Transcript
Page 1: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

MANE 4240 & CIVL 4240Introduction to Finite Elements

Introduction to 3D Elasticity

Prof. Suvranu De

Page 2: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

Reading assignment:

Appendix C+ 6.1+ 9.1 + Lecture notes

Summary:

• 3D elasticity problem•Governing differential equation + boundary conditions•Strain-displacement relationship•Stress-strain relationship

•Special cases2D (plane stress, plane strain)Axisymmetric body with axisymmetric loading

• Principle of minimum potential energy

Page 3: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

1D Elasticity (axially loaded bar)

x

y

x=0 x=L

A(x) = cross section at xb(x) = body force distribution (force per unit length)E(x) = Young’s modulusu(x) = displacement of the bar at x

x

1. Strong formulation: Equilibrium equation + boundary conditions

Lxbdx

d 0;0

LxatFdx

duEA

xatu

00Boundary conditions

Equilibrium equation

F

Page 4: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

3. Stress-strain (constitutive) relation : ε(x) E(x) E: Elastic (Young’s) modulus of bar

2. Strain-displacement relationship:dx

duε(x)

Page 5: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

Problem definition3D Elasticity

xy

z

Surface (S)

Volume (V)

uv

w

x

V: Volume of bodyS: Total surface of the bodyThe deformation at point x =[x,y,z]T

is given by the 3 components of its displacement

w

v

u

u

NOTE: u= u(x,y,z), i.e., each displacement component is a function of position

Page 6: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

3D Elasticity: EXTERNAL FORCES ACTING ON THE BODY

Two basic types of external forces act on a body1. Body force (force per unit volume) e.g., weight, inertia, etc2. Surface traction (force per unit surface area) e.g., friction

Page 7: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

BODY FORCE

xy

z Surface (S)

Volume (V)

uv

w

x

Xa dVXb dV

Xc dVVolume element dV Body force: distributed

force per unit volume (e.g., weight, inertia, etc)

c

b

a

X

X

X

X

NOTE: If the body is accelerating, then the inertia force

may be considered as part of X

w

v

u

u

u~ XX

Page 8: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

xy

z

ST

Volume (V)

uv

w

x

Xa dVXb dV

Xc dVVolume element dV

py

pz

px

Traction: Distributed force per unit surface area

z

y

x

p

p

p

T S

SURFACE TRACTION

Page 9: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

3D Elasticity: INTERNAL FORCES

If I take out a chunk of material from the body, I will see that, due to the external forces applied to it, there are reaction forces (e.g., due to the loads applied to a truss structure, internal forces develop in each truss member). For the cube in the figure, the internal reaction forces per unit area(red arrows) , on

each surface, may be decomposed into three orthogonal components.

xy

z

Volume (V)

uv

w

x

Volume element dV

x

y

z

yz

yx

xyxz

zyzx

Page 10: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

3D Elasticity

zx

yz

xy

z

y

x

xy

z

x

y

z

yz

yx

xy

xz

zyzx

x, y and z are normal stresses.The rest 6 are the shear stressesConventionxy is the stress on the face perpendicular to the x-axis and points in the +ve y directionTotal of 9 stress components of which only 6 are independent since

xzzx

zyyz

yxxy

The stress vector is therefore

Page 11: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

Strains: 6 independent strain components

zx

yz

xy

z

y

x

Consider the equilibrium of a differential volume element to obtain the 3 equilibrium equations of elasticity

0

0

0

czyzxz

byzyxy

axzxyx

Xzyx

Xzyx

Xzyx

Page 12: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

Compactly;

0 XT

xz

yz

xy

z

y

x

0

0

0

00

00

00where

EQUILIBRIUM EQUATIONS

(1)

Page 13: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

3D elasticity problem is completely defined once we understand the following three concepts

Strong formulation (governing differential equation + boundary conditions)

