBI) Cálculo II 2009/2010 466 / 498

§5.1 Caminhos e linhas

Exemplo

A função γ3 : [0, 2] → R2 dada por

γ3(t) =

{

(t, t2) se 0 ⩽ t ⩽ 1

(t, 2 − t) se 1 < t ⩽ 2

é um caminho definido por justaposição dos caminhos γ1 e γ2, ou seja,γ3 = γ1 ∨ γ2., onde γ1 e γ2 são os caminhos do exemplo anterior.

1 2

1

Linha associada ao caminho γ3 = γ1 ∨ γ2

António Bento (UBI) Cálculo II 2009/2010 467 / 498

§5.1 Caminhos e linhas

Um caminhoγ : [a, b]→ Rn

diz-se um caminho de classe Ck se a função γ for uma função declasse Ck. Um caminho diz-se de classe C∞ se a função γ for umafunção de classe C∞.

Designa-se por caminho seccionalmente de classe Ck um caminhoobtido por justaposição de caminhos de classe Ck. Analogamente, umcaminho seccionalmente de classe C∞ é um caminho obtido porjustaposição de caminhos de classe C∞.

António Bento (UBI) Cálculo II 2009/2010 468 / 498

Page 118: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§5.1 Caminhos e linhas

Exemplos

a) O caminho γ1 : [0, 1]→ R2 dado por

γ1(t) = (t, t2)

é um caminho de classe C∞.

b) O caminho γ2 : [1, 2]→ R2 dado por

γ2(t) = (t, 2− t)

é um caminho de classe C∞.

c) O caminho γ3 : [0, 2]→ R2 dado por

γ3(t) =

{

(t, t2) se 0 ⩽ t ⩽ 1

(t, 2− t) se 1 < t ⩽ 2

é um caminho seccionalmente de classe C∞.

António Bento (UBI) Cálculo II 2009/2010 469 / 498

Índice

1 Sucessões e séries

2 Funções de Rn em R

m: limites e continuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linhaCaminhos e linhasIntegral de linha de um campo escalarIntegral de linha de um campo vectorialTeorema de Green

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 470 / 498

§5.2 Integral de linha de um campo escalar

Dado um caminhoγ : [a, b]→ Rn

de classe C1 e uma função escalar contínua

f : D ⊆ Rn → R

tal queγ([a, b]) ⊆ D,

definimos o integral de linha de f sobre γ por

γf dr =

∫ b

af(γ(t))‖γ′(t)‖ dt.

António Bento (UBI) Cálculo II 2009/2010 471 / 498

§5.2 Integral de linha de um campo escalar

Podemos estender facilmente esta noção aos caminhos

γ = γ1 ∨ · · · ∨ γm

sequencialmente de classe C1. De facto, se

f : D ⊆ Rn → R

é uma função escalar contínua tal que

γ([a, b]) ⊆ D,

definimos o integral de linha de f sobre γ por∫

γf dr =

γ1

f dr + · · · +∫

γmf dr.

António Bento (UBI) Cálculo II 2009/2010 472 / 498

Page 119: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§5.2 Integral de linha de um campo escalar

Dada uma curva Γ, um caminho

γ : [a, b]→ Rn

que a parametriza (isto é tal que Γ = γ([a, b])) e uma função

f : D ⊆ Rn → R

tal queγ([a, b]) ⊆ D,

é usual escrever ∫

Γf =

γf dr.

No entanto, temos de ter algum cuidado com esta notação uma vez queo integral acima depende da parametrização γ escolhida.

António Bento (UBI) Cálculo II 2009/2010 473 / 498

§5.2 Integral de linha de um campo escalar

Apesar da dificuldade expressa atrás, se

γ1 : [a, b]→ Rn e γ2 : [c, d] → Rn

são dois caminhos de classe C1 para os quais existe uma aplicação

φ : [a, b]→ [c, d]

bijectiva, de classe C1, com

φ′(t) 6= 0 para cada t ∈ [a, b]

e tal queγ2 ◦ φ = γ1,

temos, pelo teorema de mudança de variáveis,∫ d

cf(γ2(t))‖γ′2(t)‖ dt =

∫ b

af(γ2(φ(τ)))‖γ′2(φ(τ))‖ |φ′(τ)| dτ

=∫ b

af(γ1(τ))‖γ′1(τ)‖ dτ.

António Bento (UBI) Cálculo II 2009/2010 474 / 498

§5.2 Integral de linha de um campo escalar

Pode verificar-se que, quando existe uma aplicação φ com ascaracterísticas referidas, os caminhos γ1 e γ2 percorrem a mesma curvapassando em cada ponto igual número de vezes (ainda que comvelocidade e sentido eventualmente diferentes). Diz-se neste caso que ocaminho γ2 é uma reparametrização do caminho γ1.

