46
WP7: Polymer Electrolyte Fuel cells Anthony R. J. Kucernak Department of Chemistry Imperial College London London UK SW7 2AZ [email protected] H2FC Supergen, Newcastle, 30-31 July

WP7: Polymer Electrolyte Fuel cells - Hydrogen & Fuel Cell ......WP7: Polymer Electrolyte Fuel cells Anthony R. J. Kucernak Department of Chemistry Imperial College London London UK

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

  • WP7: Polymer Electrolyte Fuel cells

    Anthony R. J. Kucernak

    Department of Chemistry

    Imperial College London

    London UK SW7 2AZ

    [email protected]

    H2FC Supergen, Newcastle, 30-31 July

  • Rational design of fuel cell components

    Plus: Reduced platinum loading

    CORE: Corrosion of

    catalyst support

    CORE: Efficient

    utilisation of reactants

    Performance Longevity

    Cost

  • CORE [Performance] – Imaging of reactant transport

    Challenges

    • What level of fidelity is required in models

    • How to efficiently distribute reactants throughout a fuel cell

    Approaches

    • Ex-situ imaging of reactant transport in fuel cells

    Ambition

    • Rational design of flow fields and materials

    • Validation of computational approaches

    Plus: Reduced platinum loading

    CORE: Corrosion of

    catalyst support

    CORE: Efficient

    utilisation of reactants

    Performance Longevity

    Cost

  • CORE – “A NEW REACTIVE GAS FLUX

    IMAGING METHOD BASED ON

    CHEMILUMINESCENCE”

    T. Lopes, B Kakati, M Ho, A Kucernak, J. Power Sources, submitted

  • Different geometries of flow fields

    Fuel Cells and Hydrogen - 2013-2014

    Many flow field designs are propriety

    • Square contact

    • Parallel

    • interdigitated

    • Serpentine

    • Meander

  • Different types of material for reactant

    transport layers

  • How are reactants distributed within the PEFC?

    Measure reactant

    concentration in catalyst

    layer under a range of

    operating conditions

    Single PEFC Test Unit

    To scale

  • Modelling studies of reactant distribution in

    channels/transport media

    Park, J.; Li, X., An experimental and numerical investigation on the cross flow through gas diffusion layer in a PEM fuel cell with a serpentine flow channel. Journal of Power Sources 2007, 163 (2), 853-863

    Phong Thanh Nguyen, Torsten Berning, Ned Djilali , Computational model of a PEM fuel cell with serpentine gas flow channels, Journal of Power Sources 130 (2004) 149–157

  • Can We Image the Gas partial presure at the Catalyst Layer

    Interface?

  • How To Image the Flux of “Oxygen” at the Catalyst Layer

    Interface

    (a) Reid, R. C.; Sherwood, T. K., The Properties of gases and liquids : their estimation and correlation. McGraw-Hill: New York ; London, 1958; (b) Ono, R.; Oda, T., Spatial distribution of ozone density in pulsed corona discharges observed by two-dimensional laser absorption method. Journal of Physics D-Applied Physics 2004, 37 (5), 730-735. (c) Ermel, M.; Oswald, R.; Mayer, J. C.; Moravek, A.; Song, G.; Beck, M.; Meixner, F. X.; Trebs, I., Preparation Methods to Optimize the Performance of Sensor Discs for Fast Chemiluminescence Ozone Analyzers. Environmental Science & Technology 2013, 47 (4), 1930-1936

    Ozone as a Proxy gas to

    Bi molecular Oxygen

    (Similar Binary Diffusion

    Coefficients in N2, 0.175

    cm2 s-1 and 0.16 cm2 s-1)a,b

    Taking Advantage of the

    Instantaneous Chemiluminescent

    Reaction of O3 with a Dye –

    HIGHER SPATIAL and TEMPORAL

    Resolutionsc

    Temporal and spatial resolution:

    0.040 sec and 0.055 mm

  • Experimental Set-Up – Ex-situ “fuel cell”

    Optical O3 Sensor

    €200

    Flow field 27x27 mm

    0.8mm channels, 1.6mm land

  • Effect of flow rate on reactant transport

    27 mm

    27 m

    m

  • Effect of flow rate on reactant transport

  • Effect of flow rate on reactant transport

  • Effect of flow rate on reactant transport

  • Effect of flow rate on reactant transport

  • Effect of flow rate on reactant transport

  • Light intensity varies with reactant flow rate

    Re = 245

    Re = 551

    Augmenting The Flux

    (mL min-1)

  • Transport in the “GDL” – not just diffusion

    Channel

    Modelling

    200ccm 450ccm

    Gas Inlet Gas Inlet

    Gas Outlet

    Beale, S. B., Conjugate mass transfer in gas channels and diffusion layers of fuel cells. Journal of Fuel Cell Science and Technology 2007, 4 (1), 1-10.

