Transcript

Ken Goodson

Professor & Vice Chair

Mechanical Engineering

Stanford University

Nano Thermal Management

for Electronics MEPTEC 2012

March 19, 2012

Intel/Numonyx Vuckovic Group, Stanford

[email protected]

http://www.nanoheat.stanford.edu

Micro hx

EO Pump

Heatrejector

Micro hx

EO Pump

Heatrejector

Electronics Thermal Challenges

portables

servers

transportation defense

energy efficiency

hotspot mitigation

heterogeneous

integration

portables

servers

transportation defense

Electronics Thermal Challenges

portables

servers

transportation defense

Electronics Thermal Challenges

Energy

Efficiency

Performance

nonvolatile memory

Our Research

RF electronics

3D integration

optical

interconnects

rapid PCR &

blood analysis

thermoelectric

harvesting

heat & power for

computation

heat & power in

portables

PCRAM Data Storage

Thermal

Interfaces nanoThermo-

electrics

with RTI

EUV Nano

Mirrors

Goodson group & Monano

collaborators, Stanford

with Group4 Labs

Composite

Substrates

with Intel TMG

with KLA Tencor

with Vuckovic et al.

Stanford

QC Lasers/Guides

Micro HX

Membranes

Milnes David,

Goodson group, Stanford

Liquid region

vapor

AlGaN

Diamond

NanoMaterials

Non uniform heat generating chip

Base

IR transparent window

Imaging lens

To detector

IR radiation

IR transparent fluid

(a)

1

3

5

1

4

2

7

8

9 6

15

13 ,14

10 11 12

16

• Real-time power and hotspot

mapping for temp/power–aware

computing and energy saving.

• Microfluidic cooling including

Porous Membrane Vapor Venting

and 3D in-situ extraction (MCCI)

•Nanostructured underfill and

thermal interface materials (TIM)

•Low-power nonvolatile memory

technologies including PCRAM

0

5

10

15

20

25

-0.2 0 0.2 0.4 0.6 0.8 1

Exit Quality

No

rm P

ress

ure

[P

/P li

q]

vent

2ml/min

Con

vent

iona

l

(a)

(b)

PMVV

Technology

(a) (b) (c) Distributed

Temperature

Sensor

Network

Rep

rod

uced

po

wer

map

Po

wer

map

Rapid Hotspot Prediction & Power Distribution

Advanced Vapor Chambers

Microfluidic Cooling

Lid/SpreaderThermal

Block

Nanostructured Underfill and Interface Materials

Silicon Nanopillar Hydrophilic Layer

Heat & Power Management

for Computation

Through-Wafer

Hotspot Imaging

http://www.stanford.edu/group/microheat/

Nonvolatile Memory

including PCRAM

GS

T

GS

T

Selected Alumni

Prof. Dan Fletcher UC Berkeley Dr. Jeremy Rowlette Daylight Solns

Prof. Evelyn Wang MIT Dr. Patricia Gharagozloo Sandia Labs

Prof. Katsuo Kurabayashi U. Michigan Dr. Per Sverdrup Intel

Prof. Sungtaek Ju UCLA Dr. Chen Fang Exxon-Mobile

Prof. Mehdi Asheghi Stanford Dr. Milnes David IBM

Prof. Bill King UIUC Dr. Max Touzelbaev AMD

Prof. Eric Pop UIUC (EE) Dr. Roger Flynn Intel

Prof. Sanjiv Sinha UIUC Dr. Julie Steinbrenner Xerox Parc

Prof. Xeujiao Hu Wuhan Univ. Dr. John Reifenberg Intel

Prof. Carlos Hidrovo UT Austin Dr. David Fogg Creare

Prof. Kaustav Banerjee UCSB (EE) Dr. Matthew Panzer KLA-Tencor

Prof. Ankur Jain UT Arlington

Prof. Sarah Parikh Foothill College

Current Group Ken Goodson

Josef Miler Elah Bozorg-Grayeli Lewis Hom

Michael Barako Amy Marconnet Aditja Sood (MSE)

Jaeho Lee Shilpi Roy (EE) Woosung Parc

Sri Lingamneni Yuan Gao

Saniya Leblanc Yiyang Li (MSE) Dr. Takashi Kodama

Jungwan Cho Zijian Li Dr. Yoonjin Won

Prof. Mehdi Asheghi

Outline

Metrology

GaN-Diamond HEMTs

Phase Change Memory

3D NanoPackaging

Microfluidic Cooling

[email protected]

http://www.nanoheat.stanford.edu

Sample Complexity

Rig

Co

mp

lexit

y

Kodama, Jain, Goodson, Nano Letters 9 (2009)

