112
Environmental solutions delivered uncommonly well PROJECT REPORT Interfor U.S. Inc. > Perry Mill Continuous Kiln Construction Permit Application TRINITY CONSULTANTS 3495 Piedmont Road Building 10, Suite 905 Atlanta, Georgia 30305 (678) 441‐9977 Original: September 2018 Revised: January 2019 Project 181101.0133

PROJECT REPORT - Georgia EPD

Embed Size (px)

Citation preview

Environmental solutions delivered uncommonly well

PROJECT REPORT Interfor U.S. Inc. > Perry Mill

Continuous Kiln Construction Permit Application

TRINITYCONSULTANTS3495PiedmontRoadBuilding10,Suite905Atlanta,Georgia30305

(678)441‐9977

Original:September2018Revised:January2019

Project181101.0133

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants i

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY 1-1 1.1.ProposedProject...................................................................................................................................................1‐1 1.2.PermittingandRegulatoryRequirements....................................................................................................1‐2 1.3.BACTDetermination.............................................................................................................................................1‐4 1.4.ApplicationOrganization....................................................................................................................................1‐4 

2. DESCRIPTION OF FACILITY 2-1 2.1.CurrentFacilityDescription...............................................................................................................................2‐1 

2.1.1.LogPreparation/Sawmill...................................................................................................................................................2‐1 2.1.2.BatchKilns...................................................................................................................................................................................2‐1 2.1.3.PlanerMill....................................................................................................................................................................................2‐1 2.1.4.RemanMill...................................................................................................................................................................................2‐1 2.1.5.MiscellaneousSources............................................................................................................................................................2‐1 

2.2.ProjectDescription...............................................................................................................................................2‐2 2.2.1.ContinuousKilnInstallation................................................................................................................................................2‐2 2.2.2.AssociatedAncillaryEmissionUnits.................................................................................................................................2‐2 

3. EMISSION CALCULATION METHODOLOGY 3-1 3.1.NSRPermittingEvaluationMethodology.......................................................................................................3‐1 

3.1.1.DefiningExistingversusNewEmissionUnits...............................................................................................................3‐1 3.1.2.AnnualEmissionIncreaseCalculationMethodology................................................................................................3‐2 

3.2.ProposedProjectEmissionsIncreases...........................................................................................................3‐3 3.2.1.Direct‐FiredContinuousKiln(New).................................................................................................................................3‐3 3.2.2.FuelSilo(New)...........................................................................................................................................................................3‐3 3.2.3.EmergencyFirePump(New)...............................................................................................................................................3‐3 3.2.4.AncillaryEquipmentEmissionIncreases........................................................................................................................3‐4 3.2.5.ProjectEmissionsIncreases..................................................................................................................................................3‐5 

4. REGULATORY REVIEW 4-1 4.1.NewSourceReviewApplicability.....................................................................................................................4‐1 4.2.FederalRegulatoryApplicability.....................................................................................................................4‐2 

4.2.1.TitleVOperatingPermitProgram....................................................................................................................................4‐3 4.2.2.NewSourcePerformanceStandards................................................................................................................................4‐3 4.2.3.NationalEmissionStandardsforHazardousAirPollutants..................................................................................4‐4 4.2.4.ComplianceAssuranceMonitoringRegulations..........................................................................................................4‐6 

4.3.StateRegulatoryApplicability...........................................................................................................................4‐6 4.3.1.GRAQC391‐3‐1‐.02(2)(b)–VisibleEmissions..............................................................................................................4‐6 4.3.2.GRAQC391‐3‐1‐.02(2)(c)–Incinerators........................................................................................................................4‐7 4.3.3.GRAQC391‐3‐1‐.02(2)(d)–FuelBurningEquipment..............................................................................................4‐7 4.3.4.GRAQC391‐3‐1‐.02(2)(e)–ParticulateEmissionfromManufacturingProcesses......................................4‐7 4.3.5.GRAQC391‐3‐1‐.02(2)(g)–SulfurDioxide....................................................................................................................4‐7 4.3.6.GRAQC391‐3‐1‐.02(2)(n)–FugitiveDust......................................................................................................................4‐8 4.3.7.GRAQC391‐3‐1‐.02(2)(tt)–VOCEmissionsfromMajorSources........................................................................4‐8 4.3.8.GRAQC391‐3‐1‐.02(2)(uu)–VisibilityProtection.....................................................................................................4‐8 4.3.9.GRAQC391‐3‐1‐.02(2)(yy)–EmissionsofNitrogenOxidesfromMajorSources..........................................4‐8 4.3.10.GRAQC391‐3‐1‐.02(2)(lll)–NOXEmissionsfromFuel‐burningEquipment................................................4‐8 