Strain-displacement relationship

Stress-strain relationship

Page 14: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

1. Strong formulation of the 3D elasticity problem: “Given the externally applied loads (on ST and in V) and the specified displacements (on Su) we want to solve for the resultant displacements, strains and stresses required to maintain equilibrium of the body.”

xy

z

Su

ST

Volume (V)

uv

w

x

Xa dVXb dV

Xc dVVolume element dV

py

pz

px

Page 15: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

VinXT 0 Equilibrium equations (1)

Boundary conditions

1. Displacement boundary conditions: Displacements are specified on portion Su of the boundary

uspecified Sonuu

2. Traction (force) boundary conditions: Tractions are specified on portion ST of the boundaryNow, how do I express this mathematically?

Page 16: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

xy

z

Su

ST

Volume (V)

uv

w

x

Xa dVXb dV

Xc dVVolume element dV

py

pz

px

Traction: Distributed force per unit area

z

y

x

p

p

p

T S

Page 17: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

Traction: Distributed force per unit area

z

y

x

p

p

p

T S

n

nx

ny

nz

ST

TS

py

px

pz

If the unit outward normal to ST :

z

y

x

n

n

n

n

Then

zzyzyxxz

zyzyyxxy

zxzyxyxx

nnn

nnn

nnn

z

y

x

p

p

p

Page 18: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

nx

ny

ST

In 2D

dy

dx

ds

x

y

n

x

y

nds

dy

nds

dx

cos

sin

TSpy

px

dy

dx

dsx

y

xy

xy

Consider the equilibrium of the wedge in x-direction

yxyxxx

xyxx

xyxx

nnpds

dx

ds

dyp

dxdydsp

Similarlyyyxxyy nnp

Page 19: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

3D elasticity problem is completely defined once we understand the following three concepts

Strong formulation (governing differential equation + boundary conditions)

Strain-displacement relationship

Stress-strain relationship

Page 20: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

2. Strain-displacement relationships:

x

w

z

uy

w

z

vx

v

y

uz

wy

vx

u

zx

yz

xy

z

y

x

Page 21: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

Compactly; u

xz

yz

xy

z

y

x

0

0

0

00

00

00

w

v

u

u

zx

yz

xy

z

y

x

(2)

Page 22: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

x

y

A B

CA’

B’

C’

v

udy

dx

dxx

v

xdx

uu

dyy

u

dyy

vv

x

u

x

v

tanβtanβββ)B'A'(C'angle2

π

y

v

dy

dyvdyy

vvdy

AC

ACC'A'

x

u

dx

dxudxx

uudx

AB

ABB'A'

2121

xy

y

x

1

2

In 2D

Page 23: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

3D elasticity problem is completely defined once we understand the following three concepts

Strong formulation (governing differential equation + boundary conditions)

Strain-displacement relationship

Stress-strain relationship

Page 24: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

3. Stress-Strain relationship:

Linear elastic material (Hooke’s Law)

D (3)

Linear elastic isotropic material

2

2100000

02

210000

002

21000

0001

0001

0001

)21)(1(

E

D

Page 25: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

Special cases:

1. 1D elastic bar (only 1 component of the stress (stress) is nonzero. All other stress (strain) components are zero)Recall the (1) equilibrium, (2) strain-displacement and (3) stress-strain laws2. 2D elastic problems: 2 situations

PLANE STRESSPLANE STRAIN

3. 3D elastic problem: special case-axisymmetric body with axisymmetric loading (we will skip this)

Page 26: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

PLANE STRESS: Only the in-plane stress components are nonzero

x

y

Area element dA

Nonzero stress components xyyx ,,

y

xxy

xy

h

DAssumptions:1. h<<D2. Top and bottom surfaces are free from traction3. Xc=0 and pz=0

