14
Minorisa minuta and the transition to secondary plastid endosymbiosis A single cell genomics approach Javier del Campo 1 , Michael E. Sieracki 2 , Ramon Massana 3 and Patrick Keeling 1 1 University of British Columbia, Vancouver, BC, Canada. 2 Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA. 3 Institut de Ciències del Mar, CSIC, Barcelona, Catalonia, Spain Agust 7, 2014 Protist 2014 Banff, AB

Minorisa minuta and the transition to secondary plastid endosymbiosis. A single cell genomics approach

Embed Size (px)

Citation preview

Page 1: Minorisa minuta and the transition to secondary plastid endosymbiosis. A single cell genomics approach

Minorisa minuta and the transition to secondary plastid endosymbiosisA single cell genomics approach

Javier del Campo1, Michael E. Sieracki2, Ramon Massana3 and Patrick Keeling1

1 University of British Columbia, Vancouver, BC, Canada. 2 Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA. 3 Institut de Ciències del Mar, CSIC, Barcelona, Catalonia, Spain

Agust 7, 2014Protist 2014

Banff, AB

Page 2: Minorisa minuta and the transition to secondary plastid endosymbiosis. A single cell genomics approach

Biases

Pedrós-Alió 2006 Trends in Microbiology

Page 3: Minorisa minuta and the transition to secondary plastid endosymbiosis. A single cell genomics approach

del Campo el al. 2013 The ISME Journal

Minorisa minuta, an atypical Chlorarachniophyte

Page 4: Minorisa minuta and the transition to secondary plastid endosymbiosis. A single cell genomics approach

CARD-FISH/DAPI

del Campo el al. 2013 The ISME Journal

An abundant and widespread predator

Cell size distribution

Page 5: Minorisa minuta and the transition to secondary plastid endosymbiosis. A single cell genomics approach

3 years 6 oceanic regions 154 stations 720 rosettes 1360 nets 28420 samples

Eukaryotic plankton diversity in photic oceans

Page 6: Minorisa minuta and the transition to secondary plastid endosymbiosis. A single cell genomics approach

Red Sea, January 2010

The deck

Page 7: Minorisa minuta and the transition to secondary plastid endosymbiosis. A single cell genomics approach

A40 pump 20Hz >300L record time & flow rate: 5μm GPSS codends

1L cylinder A“genomics”

4 filter towers PC 47mm 5μm

4°C, ‘til station end

-20°C

1 x RNA

4°C, ‘til station end

-20°C

500ml into 2LNalgene“morpho 5-20μm” 2 x Formol

50 ml Falcon+ 5 ml 37% neutr. Form

1h dark 4°C

1L cylinder B“genomics”

4 filter towers PC 47mm 5μm

Vacuum dry mb Vacuum dry mb

2 x FISH

2 x SCG

2 x SEM

2mb into 5ml cryo+ 4ml RNAlater

2mb into 5ml cryo+ 4ml RNAlater

4 ml into 5 ml vials+ 0.6 ml

Glyc Betaine

Mb onto Petri Slideair dry

-20°C

3 L into 8L Nalgene

50ml Falcon +2 ml Gluta 2 x TEM4°C

50ml into 60 ml Brown bottles+ 100μl Lugol

2 x Lugol4°C

50mlPC 47mm 5μm

60ml Nalgene + 5 ml 37% neutr. Form

1 x HTM

Remove Form and add 40 ml PBS

PC 25mm 0.8 μm,Rinse DD H2O

50ml into 60 mlNalgene + 2ml

37% neutr. Form4°C

1h dark 4°C

-20°C

1 x DNAMb onto Petri Slide,

air dryRT

PROTIST-core / small fractions / 5 – 20 µm

Page 8: Minorisa minuta and the transition to secondary plastid endosymbiosis. A single cell genomics approach

• Preservation using Glycine Betaine.• 2 types of samples were preserved - whole water and the 5-20 µm fraction.• 2 depths were sampled - surface and DCM.• At each long station (CORE) - a total of 8 samples were collected.