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants ii

4.3.11.GRAQC391‐3‐1‐.02(2)(mmm)–NOXEmissionsfromStationaryGasTurbinesandStationaryEnginesusedtoGenerateElectricity............................................................................................................................................4‐8 4.3.12.GRAQC391‐3‐1‐.02(2)(rrr)–NOXEmissionsfromSmallFuel‐BurningEquipment.................................4‐8 4.3.13.GRAQC391‐3‐1‐.03(1)–Construction(SIP)Permitting.......................................................................................4‐9 4.3.14.GRAQC391‐3‐1‐.03(10)–TitleVOperatingPermits.............................................................................................4‐9 4.3.15.IncorporationofFederalRegulationsbyReference................................................................................................4‐9 4.3.16.Non‐ApplicabilityofOtherGRAQC..................................................................................................................................4‐9 

5. BEST AVAILABLE CONTROL TECHNOLOGY ASSESSMENT 5-1 5.1.BACTDefinition......................................................................................................................................................5‐1 

5.1.1.EmissionLimitation.................................................................................................................................................................5‐1 5.1.2.Case‐by‐CaseBasis....................................................................................................................................................................5‐2 5.1.3.Achievable....................................................................................................................................................................................5‐3 5.1.4.Floor................................................................................................................................................................................................5‐4 

5.2.BACTRequirement................................................................................................................................................5‐4 5.3.BACTAssessmentMethodology........................................................................................................................5‐4 

5.3.1.IdentificationofPotentialControlTechnologies........................................................................................................5‐4 5.3.2.EconomicFeasibilityCalculationProcess......................................................................................................................5‐5 

5.4.LumberDryingKiln–VOCBACT......................................................................................................................5‐6 5.4.1.IdentificationofPotentialControlTechniques(Step1)..........................................................................................5‐6 5.4.2.EliminationofTechnicallyInfeasibleControlOptions(Step2)............................................................................5‐9 5.4.3.RankofRemainingControlTechnologies(Step3)..................................................................................................5‐10 5.4.4.EvaluationofMostStringentControls(Step4)........................................................................................................5‐11 5.4.5.SelectionofBACT(Step5)..................................................................................................................................................5‐11 

5.5.EmergencyFire‐WaterPump‐VOCBACT..................................................................................................5‐11 5.5.1.IdentificationofPotentialControlTechniques(Step1).......................................................................................5‐12 5.5.2.EliminationofTechnicallyInfeasibleControlOptions(Step2).........................................................................5‐12 5.5.3.RankofRemainingControlTechnologies(Step3)..................................................................................................5‐13 5.5.4.EvaluationofMostStringentControls(Step4)........................................................................................................5‐13 5.5.5.SelectionofBACT(Step5)..................................................................................................................................................5‐13 

6. CLASS I AREA ANALYSIS 6-1 

7. ADDITIONAL IMPACT ANALYSIS 7-1 7.1.AirQualityAnalysis..............................................................................................................................................7‐1 7.2.MobileSources.......................................................................................................................................................7‐1 7.3.GrowthImpacts......................................................................................................................................................7‐1 7.4.SoilsandVegetation.............................................................................................................................................7‐1 7.5.VisibilityImpairment...........................................................................................................................................7‐2 7.6.OzoneImpactAnalysis.........................................................................................................................................7‐2 

7.6.1.OzoneMERPsAssessment......................................................................................................................................................7‐4 7.6.2.PM2.5MERPsAssessment........................................................................................................................................................7‐4 

8. TOXIC AIR POLLUTANT EMISSIONS IMPACT ASSESSMENT 8-1 8.1.ModelingAssessment...........................................................................................................................................8‐1 

8.1.1.SourceParameters...................................................................................................................................................................8‐1 8.1.2.LandUseClassification...........................................................................................................................................................8‐8 8.1.3.ModelingProtocol.....................................................................................................................................................................8‐9 8.1.4.ModelingResults....................................................................................................................................................................8‐10 

APPENDIX A: FACILITY DIAGRAMS A 

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants iii

APPENDIX B: EMISSION CALCULATIONS B 

APPENDIX C: SIP APPLICATION FORMS C 

APPENDIX D: BACT SUPPORTING CALCULATIONS D 

APPENDIX E: RACT/BACT/LAER CLEARING HOUSE DATABASE REPORT E 

APPENDIX F: TOXIC MODELING DOCUMENTATION F 

APPENDIX G: ELECTRONIC TOXIC MODELING FILES G 

APPENDIX H: LETTERS TO FEDERAL LAND MANAGERS H 

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants iv

LIST OF TABLES

Table1‐1.ProposedProjectNetEmissions..........................................................................................................................................1‐3 

Table1‐2.ProposedBACTSummary......................................................................................................................................................1‐4 

Table3‐1.ProjectEmissionsIncrease...................................................................................................................................................3‐6 

Table4‐1.NetEmissionIncreasesComparedtoPSDSER............................................................................................................4‐2 

Table5‐1.RemainingVOCControlTechnologies...........................................................................................................................5‐11 

Table5‐2.RemainingVOCControlTechnologies..........................................................................................................................5‐13 

Table6‐1.ClassIAreaswithin300kmofInterforPerryMill......................................................................................................6‐1 

Table6‐2.CombinedAnnualEmissionsIncrease..............................................................................................................................6‐2 

Table6‐3.Q/DAnalysis.................................................................................................................................................................................6‐2 