Nano Thermal Metrology

Nanobridge Samples

ALD Pt

SiO2

Si

10 nm

Free-standing

WFL

Bulk

Thermal conductivity (W/mK)

Bridge Thickness (nm)

SiO2 Si3N4

nanotube Pt

Pt gate

2 μm nanotube on

substrate suspended

over trench

0 0.2 0.4 0.6 0.8 1 1.20

2

4

6

8

10

12

14

16

I (

A)

V (V)

On Substrate

Suspended

L = 3 m

Cu

rren

t (

A)

Voltage (V)

On substrate

Suspended

Single Wall Carbon Nanotube FETs Pop, Dai, Goodson, et al., Physical Review Letters (2005), Nano Letters (2006)

Metal Interconnects down to 7.3 nm Students: Yoneoka & Lee, Nano Letters (2012, in press)

Sample Complexity

Rig

Co

mp

lexit

y

Kodama, Jain, Goodson, Nano Letters 9 (2009)

Nano Thermal Metrology

Sample Complexity

Rig

Co

mp

lexit

y

Nano Thermal Metrology

Kodama, Jain, Goodson, Nano Letters 9 (2009)

Marconnet, Wardle, Goodson, et al., ACS Nano (2011)

IR Imaging Heater

growth substrate

CNT Film

0 200 400 60015

20

25

30

35

40

Distance (um)

Tem

pera

ture

(C

)

CNT

kdx

dT 1

Nanostructured TIMs Volume & boundary resistance separation

Xuejiao Hu, Amy Marconnet, Sri Lingamneni

Opposing CNT arrays up to 80 W/mK

(J. Heat Transfer 2006, 2007)

CNT-epoxy nanocomposites up to 5 W/mK

(ACS Nano 2011)

Graphene nanocomposites

(work in progress for SRC)

IR Imaging

Nanostructured TIMs Volume & boundary resistance separation

Xuejiao Hu, Amy Marconnet, Sri Lingamneni

Opposing CNT arrays up to 80 W/mK

(J. Heat Transfer 2006, 2007)

CNT-epoxy nanocomposites up to 5 W/mK

(ACS Nano 2011)

Graphene nanocomposites

(work in progress for SRC)

IR Solid Immersion Lens Submicron resolution with microcantilever

Daniel Fletcher

First thermal microscopy demonstration

(Microscale Thermophysical Engineering 2003)

Electromagnetic simulations and optimization

(Optics Letters 2001)

Microfabrication details

(J. MicroElectroMechanical Systems 2001)

Resolution demonstration

(Applied Physics Letters 2000)

10 µm

silicon

tip

pyrex

Sample Complexity

Rig

Co

mp

lexit

y

Nano Thermal Metrology

Kodama, Jain, Goodson, Nano Letters 9 (2009)

Marconnet, Wardle, Goodson, et al., ACS Nano (2011)

Sample Complexity

Rig

Co

mp

lexit

y

SAMPLE FILM

Kaeding, Skurk, Goodson,

Applied Physics Letters (1993)

Pump-probe optics

Nano Thermal Metrology

Kodama, Jain, Goodson, Nano Letters 9 (2009)

Marconnet, Wardle, Goodson, et al., ACS Nano (2011)

Kaeding, Skurk, and Goodson, Applied Physics Letters 65 (1994)

Goodson & Ju, Annual Review of Materials Science 29 (1999)

Panzer et al., Journal of Heat Transfer (2008)

DELAY

STAGE

PUMP LASER

PROBE BEAM FOR ns PUMP AND CW PROBE

Pulse Duration = 10 ns. Decay Time ~ 2 s. PROBE LASER

PHOTODETECTOR

METAL LAYER PROBE BEAM FOR ps PUMP-PROBE

10 ps / 2 ns

Short-Timescale Photothermal

Characterization of Packaging Properties

Sa

mp

le f

ilm

Su

bs

tra

te

Applications

Thermal Interface

Metal

Metal Catalyst

Transparent

Substrate

Die Attach

Distributions

Matt Panzer, Yuan Gao,

Amy Marconnet

Nanoletters (2010)