António Bento (UBI) Cálculo II 2009/2010 475 / 498

§5.2 Integral de linha de um campo escalar

Exemplos

a) Consideremos o caminho γ1 : [0, π2 ]→ R2 dado por

γ1(t) = (cos t, sen t)

e a função f : R2 → R dada por

f(x, y) = xy.

Tendo em conta que

γ′1(t) = (− sen t, cos t)

temos∫

γ1

f dr =∫ π/2

0f(cos t, sen t)

(− sen t)2 + cos2 t dt

=∫ π

2

0cos t sen t dt =

[

sen2 t

2

]t=π/2

t=0

=12.

António Bento (UBI) Cálculo II 2009/2010 476 / 498

Page 120: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§5.2 Integral de linha de um campo escalar

Exemplos

b) Consideremos o caminho γ2 : [0, π/4] → R2 dado por

γ2(t) = (cos(2t), sen(2t))

e a função f : R2 → R do exemplo anterior (f(x, y) = xy). Então

γ2

f dr =∫ π/4

0f(cos(2t), sen(2t))

(−2 sen(2t)2 + (2 cos(2t))2 dt

=∫ π

4

02 cos(2t) sen(2t) dt

=

[

sen2(2t)2

]t=π/4

t=0

=12.

Note-se que γ2 é uma reparametrização de γ1 pelo que já sabíamosque

γ1f dr =

γ2f dr.

António Bento (UBI) Cálculo II 2009/2010 477 / 498

§5.2 Integral de linha de um campo escalar

O integral de linha de uma função escalar tem muitas aplicações. Porexemplo, sendo γ : [a, b]→ Rn um caminho de classe C1,σ : D ⊆ Rn → R uma função contínua e γ([a, b]) ⊆ D temos, porexemplo que

a) se σ é a densidade de massa do fio cuja configuração é dada por γ,então

γ σ é a massa total do fio; em particular, se σ é a funçãoconstante igual a um, então obtemos a massa de um fio dedensidade constante igual a um que é numericamente igual aocomprimento do fio;

b) se σ é a densidade de massa do fio cuja configuração é dada por γ,então ∫

γx1σ(x1, . . . , xn)∫

γσ(x1, . . . , xn)

, . . . ,

γxnσ(x1, . . . , xn)∫

γσ(x1, . . . , xn)

são as coordenadas do centro de massa do fio.

António Bento (UBI) Cálculo II 2009/2010 478 / 498

§5.2 Integral de linha de um campo escalar

Exemplos

a) O comprimento da curva Γ = γ([0, 2π]) parametrizada pelo caminho

γ : [0, 2π]→ R3

dado por

γ(t) = (cos t, sen t, t)

é∫

γ1 dr =

∫ 2π

0‖γ′(t)‖ dt

=∫ 2π

0‖(− sen t, cos t, 1)‖ dt

=∫ 2π

0

sen2 t+ cos2 t+ 12 dt

=∫ 2π

0

√2 dt =

[√2t]t=2π

t=0= 2√

2π.

António Bento (UBI) Cálculo II 2009/2010 479 / 498

§5.2 Integral de linha de um campo escalar

Exemplos

b) A massa do fio cuja configuração é dada pelo caminhoγ : [0, 2π]→ R3 dado por γ(t) = (cos t, sen t, t), com densidade demassa dada por σ : R3 → R com σ(x, y, z) = x2 + y2 + z2, é

γσ dr =

∫ 2π

0σ(cos t, sen t, t)‖γ′(t)‖ dt

=∫ 2π

0(cos2 t+ sen2 t+ t2)‖(− sen t, cos t, 1)‖ dt

=∫ 2π

0(1 + t2)

sen2 t+ cos2 t+ 12 dt

=∫ 2π

0

√2(1 + t2) dt

=

2

(

t+t3

3

)

t=2π

t=0

= 2√

2π +83

√2π3.

António Bento (UBI) Cálculo II 2009/2010 480 / 498

Page 121: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

Índice

1 Sucessões e séries

2 Funções de Rn em R

m: limites e continuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linhaCaminhos e linhasIntegral de linha de um campo escalarIntegral de linha de um campo vectorialTeorema de Green

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 481 / 498

§5.3 Integral de linha de um campo vectorial

Dados um caminhoγ : [a, b]→ Rn

de classe C1 e uma função vectorial contínua

f : D ⊆ Rn → Rn

tais queγ([a, b]) ⊆ D,

definimos o integral de linha de f sobre γ por

γf · dr =

∫ b

af(γ(t)) · γ′(t) dt,

onde · designa o produto interno usual em Rn.