Table7‐1.OzoneConcentrationatBibbCountyMonitor.............................................................................................................7‐2 

Table7‐2.UrbanizationDataforHoustonCounty............................................................................................................................7‐3 

Table7‐3.DefaultMERPValuesforGeorgiaPSDApplications...................................................................................................7‐4 

Table8‐1.BatchKilnInformation............................................................................................................................................................8‐2 

Table8‐2.AdjustedStackDiameterCalculationforExistingKilns...........................................................................................8‐4 

Table8‐3.BoilerEmissionRates.............................................................................................................................................................8‐5 

Table8‐4.PointSourceParameters........................................................................................................................................................8‐6 

Table8‐5.PointSourceEmissionRates.................................................................................................................................................8‐7 

Table8‐6.SummaryofLandUseAnalysis............................................................................................................................................8‐9 

Table8‐7.ISCST3AirDispersionModelingResults......................................................................................................................8‐10 

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 1-1

1. EXECUTIVE SUMMARY

InterforU.S.Inc.(Interfor)ownsandoperatesalumbermillinPerry,HoustonCounty,Georgia(PerryMill).ThefacilitycurrentlyoperatesunderPermitNo.2421‐153‐0011‐V‐05‐0,effectiveJuly24,2018.ThefacilitymeetsthedefinitionofamajorstationarysourceundertheGeorgiaEnvironmentalProtectionDivision’s(EPD)airregulationsandisthereforerequiredtomaintainaTitleVoperatingpermit.InterforisproposingmodificationstothePerryMillthatwillincreaseitsproductioncapacityofkilndriedlumber.ThisapplicationpackagecontainsthenecessarystateairconstructionpermitapplicationandTitleVoperatingpermitmodificationelementsrelatedtotheproposedproject.Duetothetimingoftheproposedconstructionschedule(Q1/Q22019),InterforisrequestingthispermitapplicationtobeprocessedviatheGeorgiaEnvironmentalProtectionDivision(EPD)’sExpeditedPermittingProgram.Theapplicableapplicationformissubmittedinthisapplicationnotingthetypeofapplication.TheMillislocatedinHoustonCounty,whichiscurrentlydesignatedas“attainment”or“unclassifiable”forallcriteriapollutant’sNationalAmbientAirQualityStandard(NAAQS).Therefore,theproposedprojectisnotsubjecttoNonattainmentNewSourceReview(NNSR)andispotentiallysubjecttoPreventionofSignificantDeterioration(PSD)permitting,whichisdiscussedinSection4.1ofthisapplication.

Lumbermillsarenotonthelistof28namedsourcecategories.Therefore,thePSDmajorsourcethresholdis250tonperyear(tpy)ofacriteriaairpollutant.ThePerryMillisanexistingmajorPSDsource,sincepotentialemissionsofseveralcriteriaairpollutantsexceedthe250tpythreshold.Thus,thenetemissionincreasesfromtheprojectmustbecomparedtothePSDSignificantEmissionRates(SER)todetermineifPSDpermittingisrequired.InterforhasdeterminedthatnetemissionsincreasefromtheprojectwillexceedtheSERforvolatileorganiccompounds(VOC).AdditionalinformationonthenetemissionincreasecalculationscanbefoundinSection3.

AirDispersionModelingisrequiredforallpollutantsthatthenetemissionsincreasefromtheprojectexceedstheSERandthathaveaNAAQS.VOCdoesnothaveaNAAQStodetermineifthecountyisin“attainment”or“nonattainment,”therefore,modelingforcriteriapollutantswasnotcompletedforthisPSDapplication.However,astheprojectinvolvestheadditionofanewlumberdryingkiln,whichproducescertaintoxicairpollutants(TAP)regulatedbyEPD,toxicsmodelinghasbeenincludedaspartofthisapplication.VOCisaprecursortotheformationofozone.Astheprojectemissionsincreaseislessthantherelevantmodeledemissionrateforprecursors(MERPs),theprojectcanbeshowntonotcauseorcontributetoanexceedanceoftheozoneNAAQS,asdiscussedinSection7.6.

AsrequiredbyGeorgiaEnvironmentalProtectionDivision(EPD),acompletepermitapplication(ApplicationNo.278859)hasalsobeensubmittedonlineusingtheGeorgiaEPDOnlineSystem(GEOS).

1.1. PROPOSED PROJECT

Interforissubmittingthisapplicationtoinstallanewcontinuous,direct‐firedlumberkilnratedatapproximately120millionboardfeet(MMBF)peryear(MMBF/yr).Anewfiresuppressionsystemwithadiesel‐firedfirepumpwillbeinstalledtosupportthecontinuouskiln.Noneoftheexistingancillaryequipmentwillbemodifiedorshutdown;however,therewillbeanincreasedthroughputforalloftheancillaryequipmentandemissionssources,includingthesawmill,debarker,planermill,materialtransferequipment,planerhog,chipper,andtrucktrafficonthemillroads.Therefore,theseoperationswillbetreatedasassociatedemissionunitsinthePSDanalysis.

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 1-2

1.2. PERMITTING AND REGULATORY REQUIREMENTS

InterforissubmittingthiscombinedconstructionpermitapplicationandTitleVsignificantmodificationapplicationtoEPDtorequestauthorizationtoinstallandoperatetheproposedcontinuouslumberdryingkilnundertheprovisionsofEPDRulesforAirQualityControl,Chapter391‐3‐1.Interforanticipatesinitiatingconstructionoftheprojectduringthefirst(1st)orsecond(2nd)quarterof2019.

ThePerryMillislocatedinHoustonCounty,whichisdesignatedas“attainment”or“unclassifiable”forallpollutants.Therefore,netemissionincreasesfromtheproposedprojectandassociatedemissionunitincreasesmustbeevaluatedandcomparedtotheSERforregulatedpollutantsforPSDpermittingapplicability.ThepollutantsevaluatedforPSDapplicabilityincludecarbonmonoxide(CO),oxidesofnitrogen(NOX),sulfurdioxide(SO2),VOC,particulatematter(PM),particulatematterlessthan10micronsindiameter(PM10),particulatematterlessthan2.5micronsindiameter(PM2.5),lead(Pb),andgreenhousegases(GHGs)intheformofcarbondioxideequivalents(CO2e)asshowninTable1‐1.1

1NotethatPSDpermittingforGHGcanonlybetriggeredifaprojectrequiresPSDpermittingforanotherPSD‐regulatedpollutant.

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 1-3

Table1‐1.ProposedProjectNetEmissions

AsdetailedinSection3andsummarizedinTable1‐1,netemissionincreasesfromtheproposedproject,willbebelowthePSDSERforallpollutantsexceptVOC.

AsaTitleVmajorsource,InterforisrequiredtosubmitaTitleVsignificantmodificationapplicationaspartofthePSDpermittingprocessinGeorgia.Interforissubmittingthisconstructionandoperatingapplicationinaccordancewithallfederalandstaterequirements.ForVOC,aBestAvailableControlTechnology(BACT)analysisisrequiredaspartofthePSDpermitapplicationsubmittal.NotethatnoPSDdispersionmodelinganalysisisincludedinthisapplication,asemissionsofallpollutantspotentiallyrequiringmodelingarebelowtheSERsfromtheproposedproject.TheproposedprojectwillpotentiallybesubjecttoNationalEmissionsStandardsforHazardousAirPollutants(NESHAP)andseveralstateregulations.

Pollutant

ProjectNetEmissionsIncreases(tpy)5

PSDSERThresholds

(tpy)PSDPermittingTriggered?

CriteriaNOX 17.30 40 NoCO 44.31 100 NoSO2 4.38 40 NoFilterablePM 22.55 25 NoTotalPM10 8.01 15 NoTotalPM2.5 7.54 10 NoVOC 240.50 40 Yes

GHGs 6

GHGs(CO2e) 36,725 75,000 No

HAPsHydrogenSulfide ‐‐ 10 NoLead 2.70E‐03 0.6 NoSulfuricAcidMist ‐‐ 7 No

3.NetEmissionsIncreaseequaltopotentialemissionsofnewunitsasthereisnomodifiedunit

6.ForPSDpermittingforCO2tobetriggered,firstPSDmustbetriggeredforanotherregulatedpollutant,thenprojectemissionsfrombothCO2(massbasis)andCO2emustbegreaterthantheSER.

4.Associatedunitsemissionsincreasesincludeemissionsfromthesawmill,debarkingoperation,plannermill,materialtransfers,plannerhogandchipper,androadtravel.DetailedemissionsareincludedinTableB‐14

1.Theproposedprojectwillnotmodifyanyexistingunit.Therefore,baselineactualemissionsandpotentialemissionsofmodifiedunitsarenotapplicable.

5.ProjectNetEmissionsIncreases=NetEmissionsIncrease(PotentialEmissionsfromNewUnits)+AssociatedUnitsEmissionsIncrease

2.Potentialemissionsfromtheproposedcontinuouskiln,fuelsilo,andemergencygeneratoraredetailedinTableB‐3,TableB‐4,andTableB‐6.

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 1-4

1.3. BACT DETERMINATION

InterforperformedaBACTanalysisfortheonlyPSD‐regulatedpollutantthatexceededtheSER,VOC,followingthe“top‐down”approachsuggestedbyU.S.EPA.Thetop‐downprocessbeginsbyidentifyingallpotentialcontroltechnologiesforthepollutantinquestion,andmakingadeterminationifthosecontroloptionsaretechnicallyfeasiblefortheprocessinquestion.Theapproachtheninvolvesrankingallpotentiallyrelevantcontroltechnologiesindescendingorderofcontroleffectiveness.Themoststringentor“top”controloptionisBACTunlesstheapplicantdemonstrates,andthepermittingauthorityinitsinformedopinionagrees,thatenergy,environmental,and/oreconomicimpactsjustifytheconclusionthatthemoststringentcontroloptiondoesnotmeetthedefinitionofBACT.WherethetopoptionisnotdeterminedtobeBACT,thenextmoststringentalternativeisevaluatedinthesamemanner.ThisprocesscontinuesuntilBACTisdetermined.BasedontheBACTreview,InterforhasdeterminedthatthetechnologypresentedinTable1‐2areBACTfortheproposedcontinuouskilnandemergencydiesel‐firedfirepump.AdetailedVOCBACTanalysisispresentedinSection5.4ofthisapplication.