Single Cell Genomics

Rinke el al. 2013 Nature

Page 9: Minorisa minuta and the transition to secondary plastid endosymbiosis. A single cell genomics approach

del Campo el al. 2014 TREE

7 stations

903 SAGs

158 OTU97

Retrieved SAGs from Tara

Page 10: Minorisa minuta and the transition to secondary plastid endosymbiosis. A single cell genomics approach

0.1

FJ790721_Paracercomonas_produc

DQ504353_LC104_3EP_8

EF622548_Chlorarachniophyceae_

AJ514867_Rhogostoma_minus

EU567255_Limnofila_anglica

EF622538_Lotharella_oceanica

AF411283_Mesofila_limnetica

AB535_F18_CHLR_H

JF698748_MALINA_St390_3m_Pico_

RAD_AB246693_Larcopyle_butschl

AY266294_Aulacantha_scolymanth

FJ790709_Cercomonas_parincurva

AB535_A10_CHLR_H

AA538_D04_CHLR_H

AJ418792_Trinema_enchelys

AB196_E21_CERC_H

AF411269_Cercomonas_edax

AJ418786_Euglypha_filifera

AY180004_CCI66_18S

AF076171_Gymnochlora_stellata

DQ211593_Gyromitus_sp_HFCC94

AF411261_Thaumatomonas_sp_ATCC

U03479_Bigwlowiella_longifila

AF411259_Thaumatomonas_seravin

AJ561116_Pseudopirsonia_mucosa

FJ790724_Paracercomonas_oxonie

EF405665_Minimassisteria_diva

AF411285_Metopion_fluens

AF174374_Massisteria_marina

HQ121434_Nudifila_producta_CCA

AB232_J07_CHLR_P

FJ824122_Protaspa_obliqua

FJ824126_Cercozoa_sp_CC_2009a

EF622539_Lotharella_reticulosa

AF411278_Metopion_like_sp_SA

AA538_A15_CERC_H

AF310900_Sorosphaera_veronicae

AB504336_Chlorarachniophyceae_

AJ418789_Trachelocorythion_pul

FJ790717_Cavernomonas_stercori

AF076172_Norrisiella_sphaerica

U03477_Chlorarachnion_reptans

AY941201_Platyreta_germanica_G

EU567254_Limnofila_longa

EF514503_Corallomyxa_sp_tenera

AJ418790_Tracheleuglypha_denta

AY305010_Hedriocystis_reticula

JX457429_EukT1B3_1_12

AY305009_Clathrulina_elegans

RAD_AY268045_Sticholonche_sp

AF411276_Bodomorpha_minima

AB452995_Partenskyella_glossop

AB453002_Ovulinata_sp_YPF501

FJ790706_Cercomonas_magna_IVY8

AF310904_Phagomyxa_odontellae

EU484394_Auranticordis_quadriv

DQ314819_NW617_36

EU701015_Plasmodiophora_brassi

AB504333_Chlorarachniophyceae_

AF290540_Protaspa_longipes

HM369552_MS605_30

AY266292_Aulosphaera_trigonopa

DQ314817_NOR26_1

AF411265_Allantion_sp_ATCC_507

FJ790725_Paracercomonas_crassi

FJ973362_Bigelowiella_sp

AF076169_Lotharella_globosa

FJ790710_Cercomonas_celer_C_51

GQ863815_AMT15_15_10m_377

RAD_GU246570_Acanthometra_sp

EU709153_Sandona_ubiquita

AY748806_Agitata_tremulans

AF411267_Cercomonas_alexieffi

FJ790731_Paracercomonas_saepen

U02075_CSU02075_Chlorarachnion

AJ418793_Cyphoderia_ampulla

EF622547_Gymnochlora_dimorpha

AY620255_Metromonas_simplex

AF054890_Lotharella_vacuolata

AJ457815_Gromia_oviformis

AA538_O09_CERC_H

AY268040_Allas_sp_JJP_2003

AB453013_Chlorarachniophyceae_

AB535_P20_CHLR_H

FJ824131_Cercozoa_sp_CC_2009b

AF310898_Polymyxa_graminis

AF290539_Cryothecomonas_aestiv

EF622546_Chlorarachniophyceae_

AB233_K06_CHLR_P

FJ518816_Minchinia_mercenariae

U20858_Haplosporidium_costale

AA534_M22_CHLR_P

HQ121439_Tremula_longifila

AJ418791_Assulina_muscorum

JX272635_Minorisa_minuta

U20319_Minchinia_teredinis_199

AF411281_Spongomonas_minima_AT

AA539_F03_CERC_H

EF173002_SSRPE06

FJ153695_GoC4_B04

DQ369018_UEPAC33p4

U19538_Haplosporidium_nelsoni

U47852_Urosporidium_crescens

HQ121441_Micrometopion_nutans

AJ418794_Pseudodifflugia_cf_gr

AF411262_Allas_diplophysa

AY266293_Coelodendrum_ramosiss

AJ305043_Proleptomonas_faecico

X70809_C_reptans

X81811_P_chromatophora

U42447_Neoheteromita_globosa

FJ919772_Clautriaria_biflagell

AB232_I17_CHLR_P

DQ199663_Aurigamonas_solis

FJ790696_Cercomonas_ambigua_WA

FJ790702_Cercomonas_braziliens

DQ303922_Ebria_tripartita_1_18

FJ790704_Cercomonas_clavidefer

EU567256_Limnofila_oxoniensis

AF411271_Cercomonas_sp_Tempisq

AF289081_Nanofila_marina

AF076170_Amorphochlora_amoebif

AY268044_Filoreta_marina

DQ369015_UEPACLp3

AF054832_Bigelowiella_natans

JX457428_EukT3B3_1_5

100

70

97

60

98

85

100

89

98

96

100

100

39

73

60

78

78

65

100

83

59

96

100

100

100

96

91

87

83

68

100

78

100

100

80

100

100

47

57

100

65

100

59

100

90

96

100

81

85

92

63

100

67

85

57

93

96

79

71

91

(0/3/0)

(4/7/240)

(0/14/29)

(2/0/0)

(2/0/26)

(3/0/26)

(0/0/0)

(5/0/2)

(0/0/0)

(0/0/0)