Page 27: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

PLANE STRESS Examples:1. Thin plate with a hole

2. Thin cantilever plate

y

xxy

xy

Page 28: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

Nonzero strains: xyzyx ,,,

Isotropic linear elastic stress-strain law

xy

y

x

xy

y

xE

2

100

01

01

1 2

Hence, the D matrix for the plane stress case is

2

100

01

01

1 2

E

D

D

yxz

1

Nonzero stresses: xyyx ,,PLANE STRESS

Page 29: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

PLANE STRAIN: Only the in-plane strain components are nonzero

Area element dA

Nonzero strain components

y

x

xyxy

Assumptions:1. Displacement components u,v functions of (x,y) only and w=0 2. Top and bottom surfaces are fixed 3. Xc=0 4. px and py do not vary with z

xyyx ,,

x

y

z

Page 30: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

PLANE STRAIN Examples:1. Dam

2. Long cylindrical pressure vessel subjected to internal/external pressure and constrained at the ends

1

Slice of unit thickness

x

y

z

y

xxy

xyz

Page 31: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

Nonzero stress:

Isotropic linear elastic stress-strain law

xy

y

x

xy

y

xE

2

2100

01

01

211

Hence, the D matrix for the plane strain case is

2

2100

01

01

211

E

D

D

z x y

xyzyx ,,,

Nonzero strain components: xyyx ,,

PLANE STRAIN

Page 32: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

Example problem

x

y

3

2 1

4

2

2The square block is in plane strain and is subjected to the following strains

2

2 3

2

3

x

y

xy

xy

xy

x y

Compute the displacement field (i.e., displacement components u(x,y) and v(x,y)) within the block

Page 33: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

Solution

Recall from definition

)3(

)2(3

)1(2

32

2

yxx

v

y

u

xyy

v

xyx

u

xy

y

x

Integrating (1) and (2)

)5()(),(

)4()(),(

23

12

xCxyyxv

yCyxyxu

Arbitrary function of ‘x’

Arbitrary function of ‘y’

Page 34: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

Plug expressions in (4) and (5) into equation (3)

0)()(

)()(

)()(

)3(

21

322312

3223

12

32

x

xC

y

yC

yxx

xCy

y

yCx

yxx

xCxy

y

yCyx

yxx

v

y

u

Function of ‘y’ Function of ‘x’

Page 35: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

)constanta()()( 21 C

x

xC

y

yC

Hence

Integrate to obtain

22

11

)(

)(

DCxxC

DCyyC

D1 and D2 are two constants of

integration

Plug these back into equations (4) and (5)

23

12

),()5(

),()4(

DCxxyyxv

DCyyxyxu

How to find C, D1 and D2?

Page 36: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

Use the 3 boundary conditions

0)0,2(

0)0,0(

0)0,0(

v

v

u

To obtain

0

0

0

2

1

D

D

C

Hence the solution is

3

2

),(

),(

xyyxv

yxyxu

x

y

3

2 1

4

2

2

Page 37: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

Principle of Minimum Potential Energy

Definition: For a linear elastic body subjected to body forces X=[Xa,Xb,Xc]T and surface tractions TS=[px,py,pz]T, causing displacements u=[u,v,w]T and strains and stresses , the potential energy is defined as the strain energy minus the potential energy of the loads involving X and TS

U-W

Page 38: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

xy

z

Su

ST

Volume (V)

uv

w

x

Xa dVXb dV

Xc dVVolume element dV

py

pz

px

TSS

T

V

T

V

T

dSTudVXu

dV

W

2

1U

Page 39: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

Strain energy of the elastic body

V

T

V

T dVDdV 2

1

2

1U

DUsing the stress-strain law

In 1D

L

xVVAdxEdVEdV

0

22

2

1

2

1

2

1U

In 2D plane stress and plane strain

V xyxyyyxx dV

2

1U

Why?

Page 40: MANE 4240 & CIVL 4240 Introduction to Finite Elements Introduction to 3D Elasticity Prof. Suvranu De

Principle of minimum potential energy: Among all admissible displacement fields the one that satisfies the equilibrium equations also render the potential energy a minimum.

“admissible displacement field”: 1. first derivative of the displacement components exist2. satisfies the boundary conditions on Su


Recommended