Table1‐2.ProposedBACTSummary

1.4. APPLICATION ORGANIZATION

Thefollowinginformationisincludedaspartofthisapplicationsubmittal:

Section2describesthecurrentfacilityandtheproposedproject; Section3summarizestheemissionscalculationmethodologiesandassessesPSDapplicability; Section4detailsthefederalandstateregulatoryapplicabilityanalysisfortheproposedproject; Section5containstherequiredBACTassessment; Section6containsthetoxicsmodelingassessment; AppendixAcontainsanareamapandprocessflowdiagramsofthefacility; AppendixBincludesdocumentationofemissionscalculations; AppendixCcontainsapplicableSIPpermitapplicationforms; AppendixDcontainsBACTsupportingcalculations; AppendixEcontainsRACT/BACT/LAERClearingHouseDatabaseReports; AppendixFincludesthetoxicsmodelingdocumentation; AppendixGincludestheelectronictoxicsmodelingfiles;and AppendixHincludesletterssenttotheFederalLandManagersofsurroundingClassIareas.

Source SelectedBACT ComplianceMethod

ContinuousKilnProperMaintenanceandOperatingPractices

Recordkeeping

EmergencyDiesel‐FiredFirePump

ProperMaintenanceandOperatingPractices/NSPS

SubpartIIIICertifiedEngine

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 2-1

2. DESCRIPTION OF FACILITY

ThePerryMillproducesplanedlumberfromlogsandisclassifiedunderStandardIndustrialClassification(SIC)code2421.Therawmaterialforplanedlumber,theprincipleproduct,issouthernyellowpinelogs.Emissiongeneratingoperationsatthemillincludelogpreparation/sawmill,dryingkilns,wood‐firedboilers,planermill,andtheremanmill.AprocessflowdiagramforthePerryMillisprovidedinAppendixA.

2.1. CURRENT FACILITY DESCRIPTION

2.1.1. Log Preparation / Sawmill

Thebasicfunctionoftheinitiallogpreparationareaistopreparelogsforfurtherprocessingwithinthesawmill.Treelengthlogsaredeliveredbytrucktothemill.Logsarecuttodesiredlengthbysawsandmanuallyfedintothedebarker.Barkfromthedebarkeriscollectedasfuelinthefuelshedforthewood‐firedboilers.ThePerryMilloperatesaBarkHogtoreducethesizeofthebarkfromthedebarker.Afterthedebarkingstage,logsarecutintoroughboardsusingaseriesofsawingtechniques.Themajorityofthesawdustthatisgeneratedinthesawmillisconveyedtothefuelshedalongwithbarkfromthedebarker.Largerpiecesofwoodfromlogsaresenttoachipperandconveyedtoashakerscreen.Sawdustfromthechipperisalsosenttothefuelbin.Largerchipsarecollectedinthechipbinandsoldoff‐site.

2.1.2. Batch Kilns

Thelumbercutinthesawmillisdriedinoneofthefive(5)existingindirect‐firedbatchkilnstoreducethemoisturecontentfromapproximately50percentdowntoapproximately16percent.Thekilnshaveacapacitytoproduceapproximately162millionboardfeetperyear(MMBF/yr)driedlumber.Steamforthebatchlumberkilnsissuppliedbythewood‐firedboilersatthePerryMill.

2.1.3. Planer Mill

Driedroughlumberissentfromthelumberkilnstobefinishedintheplanermill.Eachboardispassedthroughaplanertogradethesurfaceandfinishtheboardtoitsfinalthicknessandwidth.Theendsoftheboardarethentrimmedtoachievethefinalboardlength.TrimblocksareconveyedtotheplanerhogandhoggedshavingsandotherfinesarepneumaticallyconveyedtothePlanerMillCyclone.Aftertrimming,eachboardisstampedandstackedforshipping.Thefinishedproductisthenloadedontotrucksandshippedoff‐site.

2.1.4. Reman Mill

Theremanmillreceivesaportionofthesortedandstackeddrylumberfinishedbytheplanermill.Here,thelumbercanbefurtherplanedandshaped.ShavingsproducedbytheremanmillareconveyedtotheRemanMillCyclone.

2.1.5. Miscellaneous Sources

Logs,lumber,chips,sawdust,bark,andshavingsareallshippedintooroutofthemillbytruck.Utilityvehiclessuchasforkliftsandbobcatsareusedtotransport/load/unloadmaterialsthroughoutthemill.2Fugitive

2ThePerryMillhousesdieselandgasolinedispensingstationsfortheirmobileequipment.

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 2-2

emissionsfromtravelonunpavedroadsresultsinfugitiveparticulateemissions.ThePerryMilldoesnothaveanyexistingstationaryemergencygeneratorenginesorfirepumpengines.

2.2. PROJECT DESCRIPTION

Interforproposestocompletemodificationsassociatedwiththeinstallationofanewcontinuous,direct‐firedkiln(DK‐6).

2.2.1. Continuous Kiln Installation

Continuouslumberdryingkilnsareanemergingtechnologythatsignificantlyimprovesproductivity,lumbergrade,andenergyefficiencyascomparedtotheoperationofconventionalbatch‐fedkilns.Forexample,muchoftheheatthatislostbetweenbatchesinatraditionalkilnwhenthedoorsopenisretainedwithinacontinuouskiln.Sincethereisnodowntimebetweenbatches,thecontinuouskilnremainsatoperatingtemperatures,whichresultsinsignificantenergysavings.Additionalchambersareconstructedoneachendofthekilnheatingchamberandapushersystemoneachendconveysacontinuousfeedoflumberononetrackintothekilnandonasecondtrackintheoppositedirectionoutofthekiln.Theheatfromthedriedlumbercomingoutofthekilnpreheatsthegreenlumberenteringthekilnonthesecondtrack,resultinginadditionalefficiencygains.Theoperationiscontinuousanddoesnotshutdownexceptforunplannedmalfunctioneventsorplannedmaintenanceoutages.Thecontinuousoperatingfeaturesresultinimprovedenergyefficiencyandproductivityofthelumberdryingprocess.Inaddition,themoisturedrivenoffofthegreenlumberchargeconditionsthedriedlumberexitingthekilnheatingchamberresultinginimprovedproductquality.Thegasifiersystemwillhaveanabortstackwhichwillbeclosedandonlyusedduringperiodsofstartup/shutdown,whichwillhappeninfrequentlybasedoncurrentsystemdesign.Tosupporttheproposedcontinuouskiln,Interforisplanningtoinstalla300,000to350,000gallonfiresuppressionsystem,thatwillhavetwogeneratorengines,aprimaryelectricfirepumpengine,andadiesel‐firedfirepumpengineasbackup.The305horsepower(hp)diesel‐firedfirepumpsystemwillbeusedonlyforemergencysituations,andthenecessarymaintenance/readinesstesting.ThenewcontinuouskilnwillbeinstalledinthesouthwestcorneroftheexistingPerryMill.Interforisalsoplanningtoinstallanewfuelsilowithassociatedcycloneforthecontinuouskiln.Afigureoftheproposedlocationofthekiln(andemissionstacks)isincludedinAppendixF.Section3.2.1and3.2.2providesmoreinformationonemissionincreasesfromassociatedancillaryemissionunit(includingthesourcesfortheappropriateemissionfactors);AppendixBdetailstheemissioncalculationsforeachassociatedemissionunit.

2.2.2. Associated Ancillary Emission Units

TheproposedprojectwillnotincludeanyadditionalmodificationstothePerryMill,withtheexceptionoftheinstallationofthecontinuousdirect‐fireddrykilnandfuelsilo.However,therewillbeanemissionsincreasefromancillaryequipmentatthemillbecausethepotentialkilnproductionwillbeincreasing,thusmorematerialwillbeprocessedthroughassociatedunits.Theassociatedancillaryemissionunitsincludesawinganddebarking,theplanermill,materialhandling/transfersources,theplanerhog,chipper,andhaulroads.Section3.2.4providesmoreinformationonemissionincreasesfromassociatedancillaryemissionunit(includingthesourcesfortheappropriateemissionfactors);AppendixBdetailstheemissioncalculationsforeachassociatedemissionunit.

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 3-1

3. EMISSION CALCULATION METHODOLOGY

ThissectionaddressesthemethodologyusedtoquantifytheemissionsfromtheproposedprojectandassessesfederalPSDpermittingapplicability.EmissionsfromtheproposedprojectwillincludeCO,NOX,SO2,VOC,PM,PM10,PM2.5,lead,andGHGsintheformofCO2e,andhazardousairpollutants(HAP).Theseemissionsoccurasaresultofcombustioninthekiln,dryingoflumber,andotherprocessoperationsatthefacility.DetailedemissioncalculationsarepresentedinAppendixB.