(0/2/

0 .1

FJ790721_Paracercomonas_produc

DQ504353_LC104_3EP_8

EF622548_Chlorarachniophyceae_

AJ514867_Rhogostoma_minus

EU567255_Limnofila_anglica

EF622538_Lotharella_oceanica

AF411283_Mesofila_limnetica

AB535_F18_CHLR_H

JF698748_MALINA_St390_3m_Pico_

RAD_AB246693_Larcopyle_butschl

AY266294_Aulacantha_scolymanth

FJ790709_Cercomonas_parincurva

AB535_A10_CHLR_H

AA538_D04_CHLR_H

AJ418792_Trinema_enchelys

AB196_E21_CERC_H

AF411269_Cercomonas_edax

AJ418786_Euglypha_filifera

AY180004_CCI66_18S

AF076171_Gymnochlora_stellata

DQ211593_Gyromitus_sp_HFCC94

AF411261_Thaumatomonas_sp_ATCC

U03479_Bigwlowiella_longifila

AF411259_Thaumatomonas_seravin

AJ561116_Pseudopirsonia_mucosa

FJ790724_Paracercomonas_oxonie

EF405665_Minimassisteria_diva

AF411285_Metopion_fluens

AF174374_Massisteria_marina

HQ121434_Nudifila_producta_CCA

AB232_J07_CHLR_P

FJ824122_Protaspa_obliqua

FJ824126_Cercozoa_sp_CC_2009a

EF622539_Lotharella_reticulosa

AF411278_Metopion_like_sp_SA

AA538_A15_CERC_H

AF310900_Sorosphaera_veronicae

AB504336_Chlorarachniophyceae_

AJ418789_Trachelocorythion_pul

FJ790717_Cavernomonas_stercori

AF076172_Norrisiella_sphaerica

U03477_Chlorarachnion_reptans

AY941201_Platyreta_germanica_G

EU567254_Limnofila_longa

EF514503_Corallomyxa_sp_tenera

AJ418790_Tracheleuglypha_denta

AY305010_Hedriocystis_reticula

JX457429_EukT1B3_1_12

AY305009_Clathrulina_elegans

RAD_AY268045_Sticholonche_sp

AF411276_Bodomorpha_minima

AB452995_Partenskyella_glossop

AB453002_Ovulinata_sp_YPF501

FJ790706_Cercomonas_magna_IVY8

AF310904_Phagomyxa_odontellae

EU484394_Auranticordis_quadriv

DQ314819_NW617_36

EU701015_Plasmodiophora_brassi

AB504333_Chlorarachniophyceae_

AF290540_Protaspa_longipes

HM369552_MS605_30

AY266292_Aulosphaera_trigonopa

DQ314817_NOR26_1

AF411265_Allantion_sp_ATCC_507

FJ790725_Paracercomonas_crassi

FJ973362_Bigelowiella_sp

AF076169_Lotharella_globosa

FJ790710_Cercomonas_celer_C_51

GQ863815_AMT15_15_10m_377

RAD_GU246570_Acanthometra_sp

EU709153_Sandona_ubiquita

AY748806_Agitata_tremulans

AF411267_Cercomonas_alexieffi

FJ790731_Paracercomonas_saepen

U02075_CSU02075_Chlorarachnion

AJ418793_Cyphoderia_ampulla

EF622547_Gymnochlora_dimorpha

AY620255_Metromonas_simplex

AF054890_Lotharella_vacuolata

AJ457815_Gromia_oviformis

AA538_O09_CERC_H

AY268040_Allas_sp_JJP_2003

AB453013_Chlorarachniophyceae_

AB535_P20_CHLR_H

FJ824131_Cercozoa_sp_CC_2009b

AF310898_Polymyxa_graminis

AF290539_Cryothecomonas_aestiv

EF622546_Chlorarachniophyceae_

AB233_K06_CHLR_P

FJ518816_Minchinia_mercenariae

U20858_Haplosporidium_costale

AA534_M22_CHLR_P

HQ121439_Tremula_longifila

AJ418791_Assulina_muscorum

JX272635_Minorisa_minuta

U20319_Minchinia_teredinis_199

AF411281_Spongomonas_minima_AT

AA539_F03_CERC_H

EF173002_SSRPE06

FJ153695_GoC4_B04

DQ369018_UEPAC33p4

U19538_Haplosporidium_nelsoni

U47852_Urosporidium_crescens

HQ121441_Micrometopion_nutans

AJ418794_Pseudodifflugia_cf_gr

AF411262_Allas_diplophysa

AY266293_Coelodendrum_ramosiss

AJ305043_Proleptomonas_faecico

X70809_C_reptans

X81811_P_chromatophora

U42447_Neoheteromita_globosa

FJ919772_Clautriaria_biflagell