J. Heat Transfer (2008)

J. Electronic Materials (2009)

Intel Proprietary Layers

Alloy TIM

Si

Interconnects &

Low-K Dielectrics AlCu on polymer

Intel Corporation

SRC IPS Task 1392

(2009-2011)

SRC Tasks 357 & 754 (1998)

SRC/Intel IPS Task 1640 (2009)

Jungwan Cho, Matt Panzer

Alloy Die Attach

Multilayers

Sungtaek Ju, Olaf Kaeding,

Katsuo Kurabayashi

Journal of Heat Transfer (1998)

Electron Device Letters (1997a, 1997b)

Thin Solid Films (1999)

JMEMS (1999)

Elah Bozorg-Grayeli & John Reifenberg

Applied Physics Letters (2007)

Electron Device Letters (2008, 2010, 2011x3!)

PCRAM Materials and Interfaces

Intel SRS

SRC DS Task 1996

Applications

Thermal Interface

Metal

Metal Catalyst

Transparent

Substrate

Die Attach

Distributions

Matt Panzer, Yuan Gao,

Amy Marconnet

Nanoletters (2010)

J. Heat Transfer (2008)

J. Electronic Materials (2009)

Intel Proprietary Layers

Alloy TIM

Si

Interconnects &

Low-K Dielectrics AlCu on polymer

Intel Corporation

SRC IPS Task 1392

(2009-2011)

SRC Tasks 357 & 754 (1998)

SRC/Intel IPS Task 1640 (2009)

Jungwan Cho, Matt Panzer

Alloy Die Attach

Multilayers

Sungtaek Ju, Olaf Kaeding,

Katsuo Kurabayashi

Journal of Heat Transfer (1998)

Electron Device Letters (1997a, 1997b)

Thin Solid Films (1999)

JMEMS (1999)

Die Attach Scanning

Katsuo Kurabayashi

IEEE Transactions on

Components, Packaging, &

Manufacturing Technology (1998)

SRC Task 357 (1998)

Outline

Metrology

GaN-Diamond HEMTs

Phase Change Memory

3D NanoPackaging

Microfluidic Cooling

Razeghi et al., N. J. Phys. (2009)

Diamond SubMount HEMT Composite Substrates

POWER FET Passivation

Quantum Cascade Laser SubMounts

Daimler

Close proximity

demands low thermal

resistances at and near

the diamond interface

Diamond

Examples

Proc. ITHERM 2012, with Group4 Labs

Resistance Targets for GaN HEMTs

101

102

103

104

105

0

5

10

15

20

25

Heater width (nm)

Therm

al r

esi

stance

(K

/W/m

m)

Diamond

SiC

Bottom TBR

Solid (─) 0 m2K/GW

Dash (– –) 20 m2K/GW

Dot (▪▪▪▪) 50 m2K/GW

800nm GaN buffer layerK=150 W/m-K

HEMT Device

SiC or Diamond SubstrateK=390, or 1800 W/m-K

TBR

GaN-Diamond Boundary Resistance

0.1 1

better

m2K/GW 10 100

worse than SiC Diamond is ….… much

better

30 μm Diamond

828 nm GaN Buffer

3-42 nm Adhesion Layer

50 nm Al Transducer

142 nm AlGaN

• RGaN-Diamond = RAlGaN-ADH + RADH + RADH-Diamond

• kGaN and kAlGaN measured using independent sample sets

yielding 90 and 16.6 W/mK, respectively

24

Sam

ple

A

Measurement

Technique

RGaN-Diamond, A

[m2K/GW]

RGaN-Diamond, B

[m2K/GW]

Picosecond 22 ± 9 25 ± 13

DC Joule heating 25 ± 11 29 ± 12

Picosecond & DC Joule Heating

for GaN-on-Diamond Multilayers

30 μm Diamond

848 nm GaN Buffer

38-50 nm Adhesion Layer

50 nm Al Transducer

Sa

mp

le B

269 nm AlGaN

AlGaN

Diamond

Substrate

50 nm

10 µm

101

102

103

104

105

101

102

103

104

105

106

Heater width (nm)

Therm

al re

sis

tance (

K/W

)

