Cellular Respiration - Henry County Public Schools€¦ · Cellular Respiration A catabolic,...

Preview:

Citation preview

1

Cellular Respiration

2

Cellular Respiration

A catabolic, exergonic, oxygen (O2) requiring process that uses energy extracted from macromolecules (glucose) to produce energy (ATP) and water (H2O).

C6H12O6 + 6O2 6CO2 + 6H2O + energy

glucose ATP

3

Question:

In what kinds organisms does cellular respiration take place?

4

Plants and Animals

Plants - Autotrophs: self-producers.

Animals - Heterotrophs: consumers.

5

Mitochondria

Organelle where cellular respiration takes place.

Inner

membrane

Outer

membrane

Inner

membrane space Matrix

Cristae

6

Redox Reaction

Transfer of one or more electrons from one reactant to another.

Two types:

1. Oxidation

2. Reduction

7

Oxidation Reaction

The loss of electrons from a substance.

Or the gain of oxygen.

C6H12O6 + 6O2 6CO2 + 6H2O + energy

glucose ATP

Oxidation

8

Reduction Reaction

The gain of electrons to a substance.

Or the loss of oxygen.

glucose ATP

C6H12O6 + 6O2 6CO2 + 6H2O + energy

Reduction

9

Breakdown of Cellular Respiration

Four main parts (reactions).

1. Glycolysis (splitting of sugar)

a. cytosol, just outside of mitochondria.

2. Grooming Phase

a. migration from cytosol to matrix.

10

Breakdown of Cellular Respiration

3. Krebs Cycle (Citric Acid Cycle)

a. mitochondrial matrix

4. Electron Transport Chain (ETC) and

Oxidative Phosphorylation

a. Also called Chemiosmosis

b. inner mitochondrial membrane.

11

1. Glycolysis

Occurs in the cytosol just outside of mitochondria.

Two phases (10 steps): A. Energy investment phase

a. Preparatory phase (first 5 steps). B. Energy yielding phase

a. Energy payoff phase (second 5 steps).

12

1. Glycolysis

A. Energy Investment Phase:

Glucose (6C)

Glyceraldehyde phosphate (2 - 3C)

(G3P or GAP)

2 ATP - used

0 ATP - produced

0 NADH - produced

2ATP

2ADP + P

C-C-C-C-C-C

C-C-C C-C-C

13

1. Glycolysis

B. Energy Yielding Phase

Glyceraldehyde phosphate (2 - 3C)

(G3P or GAP)

Pyruvate (2 - 3C)

(PYR)

0 ATP - used

4 ATP - produced

2 NADH - produced 4ATP

4ADP + P

C-C-C C-C-C

C-C-C C-C-C

GAP GAP

(PYR) (PYR)

14

1. Glycolysis

Total Net Yield

2 - 3C-Pyruvate (PYR)

2 - ATP (Substrate-level Phosphorylation)

2 - NADH

15

Substrate-Level Phosphorylation

ATP is formed when an enzyme transfers a phosphate group from a substrate to ADP.

Enzyme

Substrate

O-

C=O

C-O-

CH2

P P P Adenosine

ADP (PEP)

Example:

PEP to PYR

P P P

ATP

O-

C=O

C=O

CH2

Product

(Pyruvate)

Adenosine

16

Fermentation

Occurs in cytosol when “NO Oxygen” is present (called anaerobic).

Remember: glycolysis is part of fermentation.

Two Types:

1. Alcohol Fermentation

2. Lactic Acid Fermentation

17

Alcohol Fermentation

Plants and Fungi beer and wine

glucose

Glycolysis

C

C

C

C

C

C

C

C

C 2 Pyruvic

acid

2ATP 2ADP

+ 2

2NADH

P

2 NAD+

C

C

2 Ethanol 2CO2

released

2NADH 2 NAD+

18

Alcohol Fermentation

End Products: Alcohol fermentation

2 - ATP (substrate-level phosphorylation)

2 - CO2

2 - Ethanol’s

19

Lactic Acid Fermentation

Animals (pain in muscle after a workout).

2 Lactic

acid

2NADH 2 NAD+

C

C

C

Glucose

Glycolysis C

C

C

2 Pyruvic

acid

2ATP 2ADP

+ 2

2NADH

P

2 NAD+

C

C

C

C

C

C

20

Lactic Acid Fermentation

End Products: Lactic acid fermentation

2 - ATP (substrate-level phosphorylation)

2 - Lactic Acids

21

2. Grooming Phase

Occurs when Oxygen is present (aerobic).

2 Pyruvate (3C) molecules are transported through the mitochondria membrane to the matrix and is converted to 2 Acetyl CoA (2C) molecules.

Cytosol C

C

C 2 Pyruvate

2 CO2

2 Acetyl CoA

C-C

2NADH 2 NAD+

Matrix

22

2. Grooming Phase

End Products: grooming phase

2 - NADH

2 - CO2

2- Acetyl CoA (2C)

23

3. Krebs Cycle (Citric Acid Cycle)

Location: mitochondrial matrix.