AB232_I17_CHLR_P

DQ199663_Aurigamonas_solis

FJ790696_Cercomonas_ambigua_WA

FJ790702_Cercomonas_braziliens

DQ303922_Ebria_tripartita_1_18

FJ790704_Cercomonas_clavidefer

EU567256_Limnofila_oxoniensis

AF411271_Cercomonas_sp_Tempisq

AF289081_Nanofila_marina

AF076170_Amorphochlora_amoebif

AY268044_Filoreta_marina

DQ369015_UEPACLp3

AF054832_Bigelowiella_natans

JX457428_EukT3B3_1_5

100

70

97

60

98

85

100

89

98

96

100

100

39

73

60

78

78

65

100

83

59

96

100

100

100

96

91

87

83

68

100

78

100

100

80

100

100

47

57

100

65

100

59

100

90

96

100

81

85

92

63

100

67

85

57

93

96

79

71

91

(0/3/0)

(4/7/240)

(0/14/29)

(2/0/0)

(2/0/26)

(3/0/26)

(0/0/0)

(5/0/2)

(0/0/0)

(0/0/0)

(0/2/

Core Cercozoa

Chlorarachnea

Haplosporidia + Gromia

Phytomixea

Radiolaria

17 SAGs26 GenBank env seqs330 HTS seqs

Chlorarachnea SAGs

Page 11: Minorisa minuta and the transition to secondary plastid endosymbiosis. A single cell genomics approach

primary endosymbiosis

primary endosymbiosis

secondary endosymbiosis

secondary endosymbiosis

secondary endosymbiosis

serial secondaryendosymbiosis

(green alga)

tertiary endosymbiosis(diatom)

stramenopiles

ciliates

Dinophysis

Lepididinium

euglenids

chlorarachniophytes

Paulinella

dinoflagellatesApicomplexa

green algae

Durinskia

Karlodinium

red algae

glaucophytes

tertiary endosymbiosis(cryptomonad)

tertiary endosymbiosis(haptophyte)

haptophytes

cryptomonads

Heterotrophic Chlorarachnea. Basal Chlorarachnea have no chloroplast.

Glutton Chlorarachnea. Basal Chlorarachnea have no chloroplast, but they like to eat phototrophic organisms.

Phototrophic Chlorarachnea. Basal Chlorarachnea have chloroplast but we have not seen it.

Quantic Chlorarachnea. Basal Chlorarachnea may have and may have no chloroplast.

Secondary endosymbiosis (possible scenarios)

Keeling el al. 2010 Proc Trans R Soc B

Page 12: Minorisa minuta and the transition to secondary plastid endosymbiosis. A single cell genomics approach

Retrieve and analyse partial single cell genomes from the selected basal Chlorarachnea to determine the presence or absence of chloroplast and/or nucleomorph.

Sequence the four Minorisa minuta SAGs in order to retrieve a high quality genome. The interest on this organisms rests in both its ecological and evolutionary role.

Keep on culturing, because having SAGs is useful, but having cultures is even better.

Minorisa minuta is one of the most abundant and the smallest predator of the oceans. So, we will keep looking for it at HTS databases in order to know more about its distribution and its related lineages.

[email protected]

@fonamental

Future perspectives

Page 13: Minorisa minuta and the transition to secondary plastid endosymbiosis. A single cell genomics approach

Fabrice NotDaniel Vaulot

Colomban de Vargas

Irene Forn

Iñaki Ruiz-Trillo

Aknowledgements

The Keeling lab

Page 14: Minorisa minuta and the transition to secondary plastid endosymbiosis. A single cell genomics approach

The 18S collaborative annotation initiative

www.fonamental.cat/18S/

We wantYOU!

Join at: