Transcript
Page 1: Superinductor with Tunable Non-Linearity

Superinductor with Tunable Non-Linearity

M.E. Gershenson

M.T. Bell, I.A. Sadovskyy, L.B. Ioffe, and A.Yu. Kitaev*

Department of Physics and Astronomy, Rutgers University, Piscataway NJ

* Caltech, Institute for Quantum Information, Pasadena CA

Page 2: Superinductor with Tunable Non-Linearity

Outline:

Superinductor: why do we need it?

Our Implementation of the superinductor

Microwave Spectroscopy and Rabi oscillations

Potential Applications

- A new fully tunable platform for the study of quantum phase transitions?

Page 3: Superinductor with Tunable Non-Linearity

Impedance controls the scale of zero-point motion in quantum

circuits:

- reduction of the sensitivity of Josephson qubits to the charge noise,

- Implementation of fault tolerant computation based on pairs of Cooper pairs and pairs of flux quanta (Kitaev, Ioffe),

- ac isolation of the Josephson junctions in the electrical current standards based on Bloch oscillations.

Superinductor:dissipationless inductor

Z >> No extra dephasing

Potential applications:

Why Superinductors?

Page 4: Superinductor with Tunable Non-Linearity

Conventional โ€œGeometricโ€ Inductors

๐‘=๐œ”๐ฟโ‰ˆโˆš ๐œ‡0

๐œ€0=8๐›ผร—๐‘…๐‘„ 0.4 ๐‘˜ฮฉ

the fine structure constant2

0

1 12 137

ehc

Geometrical inductance of a wire: ~ 1 pH/m.

Hence, it is difficult to make a large (1 H 6 k

@ 1 GHz) L in a planar geometry.

Moreover, a wire loop possesses not only geometrical

inductance, but also a parasitic capacitance, and its microwave

impedance is limited:

Page 5: Superinductor with Tunable Non-Linearity

Tunable Nonlinear Superinductor

๐ฟ๐พแ‰†๐‘‘2๐ธ๐ฝแˆบ๐œ‘แˆป๐‘‘๐œ‘2 แ‰‡

โˆ’1

ฮ”๐œ™=2๐œ‹ ฮฆฮฆ0ฮฆ0โ‰ก

h2๐‘’ โ‰ˆ20๐บ โˆ™๐œ‡๐‘š2

For the optimal EJL/EJS, the energy becomes โ€œflatโ€ at =1/20.

- diverges, the phase fluctuations are maximized.

Josephson energy of a two cell device (classical approx., )

๐’“ โ‰ก ๐‘ฌ ๐‘ฑ๐‘ณ

๐‘ฌ ๐‘ฑ๐‘บ

Unit cell of the tested devices: asymmetric dc SQUID threaded by

the flux .

๐ธ๐ฝ= โˆ’5ร— ๐ธ๐ฝ2๐‘๐‘œ๐‘ แ‰€๐œ‘5แ‰โˆ’๐ธ๐ฝ1๐‘๐‘œ๐‘ แ‰€2๐œ‹ฮฆฮฆ0 โˆ’3๐œ‘5แ‰โˆ’๐ธ๐ฝ1๐‘๐‘œ๐‘ แ‰€2๐œ‹ฮฆฮฆ0 +3๐œ‘5แ‰.

Page 6: Superinductor with Tunable Non-Linearity

Kinetic InductanceThis limitation does not apply to superconductors whose kinetic inductance

is associated with the inertia of the Cooper pair condensate.

Manucharyan et at., Science 326, 113 (2009).

Long chains of ultra-small Josephson junctions:

(up to 0.3 H)

Nanoscale superconducting wires:

InOx films, d=35nm, R~3 k, L~4 nH Astafiev et al., Nature 484, 355 (2012).

NbN films, d=5nm, R~0.9 k, L~1 nH Annunziata et al., Nanotechnology 21, 445202 (2010).

๐ธ ๐ฝ=h

8๐‘’2โˆ†๐‘…๐‘

=( ฮฆ0

2๐œ‹ )2 1๐ฟ๐พ

๐ฟ๐พ=( ฮฆ0

2๐œ‹ )2 1๐ธ ๐ฝ

=โ„๐‘…๐‘ ๐‘ž

๐œ‹โˆ†

Page 7: Superinductor with Tunable Non-Linearity

Tunable Nonlinear Superinductor (contโ€™d)

I cell2 cells

4 cells6 cells

๐’“๐จโ‰ก( ๐‘ฌ ๐‘ฑ๐‘ณ

๐‘ฌ ๐‘ฑ๐‘บ )๐’๐’‘๐’•Optimal depends on the ladder length.

two-wellpotential

Page 8: Superinductor with Tunable Non-Linearity

Inductance Measurements

CK

LC

LC

LC- resonatorinductor

resonatorLK

Two coupled (via LC) resonators:- decoupling from the MW

feedline- two-tone measurements with

the LC resonance frequency within the 3-10 GHz setup bandwidth.