    “Gas diffusion” Layer

    NOT gas diffusion layers – “Reactant transport layers”

  • Asymmetry at higher flow rates

    200ccm 450ccm

    Gas Inlet Gas Inlet

    Gas Outlet

  • Convective Flow In the Gas Transport Media

    Arrows Are

    Ilustrative

    Only

  • Convective Flow In the Gas Transport Media

    Bar 0 1x10

    -52x10

    -53x10

    -50.0

    5.0x105

    1.0x106

    1.5x106

    2.0x106

    2.5x106

    3.0x106

    3.5x106

    Inte

    gra

    ted

    lig

    ht

    inte

    ns

    ity

    / a

    .u.

    PO

    3

    Consumed / Pa

    Fixed 150 sccm of air

    Variation in PO3

    /Bar

    Light -d[O3]/dt=k[O3] c.f. J = A k0 [O2] aH

    + exp(αηRT/F)

  • Sensitivity to properties of Reactant Transport layer

    Microporous Layer

    Carbon Paper

    Hydrophobic Agent (PTFETM)

  • 0.0 1.0x10-5

    2.0x10-5

    3.0x10-5

    0.0

    5.0x105

    1.0x106

    1.5x106

    2.0x106

    2.5x106

    3.0x106

    3.5x106

    PO

    3

    Consumed / Pa

    To

    tal

    Pix

    el

    Inte

    ns

    ity

    / a

    .u.

    "G

    en

    era

    ted

    up

    on

    Re

    ac

    tio

    n"

    The Constituents of a Gas Transport Medium and the Partial

    Pressure of the Reactive Gas at the Catalyst Layer Interface

    350 mL min-1 Air

    Re = 429 /Bar

    /Bar /Bar

    Toray (TGP-H-60)

  • CORE [Performance] – Corrosion of catalyst support

    Challenges

    • Transient events lead to local voltage spikes

    • These lead to degradation of systems

    • Testing takes a long time (hundreds of start/stop cycles)

    Approaches

    • Development of in situ reference electrode

    Ambition

    • Measure effect and dependence on important parameters

    • Devise and test mitigation strategies

    Plus: Reduced platinum loading

    CORE: Corrosion of

    catalyst support

    CORE: Efficient

    utilisation of reactants

    Performance Longevity

    Cost

  • CORE – IN SITU REFERENCE ELECTRODES

    FOR MEASURING LOCAL POTENTIALS

    Graham Smith, Christopher M. Zalitis, Anthony R.J. Kucernak, Electrochemistry Communications, 43(2014), 43-46

  • Transient effects during startup of fuel cells

    • Formation of corrosion cell at moving

    boundary

    • Transient high potentials

    Anode flow field Cathode flow field

    1

    2inlet

    outlet inlet

    outlet

    1

    2

    -2 -1 0 1 2 3 4 5 6-1000

    -800

    -600

    -400

    -200

    0

    200

    400

    600

    800

    Anode (position 1)

    Cathode (position 1)

    Anode (position 2)

    Cathode (position 2)

    Po

    tential vs IO

    RE

    / m

    V

    Time / s

    -200

    0

    200

    400

    600

    800

    1000

    1200

    1400

    Po

    ten

    tia

    l vs R

    HE

    / m

    V

    a

    b

    O2/N2

  • Anode flow field Cathode flow field

    1

    2inlet

    outlet inlet

    outlet

    1

    2

    -2 -1 0 1 2 3 4 5 6-1000

    -800

    -600

    -400

    -200

    0

    200

    400

    600

    800

    Anode (position 1)

    Cathode (position 1)

    Anode (position 2)

    Cathode (position 2)

    Po

    tential vs IO

    RE

    / m

    V

    Time / s

    -200

    0

    200

    400

    600

    800

    1000

    1200

    1400

    Po

    ten

    tia

    l vs R

    HE

    / m

    V

    a

    b

    C.A. Reiser, L. Bregoli, T.W. Patterson, J.S. Yi, J.D. Yang, M.L. Perry, T.D. Jarvi, Electrochem. Solid State Lett., 8, A273 (2005).

    Transient effects during startup of fuel cells

  • How to measure local electrochemical potential

    In plane

    G. Hinds and E. Brightman, Electrochem. Commun. 17 (2012) p.26–29

  • Solid state reference electrode

    Solid polymer electrolyte

    Reference electrode attached to 10 m

    thick porous polycarbonate conductor

    3 mm 30 mm8 μm

  • Stable reference potential

    • Stable potential with time

    • Measure local pH

    • Important for Alkaline PEFC

    0 5 10 15 20 25820

    840

    860

    880

    900

    920

    0 2 4 6 8 10 12

    0

    200

    400

    600

    800

    Po

    ten

    tia

    l / m

    V v

    s R

    HE

    Time / hr

    pH

    Po

    ten

    tial / m

    V v

    s. S

    CE

    0.0 0.5 1.0 1.5 2.0 2.5 3.0

    0

    20

    40

    60

    80

    100

    Charge

    Discharge

    Time / hr

    Ch

    arg

    e P

    ote

    ntial / m

    V v

    s R

    HE

    0

    100

    200

    300

    Dis

    ch

    arg

    e P

    ote

    ntial / m

    V v

    s R

    HE

    a

    b

    CO2 HCO3

    -

  • Transient potential variation during startup

    • Transient production of 1.4 V

    • Corrosion correlated to position in

    cell

    • Mitigation strategies being

    examined

    Anode flow field Cathode flow field

    1

    2inlet

    outlet inlet

    outlet

    1

    2

    -2 -1 0 1 2 3 4 5 6-1000

    -800

    -600

    -400

    -200

    0

    200

    400

    600

    800

    Anode (position 1)

    Cathode (position 1)

    Anode (position 2)

    Cathode (position 2)

    Po

    tential vs IO

    RE

    / m

    V

    Time / s

    -200

    0

    200

    400

    600

    800

    1000

    1200

    1400

    Po

    ten

    tia

    l vs R

    HE

    / m

    V

    a

    b

    Graham Smith, Christopher M. Zalitis, Anthony R.J. Kucernak, Electrochemistry Communications, 43(2014), 43-46

  • Plus [Cost] – Reduce catalyst loading

    Challenges

    • What would the ideal electrode structure be?

    • What is the ultimate performance

    Approaches

    • Develop a fuel cell with new electrode structure

    Ambition

    • Characterise limits of performance

    • Bottom up approach for electrode design

    Plus: Reduced

    loaplatinum ding

    CORE: Corrosion supportof catalyst

    CORE: Efficient

    utilisation of reactants

    Performance Longevity

    Cost

  • FLEXIBLE : BUILDING THE “PERFECT”

    PEFC FUEL CELL ELECTRODE

  • 35

    Efc

    (V) 1889

    1960 1989 2003

    2006

    L. Mond and C. Langer, Proc. R. Soc. London 46, 296 (1889). W. Grubb and L. Niedrach, J. Electrochem. Soc. 107, 131 (1960). I.D. Raistrick, US Patent No. 4876115, 1989. W.L. Gore and Associates, GORE® PRIMEA® MEAs for Transportation (2003). M.K. Debe et al., J. Power Sources 161, 1002 (2006).

    Advances in performance of polymer electrolyte fuel cells

    specific activity

    Platinum all over again…

    From Michael Eikerling

    SFU, Canada

  • 200

    m

    What would an ideal structure look like?

    Substrate: thin (< 10 μm),

    high electrical conductivity

    Condensed phase

    Pore: Fast diffusion of reactants

    with no condensation

    Pt/C agglomerate: 0.5 μm

    Gas phase

    Fast access of protons

    36

  • Use any catalyst

    •E.g. 0.16 µg cm-2 Pt (60wt% JM HiSPEC 9100)

    10 µm thick GDL

    400 nm diameter hydrophobic pores

    Tortuosity = 1

    SEM images of such an

    electrode

    13 µm

    37

  • Catalyst Loadings

    0.16 µgPt cm-2 0.5 µgPt cm

    -2

    1 µgPt cm-2 2.5 µgPt cm

    -2

    Uniform homogeneous layer across the macro and micro scale

    C. M. Zalitis, D. Kramer and A. R. Kucernak, Phys. Chem. Chem. Phys., 15, 4329, (2013).

    2 mm

    60% Pt/C catalyst, Alfa

    Aesar, HiSPEC 9100

    38

  • ORR: Gaseous diffusion test

    0.2 0.4 0.6 0.8 1.0 1.2

    -180

    -160

    -140

    -120

    -100

    -80

    -60

    -40

    -20

    0

    20

    -779

    -692

    -606

    -519

    -433

    -346

    -260

    -173

    -87

    0

    87

    j Ge

    om

    etr

    ic /

    mA

    cm

    -2

    j Sp

    eci

    fic /

    mA

    cm

    -2

    E / V vs. RHE

    Floating electrode

    RDE limitation (10k rpm)

    P[O2]/P[total] = 0.21

    Carrier gas:

    Nitrogen

    Helium

    0.70 0.75 0.80 0.85 0.90 0.95 1.00

    -6

    -5

    -4

    -3

    -2

    -1

    0j S

    peci

    fic /

    mA

    cm

    -2

    E / V vs. RHE

    105 A cm-2

    282 A cm-2

    -160

    -142

    -125

    -107

    -89

    -71

    -53

    -36

    -18

    0

    18

    j Ma

    ss /

    A m

    g-1

    Catalyst: 60% Pt/C catalyst, Alfa Aesar, HiSPEC 9100, 4.0 mol dm-3 HClO4,O2,

    298 K, 10 mV s-1,4.9 µgPt cm-2

    220 O2 molecules/Pt/s -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8

    -2.5

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    Gradient = 1.29

    Gradient = 1.04

    Gradient = 1.02

    J at 0.9 V Vs. RHE

    J at 0.7 V vs. RHE

    J at 0.4 V vs. RHE

    log

    (JS

    pecific /

    mA

    cm

    -2)

    log(P(O2) / atm)

    0.2 0.4 0.6 0.8 1.0 1.2

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    2

    p(O2) = 0.013 - 0.001

    JS

    pecific /

    mA

    cm

    -2

    E / V vs. RHE (IR corrected)

  • -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2-9

    -8

    -7

    -6

    -5

    -4

    -3

    -2

    -1

    0

    1

    -8010

    -7120

    -6230

    -5340

    -4450

    -3560

    -2670

    -1780

    -890

    0

    890

    jM

    ass /

    A m

    g-1

    j Sp

    ecific /

    A c

    m-2

    E / V vs. RHE

    0.0 0.2 0.4 0.6 0.8 1.0 1.20.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    Floating Electrode

    RDE limitation (10k rpm)

    j Sp

    ecific / A

    cm

    -2

    E / V vs. RHE

    -7.6

    -6.8

    -5.9

    -5.1

    -4.2

    -3.4

    -2.5

    -1.7

    -0.8

    0.0

    0.8

    j Ge

    om

    etr

    ic /

    A c

    m-2

    HOR/HER on Low Pt Loading Electrodes

    0.55 A cm-2

    1300 H2 molecules s-1/Pt site

    Catalyst: 60% Pt/C catalyst, Alfa Aesar, HiSPEC 9100, 4.0 mol dm-3 HClO4,O2, 298 K, 10 mV s

    -1,2.2 µgPt cm

    -2

    8 A cm-219,000 H2 molecules s-1/Pt site

    -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.80.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    = 0.792

    = 1.02

    Gradient = 0.987

    log(Jmax)

    log(J@10mV)

    log(J@600mV)

    log

    (JS

    pecific /

    mA

    cm

    -2)

    log(P(H2) / atm)

    0.0 0.2 0.4 0.6 0.8 1.0 1.20

    10

    20

    30

    40p(H

    2) = 0.013 - 0.001

    J Spe

    cific

    / m

    A c

    m-2

    E / V vs/ RHE (IR corrected)

    Limiting current due to adsorption rate limitation

    kad > 4.9 cm s-1 (c.f. kMT > 50 cm s

    -1)

  • 41

    Efc

    (V) 1889

    1960 1989 2003

    2006

    L. Mond and C. Langer, Proc. R. Soc. London 46, 296 (1889). W. Grubb and L. Niedrach, J. Electrochem. Soc. 107, 131 (1960). I.D. Raistrick, US Patent No. 4876115, 1989. W.L. Gore and Associates, GORE® PRIMEA® MEAs for Transportation (2003). M.K. Debe et al., J. Power Sources 161, 1002 (2006).

    Advances in performance of polymer electrolyte fuel cells

    specific activity

    Platinum all over again…

    From Michael Eikerling

    SFU, Canada

  • Making a fuel cell using these new electrodes

    H2 H2

  • Making a fuel cell using these new electrodes

    H2

    H

    2

    Nafion Membrane

    25 µm

    50 µm

  • 3-electrode solid state electrochemical cell

    Key benefits:

    • More representative of a fuel cell MEA

    • Variable water activity studies

    • Larger temperature range of operation

    IrOx Reference

    electrode

    Counter Electrode

    Porous gas diffusion electrode

  • Conclusions

    Flow is not fully laminar in a single serpentine flow field

    Convective flow is observed in reactant transport media

    The term “gas diffusion layer” is incorrect – convection is important

    Electrokinetic functions for the orr and hor reactions have been generated

    A solid state three-electrode cell has been produced

    The full fuel cell system is being constructed at the moment

  • Thiago Lopes, Biraj Kakati, Matthew Markiewcz, Chris Zalitis

    Johnson Matthey plc, catalysts and discussions (Jonathon Sharman, Ed Wright)

    Intelligent Energy (Paul Adcock, Simon Foster)

    EPSRC grants

    •EP/G030995/1 Supergen Fuel Cell Consortium;

    •EP/K503733/1 Impact Acceleration Research Grant

    Acknowledgements

    46