Download pdf - 5_IGARSS2011_HU.pdf

Transcript
Page 1: 5_IGARSS2011_HU.pdf

Blind Azimuth Phase Elimination for TerraSAR-X ScanSAR InterferometryAlex Zhe Hu, Linlin Ge and Xiaojing LiGeodesy and Earth Observing Systems Group (GEOS),School of Surveying and Spatial Information Systems,The University of New South Wales, Sydney, Australia

Email: [email protected]

Page 2: 5_IGARSS2011_HU.pdf

Contents

• Introduction• Methodology• Results and Discussions• Concluding Remarks

Page 3: 5_IGARSS2011_HU.pdf

Contents

• Introduction• Methodology• Results and Discussions• Concluding Remarks

Page 4: 5_IGARSS2011_HU.pdf

Introduction• ScanSAR Mode

– Burst Mode– Imaging time < a synthetic aperture

ScanSAR Mode

Stripmap Mode

image originally from Infoterra: http://www.infoterra.de

Page 5: 5_IGARSS2011_HU.pdf

Introduction• ScanSAR Mode

– Cover multiple swathes– Large range coverage

ScanSAR Mode

Stripmap Mode

image originally from Infoterra: http://www.infoterra.de

Page 6: 5_IGARSS2011_HU.pdf

Introduction• ScanSAR Interferometry

– Cover multiple swathes– Large range coverage

– Global DEM– Large-scale Earthquakes

Page 7: 5_IGARSS2011_HU.pdf

Introduction• ScanSAR Interferometry

ALOS PALSAR

EnviSATASAR RADARSAT TerraSAR-X

L-band C-band C-band X-band

250–350km 400km 300–500km 150km

100m 75–150m 50–100m up to 16m

Shimada 2007 Ortiz and Zebker 2007

Holzner and Bamler 2002 ?

Page 8: 5_IGARSS2011_HU.pdf

Introduction• TerraSAR-X ScanSAR Interferometry

– Distortion and signal loss in azimuth direction after resampling

– Only SLC data available for the public

Page 9: 5_IGARSS2011_HU.pdf

Introduction• TerraSAR-X ScanSAR Interferometry

– Distortion and signal loss in azimuth direction after resampling

– Only SLC data available for the public

– Blind Azimuth Phase Elimination

Page 10: 5_IGARSS2011_HU.pdf

Contents

• Introduction• Methodology• Results and Discussions• Concluding Remarks

Page 11: 5_IGARSS2011_HU.pdf

Methodology• Phase Estimation Strategy

– The simulated burst for compensation should have similar fringe patterns

Page 12: 5_IGARSS2011_HU.pdf

Methodology• Brief workflow

Determination of the Compensation Factor

Coarse Initialisation of the Key Parameter

Refining of the Key Parameter

Elimination of the Azimuth Phase

Page 13: 5_IGARSS2011_HU.pdf

( ) ( )2 00s expstrip dmj f w

Tτ ττ π τ τ −⎛ ⎞⎡ ⎤= − ⋅ ⎜ ⎟⎣ ⎦ ⎝ ⎠

( ) ( )20exp rect c

scan dmb

Ts j fT

ττ π τ τ⎛ ⎞−⎡ ⎤= − ⋅ ⎜ ⎟⎣ ⎦ ⎝ ⎠

Moving Direction (Azimuth)

Sensor Sensor

Target

Synthetic Aperture

Stripmap

Moving Direction (Azimuth)

Sensor Sensor

Target

Burst Time

ScanSAR

• Determination of the Compensation Factor

Methodology

Page 14: 5_IGARSS2011_HU.pdf

Moving Direction (Azimuth)

Sensor Sensor

Target

Synthetic Aperture

Stripmap

Moving Direction (Azimuth)

Sensor Sensor

Target

Burst Time

ScanSAR

• Determination of the Compensation Factor

Methodology

( ) ( ) ( ) ( )0sincstrip strip ref dmc s s T f Tτ τ τ π τ τ= ∗ = ⋅ −⎡ ⎤⎣ ⎦

( ) ( ) ( ) ( ) ( ) ( ){ }2 20 0sinc expscan scan ref b dm b dm c cc s s T f T j f T Tτ τ τ π τ τ π τ τ⎡ ⎤= ∗ = ⋅ − ⋅ − − − −⎡ ⎤⎣ ⎦ ⎣ ⎦

Page 15: 5_IGARSS2011_HU.pdf

Moving Direction (Azimuth)

Sensor Sensor

Target

Synthetic Aperture

Stripmap

Moving Direction (Azimuth)

Sensor Sensor

Target

Burst Time

ScanSAR

Methodology

( ) ( ) ( ) ( )0sincstrip strip ref dmc s s T f Tτ τ τ π τ τ= ∗ = ⋅ −⎡ ⎤⎣ ⎦

( ) ( ) ( ) ( ) ( ) ( ){ }2 20 0sinc expscan scan ref b dm b dm c cc s s T f T j f T Tτ τ τ π τ τ π τ τ⎡ ⎤= ∗ = ⋅ − ⋅ − − − −⎡ ⎤⎣ ⎦ ⎣ ⎦

( ) ( ){ }2exp dm cg j f Tτ π τ⎡ ⎤= −⎣ ⎦

• Determination of the Compensation Factor

Page 16: 5_IGARSS2011_HU.pdf

Moving Direction (Azimuth)