Numerical solution

Experimental data

Patterned bridges,

50nm-5mm width

Stanford with Group4 Labs

Diamond & GaN in Composite Substrates

Boundary Resistance

0.1 1 m2K/GW 10 100

Kuball

2007, 2010

Raman

Kuzmik 2007

Interferometry,

Raman

GaN-diamond

target

Goodson 1995

10 ns TDTR

+ 20 m Bridge

Touzelbaev & Goodson 1998, 10 ns TDTR

GaN-SiC

GaN-diamond

Stanford

10 ps TDTR Northrop

Grumman Raytheon

TDTR

Uncertainty

better much better

Kuzmik 2011, Interferometry

Stanford, 10 ps TDTR + 50 nm Bridge

Group4

2010

Group4

2011

Diamond-Si

GaN-Si

Group4

+ 50 nm

Joule

heating

Diamond-ADH

Stanford

10 ps TDTR

Multithickness Group4

Outline

Metrology

GaN-Diamond HEMTs

Phase Change Memory

3D NanoPackaging

Microfluidic Cooling

[email protected]

http://www.nanoheat.stanford.edu

Pop, Sinha, Goodson, Proceedings IEEE (2006)

Rowlette, Goodson, IEEE Trans. Electron Devices (2008)

N(T)

300 K 343 K

Energy [meV]

1.0 V

@25 nm

960 K

Hot Phonons

Phase Change Memory

Phase Change Memory

Research Challenges • Multibit data storage (holy grail)

• Drift of reset resistance

& threshold voltage

• Interface transport

• Energy consumption (reset)

Tem

pera

ture

Cheng et al., IBM/Macronix, Proc IEDM 2011

Active

region

GeSbTe

Top Electrode

Bottom

Electrode

SiO2

PCMW W

Current (A)V GND

Thermal Characterization

Electrothermal/Crystallization Modeling

Jaeho Lee

Zijian Li

ThermoElectrics (Seebeck/Thomson)

Sample film (CNT Array)

Heat sink (silicon or metal substrate)

Metal coating

Nanosecond Heating from Nd:YAG

To

Detector

CW Radiation for

Thermometry

GST

Threshold & Reset Drift

Multibit Strategies and Novel Synthesis

PC

Amorphous Crystalline

Elah Bozorg-Grayeli

Zijian Li, Jeaho Lee

MicroThermal

Stage (MTS) Rakesh

Jeyasingh,

Jaeho Lee Jaeho Lee,

Rakesh Jeyasingh,

Zijian Li

Rakesh Jeyasingh

Zijian Li

Jaeho Lee

H.S.P Wong group (Stanford EE), Intel (Kau, Chang, Spandini), NXP (Hurckx),

Micron (Smythe), IBM (Raoux, Krebs)

National Science Foundation, Semiconductor Research Corporation

Sponsors &

Collaborators:

Phase Change Nanodevice Group

ThermoMechanics Yoonjin Won

Jaeho Lee

GST

TEC (W)

BEC (W)

HeaterSiO2

20 nm

50 nm

80 nm

20 nm

Φ40nm

80 nm80 nm

GST

TEC (W)

BEC (W)

SiO2

20 nm

50 nm

100 nm

20 nm

50 nm

Φ80nm

BEC (Bottom Electrode Contact)

MEC (Middle Electrode Contact)

TEC (Top Electrode Contact)

SiO2

R0 R1

R3 R2

GST

SiO2

GST

GST

Multibit

PCM

Design

Strategies

10 nm SiO2

40 nm GST

10 nm SiO2

100 nm GST

10 nm GST

TiNTiN

SiO2 / Si Substrate

80 nm 50 nm

Pulse-controlled MLC

• Standard manufacturing;

• Multiple programming

schemes available (tail

duration and pulse amplitude);

• Capable of more than 4

levels;

• Need write-and-verify;

• Subject to resistance drift.

Multilayer Stacked Design

Stacked Vertical Cell

• Four distinct resistance

levels;

• Low programming current;

• Precise control of

dimensions;

• Fabrication complexity;

Varying Width PC Structures

• Programming control with

variable width w3 > w2 > w1

• Susceptible to resistance drift

• Distinct levels of

resistance

•Thermally efficient

programming

• Fabrication

complexity

Electrode

Electrode

w3

w2

w1

w3 w2 w1

Lateral Configuration Vertical

PCRAM Multibit Design Geometries Wong, Goodson, Asheghi, et al., Proceedings of the IEEE (2011)

Future Phase Change Nanodevices

Field-Programmable

Gate Arrays

RF-FPGA

SyNAPSE

SL

m-1

SL

m+1SL

WL

n-1

WL

n+1

n

WL

n

Depressed Synapse

(amorphous state)

Potentiated Synapse

(crystalline state)

Pre spike line

Post spike line

GST

Bottom

electrode

Pre-synaptic neuron

Post-synaptic neuron

Neural signal

Synapse

Neural

signal

Dendrites

Nucleus

Axon hillock

Myelin sheath

Synapses for Brain-

Inspired Computing Kuzum, Jeyasingh, Lee, Wong,

Nano Letters (2011)

Lee, Asheghi, Wong, Goodson, et al.

Electron Device Letters (2011)

Outline

Metrology

GaN-Diamond HEMTs

Phase Change Memory

3D NanoPackaging

Microfluidic Cooling

[email protected]

http://www.nanoheat.stanford.edu

Logic

Memory Memory

Chip Carrier

IBM-3M Press Release

September 2011

3D Stacking Interfaces

3D NanoPackaging

Logic

Memory Memory

Chip Carrier

Primary Thermal

Interface 2011

Removable

backer

Nanofibers

Low melting temperature

binder (e.g. alloys of Ga, In, Sn)

Adhesion layer

Adhesion layer wets nanotubes and promotes

adhesion of binder (Pd, Pt, or Ti).

~100 nm is the

typical variation in

CNT height.

Hu, Fisher, Goodson, et al., J. Heat Transfer (2006)

SRC Patent: Hu, Jiang, Goodson, US Patent 7,504,453, issued 2009

SRC Patent: Panzer, Goodson, et al., 2009/0068387 (pending)

3D NanoPackaging

Logic

Memory Memory

Chip Carrier

Carbon 2012

Primary Thermal

Interface

2010

3D NanoPackaging

Logic

Memory Memory

Chip Carrier

3D Stacking Interfaces

2011

Axia

lTransverse

CNT

Composites

3D NanoPackaging

Sample Complexity

Rig

Co

mp

lexit

y

SAMPLE FILM

Kaeding, Skurk, Goodson,

Applied Physics Letters (1993)

Pump-probe optics

Hybrid Optical-Electrical Methods

Multi-property Measurements

Nano Thermal Metrology

Mechanical & Thermal Properties of

Aligned CNT Films

750 µm

50 µm

Thermal Mechanical

Pump Laser Doppler Vibrometer (LDV)

Piezoelectric Shaker

Probe

Si substrate

Polysilicon Oxide Al2O3

Fe CNT

Yoonjin Won, Matt Panzer, Amy Marconnet

Carbon (2012). SRC 1640 (ended), 1966

MEMS Resonator

GOAL

Thermal Interface Materials (TIM)

Properties

Thermal Resistivity (m K / W) 1.0 0.1

Ela

sti

c M

od

ulu

s (

MP

a)

Greases

& Gels

Phase

Change

Materials

Indium/

Solders Adhesives

0.01

Nano-

gels

Lifetime

thermal cycling

104

103

102

101

Latest

Stanford CNT

Data1

1 Gao, Goodson, et al., J. Electronic Materials (2010).

Won, Goodson, et al., Carbon (2011) 40

Long-

Anticipated

Publication in

CARBON

(2011)

NSF-DOE Thermoelectrics Partnership

Automotive Thermoelectric Modules

Faculty & Staff

Prof. Kenneth Goodson (Stanford), PI

Prof. George Nolas (USF)

Dr. Boris Kozinsky (Bosch)

Prof. Mehdi Asheghi, Stanford Mechanical Engineering

Dr. Winnie Wong-Ng, NIST Functional Properties Group

Dr. Yongkwan Dong, USF Department of Physics

Students:

Michael Barako, Lewis Hom, Saniya Leblanc, Yuan Gao, Amy Marconnet

Leveraged Support:

Northrop Grumman, AMD/SRC, NSF Graduate Fellowships, Stanford Graduate

Fellowship, Stanford DARE Fellowship, Sandia National Labs Fellowship

Bosch

Outline

Metrology

GaN-Diamond HEMTs

Phase Change Memory

3D NanoPackaging

Microfluidic Cooling

[email protected]

http://www.nanoheat.stanford.edu

Microfluidics Cooling Trajectory

1985 1990 2000 2010 2005

IBM Thermal

conduction module

Tuckerman & Pease

microchannel

demonstration

Microchannel

implementation in

laser diode cooling

Extensive single/two-

phase flow research DARPA

Programs

Toshiba &

Hitachi

Laptops

Apple G5

Liquid Cooling goes primetime

100

W/Cm2

300+

W/Cm2

3D

microfluidics

Two-phase

flow

Fluid Design

Nano

Surfaces

Multicore

Instrumented Microfluidic Platform

400 m

Back Side Front Side

Doped Si Sensor

Al Heater

100 m

Kramer, Flynn, Fogg, Wang, Hidrovo, Prasher, Chau, Narasimhan, Goodson. “Microchannel

Experimental Structure for Measuring Temperature Fields During Convective Boiling,” ASME

International Mechanical Engineering Congress & Exposition, Anaheim, CA, USA, November 13-19,

2004, IMECE2004-61936.