๐œ”๐ฟ๐ถ

2๐œ‹ โ‰ˆ6โˆ’7๐บ๐ป๐‘ง๐œ”๐พ

2๐œ‹ โ‰ˆ1โˆ’20๐บ๐ป๐‘ง

1-11

GH

z 3-

14 G

Hz

Page 9: Superinductor with Tunable Non-Linearity

MW feedline

Dev1Dev2

Dev3Dev4

Multiplexing: several devices

with systematically varied parameters.

โ€œManhattan patternโ€ nanolithography

Multi-angle deposition

of Al

On-chip Circuitry

Page 10: Superinductor with Tunable Non-Linearity

Devices with 6 unit cells

Device

๐ธ๐ฝ๐‘†, K

๐ธ๐ถ๐‘†, K

๐ธ๐ฝ๐ฟ, K

๐ธ๐ถ๐ฟ, K ๐‘Ÿโ‰ก ๐ธ๐ฝ๐ฟ๐ธ๐ฝ๐‘†

๐ฟ๐พแˆบฮฆ = 0แˆป, nH

๐ฟ๐พแˆบฮฆ = ฮฆ0/2แˆป, nH

1 3.5 0.46 15 0.15 4.3 3.7 150

2 3.5 0.46 14.3 0.15 4.1 3.8 310

Hamiltonian diagonalization

๐‘Ÿ o (๐‘=6 )=(๐ธ ๐ฝ๐ฟ

๐ธ ๐ฝ๐‘†)opt โ‰ˆ4.1 - for the ladders with six unit cells

4.5

4.3

๐‘Ÿ o

๐‘Ÿ

Page 11: Superinductor with Tunable Non-Linearity

Rabi Oscillationsa non-linear quantum system in the presence of an resonance driving field.

1

The non-linear superinductor shunted by

a capacitor represents a Qubit.

Damping of Rabi oscillations is due to the

decay (coupling to the LC resonator and the feedline).

Page 12: Superinductor with Tunable Non-Linearity

Mechanisms of Decoherence

Decoherence due to Aharonov-Casher effect:

fluctuations of offset charges on the islands + phase slips. The phase slip

rate

is negligible (for the junctions in the ladder backbone ).

exp (โˆ’๐‘โˆš ๐ธ JL

๐ธCL) ๐‘โ‰… 2.5โˆ’2.8

๐ธ JL

๐ธCL(โ‰… 100)

Decoherence due to the flux noise:

Because the curvature (which controls the position of energy levels) has a

minimum at full frustration, one expects that the flux noise does not affect

the qubit in the linear order.

Page 13: Superinductor with Tunable Non-Linearity

Ladders with 24 unit cells

๐ฟ๐พ (๐›ท=๐›ท0/2 )=3๐œ‡๐ปalmost linear inductor

~ 100m

๐‘Ÿ โ‰ˆ5.2๐‘Ÿo (๐‘=24 )โ‰ˆ 4.5

two-wellpotential

Page 14: Superinductor with Tunable Non-Linearity

Ladders with 24 unit cells (contโ€™d)

Number of unit cells

, K , K , K

, KfF nH

, nH , nH

24 3.15 0.46 14.5 0.15 4.6 5 0.8 16 3 000

๐‘Ÿ โ‰ˆ 4.6๐‘Ÿo (๐‘=24 )=(๐ธ ๐ฝ๐ฟ

๐ธ ๐ฝ๐‘†)optโ‰ˆ 4.5๐‘ต=๐Ÿ๐Ÿ’

Page 15: Superinductor with Tunable Non-Linearity

Ladders with 24 unit cells (contโ€™d)

๐‘ณ๐‘ฒ (๐œฑ=๐œฑ๐ŸŽ /๐Ÿ )=๐Ÿ‘๐๐‘ฏ- this is the inductance of a 3-

meter-long wire!

๐‘ (3๐บ๐ป๐‘ง )=50 ๐‘˜ฮฉ>๐‘…๐‘„โ‰กh

(2๐‘’ )2

quasi-classical modeling

Page 16: Superinductor with Tunable Non-Linearity

Double-well potential

๐‘Ÿ โ‰ˆ 4.2๐‘Ÿ o (๐‘=24 )โ‰ˆ 4.5

ฮฆ=ฮฆ

0

2

crit.

poi

nt

A new fully tunable platform for the study of quantum phase transitions?

Page 17: Superinductor with Tunable Non-Linearity

Summary

Our Implementation of the superinductor

Microwave Spectroscopy and Rabi oscillations

- Rabi time up to 1.4 s, limited by the decay

Potential Applications

- Quantum Computing

- Current standards

- Quantum transitions in 1D

๐‘ณ๐‘ฒ ๐ฎ๐ฉ๐ญ๐จ๐Ÿ‘๐๐‘ฏ


Recommended