Sensor Sensor

Target

Synthetic Aperture

Stripmap

Moving Direction (Azimuth)

Sensor Sensor

Target

Burst Time

ScanSAR

( ) ( )

Methodology

{ }2exp dm cg j f Tτ π τ⎡ ⎤= −⎣ ⎦

( ) ( ) ( ) ( ) ( ) ( )0sinc expscan scan ref b dm bc s s g T f T jτ τ τ τ π τ τ φ⎡ ⎤= ∗ ⋅ = ⋅ − ⋅⎡ ⎤⎣ ⎦⎣ ⎦

• Determination of the Compensation Factor

Page 17: 5_IGARSS2011_HU.pdf

Methodology• Coarse Initialisation of the Key Parameter

– The compensation factor is a function of burst duration Tb

( ) ( ){ } ( ){ }2 2exp exp 2dm c dm s bg j f T j f T Tτ π τ π τ⎡ ⎤ ⎡ ⎤= − = − −⎣ ⎦ ⎣ ⎦

Page 18: 5_IGARSS2011_HU.pdf

Methodology• Coarse Initialisation of the Key Parameter

( ) ( ) ( ) ( ) ( ){ }( ) ( ) ( ){ }

1

1

scan scan ref scan ref

strip ref

c s s F F s F s

F a S W F s

τ τ τ τ τ

ω ω τ

⎡ ⎤= ∗ = ⋅⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= ⋅ ∗ ⋅⎣ ⎦ ⎣ ⎦

Page 19: 5_IGARSS2011_HU.pdf

Methodology• Coarse Initialisation of the Key Parameter

– time difference between two peaks of sincfunction is determined by Tb

( ) ( ) ( ) ( ) ( ){ }( ) ( ) ( ){ }

1

1

scan scan ref scan ref

strip ref

c s s F F s F s

F a S W F s

τ τ τ τ τ

ω ω τ

⎡ ⎤= ∗ = ⋅⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= ⋅ ∗ ⋅⎣ ⎦ ⎣ ⎦

( ) ( ){ } ( ){ } ( )11 sincscan ref strip bb

F F F c F s F S TaT

τ τ ω ω− ⎡ ⎤ ⎡ ⎤⋅ =⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Page 20: 5_IGARSS2011_HU.pdf

Methodology• Coarse Initialisation of the Key Parameter

Page 21: 5_IGARSS2011_HU.pdf

Methodology• Refining of the Key Parameter

– Iteratively approaching to the real value

Page 22: 5_IGARSS2011_HU.pdf

Methodology• Comprehensive workflow

Burst N

Calculatinginitial burstduration Tb0

Generatingcompensation

Burst

Computingcorrelation

factor

compensationBurst

Correlationdecreasing?

IncreasingTb

Final compBurst

Y

N

Fittingcorrelation to find the peak

Page 23: 5_IGARSS2011_HU.pdf

Contents

• Introduction• Methodology• Results and Discussions• Concluding Remarks

Page 24: 5_IGARSS2011_HU.pdf

Information Master Image Slave Image

Acquisition Date 16 February 2010 27 February 2010

Acquisition Start Time 02:56:12 (UTC) 02:56:13 (UTC)

Acquisition Stop Time 02:56:30 (UTC) 02:56:31 (UTC)

Number of Swathes 4 (strip_04 – strip_07)

Number of Bursts 59 (strip_04 – strip_07) 61 (strip_04 – strip_07)

Central Latitude 28.785 ° 28.785 °

Central Longitude 47.514 ° 47.513°

Range Resolution 2.504 (metre) 2.503 (metre)

Azimuth Resolution 18.5 (metre) 18.5 (metre)

Results and Discussions

Page 25: 5_IGARSS2011_HU.pdf

Original Bursts

Results and Discussions

Page 26: 5_IGARSS2011_HU.pdf

Original Bursts

Compensation Phases

Results and Discussions

Page 27: 5_IGARSS2011_HU.pdf

Original Bursts

Compensation Phases

Bursts after azimuth phase elimination

Results and Discussions

Page 28: 5_IGARSS2011_HU.pdf

Resampled slave Burst-based interferogram

Results and Discussions

Page 29: 5_IGARSS2011_HU.pdf

TerranSAR-X ScanSARInterferogram

ScanSAR Derived Height Value

-Pi Pi 0 300m

Results and Discussions

Page 30: 5_IGARSS2011_HU.pdf

ScanSAR Derived DEM

Results and Discussions

Page 31: 5_IGARSS2011_HU.pdf

Histogram of the difference

Results and Discussions

Height difference to SRTM DEM-50 50m

Page 32: 5_IGARSS2011_HU.pdf

Contents

• Introduction• Methodology• Results and Discussions• Concluding Remarks

Page 33: 5_IGARSS2011_HU.pdf

Concluding Remarks• Simplifying the TerraSAR-X ScanSAR

interferometry by making it Stripmap-like• Precise enough to remove the non-linear

azimuth phases• Providing a solution for TerraSAR-X

ScanSAR interferometry starts from SLC data

• Can also be applied to other advanced SAR system with non-linear azimuth phases, such as Spotlight

Page 34: 5_IGARSS2011_HU.pdf

Acknowledgement:

The authors are grateful to Infoterra for providing the TerraSAR-X ScanSAR dataset on this research.

The first author also sincerely thanks GEOS and the Faculty of Engineering of UNSW for supporting his scholarship on his PhD study.