Acetyl CoA (2C) bonds to Oxalacetic acid (4C - OAA) to make Citrate (6C).

It takes 2 turns of the krebs cycle to oxidize 1 glucose molecule.

Mitochondrial

Matrix

24

3. Krebs Cycle (Citric Acid Cycle)

Krebs

Cycle

1 Acetyl CoA (2C)

3 NAD+

3 NADH

FAD

FADH2

ATP ADP + P

(one turn)

OAA (4C) Citrate (6C)

2 CO2

25

3. Krebs Cycle (Citric Acid Cycle)

Krebs

Cycle

2 Acetyl CoA (2C)

6 NAD+

6 NADH

2 FAD

2 FADH2

2 ATP 2 ADP + P

(two turns)

OAA (4C) Citrate (6C)

4 CO2

26

3. Krebs Cycle (Citric Acid Cycle)

Total net yield (2 turns of krebs cycle)

1. 2 - ATP (substrate-level phosphorylation)

2. 6 - NADH

3. 2 - FADH2

4. 4 - CO2

27

4. Electron Transport Chain (ETC) and Oxidative Phosphorylation

(Chemiosmosis)

Location: inner mitochondrial membrane.

Uses ETC (cytochrome proteins) and ATP Synthase (enzyme) to make ATP.

ETC pumps H+ (protons) across innermembrane (lowers pH in innermembrane space).

Inner

Mitochondrial

Membrane

28

4. Electron Transport Chain (ETC) and Oxidative Phosphorylation

(Chemiosmosis)

The H+ then move via diffusion (Proton Motive Force) through ATP Synthase to make ATP.

All NADH and FADH2 converted to ATP during this stage of cellular respiration.

Each NADH converts to 3 ATP.

Each FADH2 converts to 2 ATP (enters the ETC at a lower level than NADH).

29

4. Electron Transport Chain (ETC) and Oxidative Phosphorylation

(Chemiosmosis)

Inner

membrane

Outer

membrane

Inner

membrane space Matrix

Cristae

30

4. ETC and Oxidative Phosphorylation

(Chemiosmosis for NADH)

NADH

+ H+

ATP

Synthas

e

1H+ 2H+ 3H+

higher H+

concentration

H+

ADP + ATP

lower H+

concentration

H+

(Proton Pumping)

P

E T C

NAD+

2H+ + 1/2O2 H2O

Intermembrane Space

Matrix

Inner

Mitochondrial

Membrane

31

4. ETC and Oxidative Phosphorylation

(Chemiosmosis for FADH2)

FADH2 + H+

ATP

Synthas

e

1H+ 2H+

higher H+

concentration

H+

ADP + ATP

lower H+

concentration

H+

(Proton Pumping)

P

E T C

FAD+ 2H+ +

1/2O2

H2O

Intermembrane Space

Matrix

Inner

Mitochondrial

Membrane

32

TOTAL ATP YIELD

1. 04 ATP - substrate-level phosphorylation

2. 34 ATP - ETC & oxidative phosphorylation

38 ATP - TOTAL YIELD

ATP

33

Eukaryotes (Have Membranes)

Total ATP Yield

02 ATP - glycolysis (substrate-level phosphorylation)

04 ATP - converted from 2 NADH - glycolysis

06 ATP - converted from 2 NADH - grooming phase

02 ATP - Krebs cycle (substrate-level phosphorylation)

18 ATP - converted from 6 NADH - Krebs cycle

04 ATP - converted from 2 FADH2 - Krebs cycle

36 ATP - TOTAL

34

Maximum ATP Yield for Cellular Respiration (Eukaryotes)

36 ATP (maximum per glucose)

Glucose

Glycolysis

2ATP 4ATP 6ATP 18ATP 4ATP 2ATP

2 ATP (substrate-level

phosphorylation)

2NADH

2NADH

6NADH

Krebs

Cycle

2FADH2

2 ATP (substrate-level

phosphorylation)

2 Pyruvate

2 Acetyl CoA

ETC and Oxidative

Phosphorylation

Cytosol

Mitochondria

35

Prokaryotes (Lack Membranes)

Total ATP Yield

02 ATP - glycolysis (substrate-level phosphorylation)

06 ATP - converted from 2 NADH - glycolysis

06 ATP - converted from 2 NADH - grooming phase

02 ATP - Krebs cycle (substrate-level phosphorylation)

18 ATP - converted from 6 NADH - Krebs cycle

04 ATP - converted from 2 FADH2 - Krebs cycle

38 ATP - TOTAL

36

Question:

In addition to glucose, what other various food molecules are use in Cellular Respiration?

37

Catabolism of Various Food Molecules

Other organic molecules used for fuel.

1. Carbohydrates: polysaccharides

2. Fats: glycerol’s and fatty acids

3. Proteins: amino acids

38

Recommended