António Bento (UBI) Cálculo II 2009/2010 482 / 498

§5.3 Integral de linha de um campo vectorial

Podemos estender facilmente esta noção aos caminhos

γ = γ1 ∨ · · · ∨ γm

sequencialmente C1. De facto, se

f : D ⊆ Rn → Rn

é uma função contínua tal que

γ([a, b]) ⊆ D,

definimos neste caso o integral de linha de f sobre γ por∫

γf · dr =

γ1

f · dr + · · ·+∫

γmf · dr.

António Bento (UBI) Cálculo II 2009/2010 483 / 498

§5.3 Integral de linha de um campo vectorial

Além da notação ∫

γf

também é comum usar as notações∫

f · dγ e∫

γf1 dx1 + · · ·+ fm dxm

para designar o integral de linha da função f = (f1, . . . , fm) sobre ocaminho γ.

António Bento (UBI) Cálculo II 2009/2010 484 / 498

Page 122: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§5.3 Integral de linha de um campo vectorial

Dada uma curva Γ, um caminho

γ : [a, b]→ Rn

que a parametriza (isto é tal que Γ = γ([a, b])) e uma função

f : D ⊆ Rn → Rn

tal queγ([a, b]) ⊆ D,

é usual escrever ∫

Γf =

γf · dr.

Temos de ter algum cuidado com esta notação uma vez que o integralacima depende da parametrização γ escolhida.

António Bento (UBI) Cálculo II 2009/2010 485 / 498

§5.3 Integral de linha de um campo vectorial

Apesar desta dificuldade, se

γ1 : [a, b]→ Rn e γ2 : [c, d]→ Rn

são dois caminhos de classe C1 para os quais existe uma aplicação

φ : [a, b]→ [c, d],

bijectiva, de classe C1, com

φ′(t) > 0 para cada t ∈ [a, b]

e tal queγ2 ◦ φ = γ1,

temos, pelo teorema de mudança de variáveis,∫ d

cf(γ2(t)) · γ′2(t) dt =

∫ b

af(γ2(φ(τ))) · γ′2(φ(τ))φ′(τ) dτ

=∫ b

af(γ1(τ)) · γ′1(τ) dτ.

António Bento (UBI) Cálculo II 2009/2010 486 / 498

§5.3 Integral de linha de um campo vectorial

Exemplo

Sejam f : R2 → R2 dada por

f(x, y) = (−y, x)

e γ : [0, 2] → R2 o caminho seccionalmente C1 dado por

γ(t) =

{

(t, 1− t) se t ∈ [0, 1]

(t, t− 1) se t ∈]1, 2].

x21

y

1

Linha associada ao caminho γ

António Bento (UBI) Cálculo II 2009/2010 487 / 498

§5.3 Integral de linha de um campo vectorial

Exemplo (continuação)

Comod

dt(t, 1− t) = (1,−1) e

d

dt(t, t− 1) = (1, 1),

temos∫

γf · dr =

∫ 2

0f(γ(t)) · γ′(t) dt

=∫ 1

0f(t, 1− t) · (1,−1) dt +

∫ 2

1f(t, t− 1) · (1, 1) dt

=∫ 1

0(t− 1, t) · (1,−1) dt +

∫ 2

1(1− t, t) · (1, 1) dt

=∫ 1

0t− 1− t dt +

∫ 2

11− t+ t dt

=∫ 1

0−1 dt +

∫ 2

11 dt =

[

−t]1

0+[

t]2

1= −1 + 2− 1 = 0

António Bento (UBI) Cálculo II 2009/2010 488 / 498

Page 123: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§5.3 Integral de linha de um campo vectorial

Teorema fundamental do cálculo

Sejamf : D ⊆ Rn → R

uma função de classe C1 e

γ : [a, b]→ Rn

um caminho de classe C1 tal que

γ([a, b]) ⊂ intD.

Então ∫

γgrad f · dr = f(γ(b))− f(γ(a)).

António Bento (UBI) Cálculo II 2009/2010 489 / 498

§5.3 Integral de linha de um campo vectorial

Dizemos que um caminho γ : [a, b]→ U é um caminho fechado (etambém que a curva associada é uma curva fechada) se γ(a) = γ(b).

Dizemos que um caminho γ : [a, b]→ U é um caminho simples se acurva γ([a, b]) não se auto-intersecta, excepto eventualmente nasextremidades.

Tendo em conta as definições anteriores, do teorema anterior resultaquea) se γ for um caminho fechado tem-se

γgrad f = 0;

b) se g : D ⊆ Rn → Rn for um campo vectorial conservativo compotencial φ, isto é, se g = − gradφ, temos

γg = φ(γ(a)) − φ(γ(b)).

António Bento (UBI) Cálculo II 2009/2010 490 / 498

§5.3 Integral de linha de um campo vectorial

Exemplo

Sejam g : R2 → R2 a função dada por

g(x, y) = (y2, 2xy)

e γ : [1, 2] → R2 o caminho C1 dado por

γ(t) = (t, t2).

Seja ainda f : R2 → R a função escalar dada por f(x, y) = xy2.Atendendo a que

grad f(x, y) =(∂f

∂x(x, y),

∂f

∂y(x, y)

)

= (y2, 2xy) = g(x, y),

obtemos pelo Teorema fundamental do cálculo

γg · dr =

γgrad f · dr = f(γ(2))− f(γ(1)) = f(2, 4)− f(1, 1) = 31.

António Bento (UBI) Cálculo II 2009/2010 491 / 498

Índice

1 Sucessões e séries

2 Funções de Rn em R

m: limites e continuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linhaCaminhos e linhasIntegral de linha de um campo escalarIntegral de linha de um campo vectorialTeorema de Green

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 492 / 498

Page 124: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§5.4 Teorema de Green

Existe uma importante relação entre integrais de linha e integraismúltiplos. Vamos ver nesta secção um resultado que relaciona os doisconceitos para curvas em R2.

Definimos o interior de um caminho γ : [a, b]→ U simples e fechadocomo sendo o conjunto aberto e limitado que tem a curva Γ = γ([a, b])como fronteira.

Interior de uma curva fechada

António Bento (UBI) Cálculo II 2009/2010 493 / 498

§5.4 Teorema de Green

Dizemos que um caminho simples e fechado γ está orientado nosentido positivo se percorre a curva

Γ = γ[a, b]

deixando à esquerda os pontos no interior de Γ e que está orientadono sentido negativo se percorre a curva

Γ = γ[a, b]

deixando à direita os pontos no interior de Γ.

É usual denotar o integral de linha uma função f ao longo de umacurva fechada Γ = γ([a, b]) por

Γf · dγ.

António Bento (UBI) Cálculo II 2009/2010 494 / 498

§5.4 Teorema de Green

Teorema de Green

Seja U ⊆ R2 um conjunto aberto e

f : U ⊆ R2 → R2,

f = (f1, f2) uma função de classe C1 em U . Sejam ainda

γ : [a, b]→ U

um caminho fechado simples, seccionalmente C1, orientado no sentidopositivo e R o interior de Γ = γ([a, b]). Então temos

Γf · dγ =

∫∫

R

∂f2

∂x− ∂f1

∂ydx dy.

António Bento (UBI) Cálculo II 2009/2010 495 / 498

§5.4 Teorema de Green

Exemplo

Seja Γ a curva fechada constituída pelos segmentos de recta[(0, 0), (1, 0)], [(1, 0), (0, 1)] e [(0, 1), (0, 0)].

x

y

b b

1

b1

b b

b

b b

b

António Bento (UBI) Cálculo II 2009/2010 496 / 498

Page 125: webx.ubi.ptwebx.ubi.pt/~bento/Calc-II/2009-2010/Calc-II-slides-4-em-1.pdf · Cálculo II Engenharia Electromecânica António Bento bento@mat.ubi.pt Departamento de Matemática Universidade

§5.4 Teorema de Green

Exemplo (continuação)

Se f : R2 → R2 é a função dada por f(x, y) = (y3, xy), de acordo como teorema de Green temos

Γf =

∫ 1

0

∫ x

0

∂x(xy)− ∂

∂y(y3) dy dx

=∫ 1

0

∫ x

0y − 3y2 dy dx

=∫ 1

0

[

y2

2− y3

]y=x

y=0

dx

=∫ 1

0

x2

2− x3 dx =

[

x3

6− x4

4

]x=1

x=0

=16− 1

4= − 1

12

António Bento (UBI) Cálculo II 2009/2010 497 / 498

Índice

1 Sucessões e séries

2 Funções de Rn em R

m: limites e continuidade

3 Cálculo diferencial em Rn

4 Cálculo integral em Rn

5 Integrais de linha

6 Integrais de superfície

António Bento (UBI) Cálculo II 2009/2010 498 / 498