IEEE Transactions on Components and Packaging Technology (2002)

2000 2002 2004

DARPA funding

Intel

Apple

AMD

Research Background

Cooligy

Startup

(VC funding)

MicroCoolers for Computers

Acquisition

By Emerson

2006 2008

~600W total

~ 1kW/cm2

Best Paper at SEMITHERM 2001

Product Win

100K+ Units

Trajectory of a Startup (Cooligy)

2000 2002 2004

DARPA funding

Intel

Apple

AMD

Research Background

Trajectory of a Startup (Cooligy) Micro hx

EO Pump

Heatrejector

Micro hx

EO Pump

Heatrejector

Zhou et al., Proc. SEMITHERM 2004, Proc. ITHERM 2004

Si chip

Fluid

inlet Outlet Thermal

attach 3D

Cooligy

Startup

(VC funding)

Product Win

100K+ Units

MicroCoolers for Computers

Acquisition

By Emerson

2006 2008

~600W total

~ 1kW/cm2

Liquid

Cooling

Challenge

Vapor Escape

Microfluidic HX

Prototype

Vapor-transmitting membrane

reduces pressure drop and

instabilities along two-phase

micro HX.

Latest data show 60% pressure

drop and nearly 50% drop in

excess temperature over inlet

saturation.

2 ml/min, G = 103 kg/s/m2

0

5

10

15

20

25

0 10 20 30 40 50 60 70

Eff. Heat Flux [W/cm2]

DP

tot /

DP

lo

Control

Vent

SIM Control

SIM Vent

Liquid IN

Liquid + Vapor

OUT

Heat Flux from

AMD Test Chip

Vapor

OUT

Vapor

OUT

60-100 um thick, 50-220 nm pore,

hydrophobic porous PTFE

125 um square

plastic/copper

vapor channels

125 um square

copper liquid

channels with

12 embedded

thermocouples

International Journal of Heat and Mass

Transfer (2011)

International Journal of Multiphase Flow

(2011)

Students: Milnes David, Roger Flynn,

Julie Steinbrenner, Chen Fang, Joe Miler

Last-Minute VC Demo, 2001 Microchannel Chip

Electroosmotic Pump

Heat Rejecter Coil & Plate

Sony VAIO Laptop Demo

Shulin Zeng with help from Evelyn Wang, Linan Jiang, and Abdullahel Bari (Stanford)

Selected Alumni

Prof. Dan Fletcher UC Berkeley Dr. Jeremy Rowlette Daylight Solns

Prof. Evelyn Wang MIT Dr. Patricia Gharagozloo Sandia Labs

Prof. Katsuo Kurabayashi U. Michigan Dr. Per Sverdrup Intel

Prof. Sungtaek Ju UCLA Dr. Chen Fang Exxon-Mobile

Prof. Mehdi Asheghi Stanford Dr. Milnes David IBM

Prof. Bill King UIUC Dr. Max Touzelbaev AMD

Prof. Eric Pop UIUC (EE) Dr. Roger Flynn Intel

Prof. Sanjiv Sinha UIUC Dr. Julie Steinbrenner Xerox Parc

Prof. Xeujiao Hu Wuhan Univ. Dr. John Reifenberg Intel

Prof. Carlos Hidrovo UT Austin Dr. David Fogg Creare

Prof. Kaustav Banerjee UCSB (EE) Dr. Matthew Panzer KLA-Tencor

Prof. Ankur Jain UT Arlington

Prof. Sarah Parikh Foothill College

Current Group Ken Goodson

Josef Miler Elah Bozorg-Grayeli Lewis Hom

Michael Barako Amy Marconnet Aditja Sood (MSE)

Jaeho Lee Shilpi Roy (EE) Woosung Parc

Sri Lingamneni Yuan Gao

Saniya Leblanc Yiyang Li (MSE) Dr. Takashi Kodama

Jungwan Cho Zijian Li Dr. Yoonjin Won

Prof. Mehdi Asheghi


Recommended