3.1. NSR PERMITTING EVALUATION METHODOLOGY

TheNewSourceReview(NSR)permittingprogramgenerallyrequiresthatasourceobtainapermitpriortoconstructionofanyprojectatanindustrialfacilityiftheproposedprojectresultsinthepotentialtoemitairpollutioninexcessofcertainthresholdlevels.TheNSRprogramiscomprisedoftwoelements:NNSRandPSD.TheNNSRprogrampotentiallyappliestonewconstructionormodificationsthatresultinemissionincreasesofaparticularpollutantforwhichtheareathefacilityislocatedinisclassifiedas“nonattainment”forthatpollutant.ThePSDprogramappliestoprojectincreasesofthosepollutantsforwhichtheareathefacilityislocatedinisclassifiedas“attainment”or“unclassifiable”.ThePerryMillislocatedinHoustonCounty,whichispresentlydesignatedas“attainment”or“unclassifiable”forallcriteriapollutants.3Therefore,PSDpermittingispotentiallyapplicable.AsthePerryMillisamajorPSDsource,emissionincreasesfromproposedprojectsmustbecomparedtothePSDSERtodetermineifPSDpermittingisrequired.ThefollowingsectionsdiscussthemethodologyusedintheprojectemissionsincreaseevaluationconductedtoassessPSDapplicabilityundertheNSRprogram.ForallPSD‐regulatedpollutantsotherthanCO2e,PSDpermittingisrequirediftheemissionsincreaseofaspecificpollutantexceedsthatpollutant’sPSDSER.ForCO2e,PSDpermittingisonlyrequirediftheemissionsincreaseexceedstheSERforCO2eandtheprojectisalreadyundergoingPSDpermittingforatleastoneotherPSD‐regulatedpollutant.

3.1.1. Defining Existing versus New Emission Units

Differentcalculationmethodologiesareusedforexistingandnewunits;therefore,itisimportanttoclarifywhetherasourceaffectedbytheproposedprojectisconsideredaneworexistingemissionunit. 40CFR52.21(b)(7)(i)and(ii)definenewunitandexistingunits,andareincorporatedbyreferenceintheGeorgiaRulesforAirQualityControl(GRAQC):

(i)Anewemissionsunitisanyemissionsunitthatis(orwillbe)newlyconstructedandthathasexistedforlessthan2yearsfromthedatesuchemissionsunitfirstoperated.(ii)Anexistingemissionsunitisanyunitthatdoesnotmeettherequirementsinparagraph(b)(7)(i)ofthissection.Areplacementunit,asdefinedinparagraph(b)(33)ofthissection,isanexistingemissionsunit.

Basedonthesedefinitions,theproposeddirect‐firedcontinuouswooddryingkilnandfuelsilowillbeclassifiedasnewunits.Therewillbenoexistingunitsthatarebeingphysicallymodifiedaspartoftheproject.

340CFR81.311

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 3-2

3.1.2. Annual Emission Increase Calculation Methodology

AsthemillisclassifiedasamajorsourceforPSD,iftheproposedprojectwereclassifiedasamajormodification,thenthefullPSDpermittingrequirementswouldapply.ProjectincreaseswereevaluatedtodetermineiftheproposedprojectisamajormodificationusingthecurrentNSRReformmethodology.Forprojectsthatinvolveinstallingnewemissionunits,PSDapplicabilityusingtheactual‐to‐potentialapplicabilitytestisdefinedat40CFR52.21(a)(2)(iv)(d)andisincorporatedbyreferenceintoGRAQC:

(d)Actual‐to‐potentialtestforprojectsthatonlyinvolveconstructionofanewemissionsunit(s).AsignificantemissionsincreaseofaregulatedNSRpollutantisprojectedtooccurifthesumofthedifferencebetweenthepotentialtoemit…fromeachnewemissionsunit…andthebaselineactualemissions…equalsorexceedsthesignificantrateforthatpollutant….

Majormodificationisdefinedby40CFR52.21(b)(2)(i)andisincorporatedbyreferenceintoGRAQC:

“MajorModification”meansanyphysicalchangeinorchangeinthemethodofoperationofamajorstationarysourcethatwouldresultinasignificantemissionincrease…ofaregulatedNSRpollutant…andasignificantnetemissionsincreaseofthatpollutant…

Astheprojectisclassifiedasaphysicalchange,theprojectneedstobeanalyzedtodetermineifasignificantnetemissionsincreasewilloccur.Netemissionsincrease(NEI)isdefinedby40CFR52.21(b)(3)(i)andisadoptedwithchangesintoGRAQC391‐3‐1‐.02(7)(a)2).(ix):

“NetEmissionsIncrease”means,withrespecttoanyregulatedNSRpollutant…theamountbywhichthesumofthefollowingexceedszero:

(a)Theincreaseinemissions…ascalculatedpursuanttoparagraph(a)(2)(iv)[forexistingunits,calculatedbyactual‐to‐projectedactualoractual‐to‐potential;fornewunits,calculatedbyactual‐to‐potential]ofthissection;and

(b)Anyotherincreasesordecreasesinactualemissions…thatarecontemporaneouswiththeparticularchangeandareotherwisecreditable.Baselineemissionsforcalculatingincreasesanddecreases…shallbedeterminedasprovided…

Thefirststepiscommonlyreferredtoasthe“projectemissionincreases”asitaccountsonlyforemissionsrelatedtotheproposedprojectitself.Thisfirststepintheanalysisdoesnotincludetheproposedshutdownofequipmentassociatedwiththeproject.Iftheemissionincreasesestimatedperthefirstexceedthemajormodificationthresholds,thentheapplicantmaymovetothesecondstep,commonlyreferredtoasthenettinganalysis.Thenettinganalysisincludesallprojectsforwhichemissionincreasesordecreases(i.e.,equipmentshutdown)occurred.Iftheresultingnetemissionincreasesexceedthemajormodificationthreshold,thenNSRpermittingisrequired.Nettinganalysiswerenotperformedaspartofthisapplication.InterforevaluatedprojectincreasestodetermineiftheprojectisamajormodificationusingthecurrentNSRReformmethodology,whichmayincludethefollowingcomponents:

Potentialemissions(A) Baselineactualemissions(B)[Notapplicabletoproject)

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 3-3

Projectedactualemissions(C)[Notapplicabletoproject) “Couldhaveaccommodated”emissionsexclusion(D)(commonlycalledthedemandgrowthexclusion)[Notapplicabletoproject)

AdditionalAssociatedEmissionUnitIncreasesAstheproposedprojectinvolvestheinstallationofnewequipmentonly,developmentofprojectemissionincreasesforcomparingtothePSDSERisrelativelystraightforward.Potentialemissionestimatesfortheproposedprojectmustbeevaluated.Astherearenomodificationstoexistingequipment,theestimateofbaselineactualemissionsisnotnecessary(i.e.,baselineemissionsfornewequipmentis0tpy).Forthisproject,Interforhasnotrelieduponprojectedactualemissionsorthe“couldhaveaccommodated”emissionsexclusionastheproposedprojectdoesnotincludeamodificationtoanexistingemissionunit.

3.2. PROPOSED PROJECT EMISSIONS INCREASES

ThefollowingsectionssummarizethemethodstoestimatetheemissionsincreasesfromtheproposedprojectforcomparisontothePSDSER.

3.2.1. Direct-Fired Continuous Kiln (New)

Potentialemissionsfromthenewdirect‐firedcontinuouskilnwereevaluatedusingthemaximumproductioncapacitiesofthekiln(MBF/yr)andtheburnerheatinputcapacities(MMBtu/yr)inconjunctionwithemissionfactorsfromdifferentliteraturesources.Forallpollutantsexceptleadandgreenhousegases,InterforrelieduponemissionfactorsfromtheEPDRecommendedEmissionFactorsforLumberKilnPermittinginGeorgiadatasheetprovidedbyGeorgiaEPD.4AnemissionfactorfromNationalCouncilforAirandStreamImprovement(NCASI)datawasusedtoestimateemissionsoflead.5CO2eemissionsfromwoodcombustionwerebasedonfactorsestablishedintheGreenhouseGasMandatoryReporting(MRR)rulein40CFR98,TableC‐1andC‐2.AppendixBprovidesadetailedlistofemissionfactorsandtheirsources.PotentialemissionsexceptSO2,leadandgreenhousegasesfromthedirect‐firedcontinuouskilnwerecalculatedbymultiplyingthemaximumproductioncapacityofdriedlumberfromthekiln(MBF/year)bytheappropriateemissionfactor(lb/MBF).PotentialemissionsofSO2,lead,andgreenhousegaseswerecalculatedbasedonthefuelfiringcapacity(MMBtu/year)multipliedbythepollutantemissionfactor(lb/MMBtu).TotalHAPemissionswereestimatedasthesumofemissionsofacetaldehyde,formaldehyde,andmethanol.

3.2.2. Fuel Silo (New)

Emissionfactorsforthenewfuelsilowerecalculatedusinguncontrolledemissionfactorsfrompubliclyavailablesources(e.g.airpermitapplicationssubmittedbylumberfacilitiestostateenvironmentalagencies).Acontrolefficiencyof95%wasappliedforthecyclone.Asthesilowillstoregreensawdust,PMemissionsareexpectedtobeminimalfromthesiloandassociatedcyclone.

3.2.3. Emergency Fire Pump (New)

EmissionfactorsforPM,non‐methanehydrocarbons(NMHC),andNOxfortheemergencyfirepumpwerederivedbasedonNSPSIIIIemissionlimits.ThePMemissionlimitwasusedtoestimateemissionsoffilterable

4ProvidedbyMr.MannyPatel(EPD)toTrinityConsultantsonAugust23,2018agencymeeting.

5AllNCASIvaluesusedintheapplicationwereobtainedfrompubliclyavailablesources(e.g.airpermitapplicationssubmittedbywoodlumberfacilitiestostateenvironmentalagencies).DetailedreferencesareprovidedinAppendixB.

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 3-4

PM,TotalPM,TotalPM10,andTotalPM2.5.Thenewfirepumpenginewillbesubjecttoadieselsulfurcontentlimitof15ppmvinaccordancewith40CFR60.4207(b)asrequiredbyNSPSSubpartIIII.ThissulfurcontentwasusedtodevelopanemissionfactorforSO2.Potentialemissionsofthesepollutantswerecalculatedbyconvertingtheemissionlimitstolb/hp‐hr,thenbymultiplyingtheemissionfactorsbythemaximumpoweroutputofthedieselengine,inhp.Otherwise,emissionfactorsforremainingcriteriapollutantsandHAPemissionswerederivedfromAP‐42Section3.3,GasolineandDieselIndustrialEngines,Table3.3‐1.Emissionfactorsinlb/MMBtuwereconvertedtolb/hp‐hr,andpotentialemissionswereestimatedbymultiplyingtheseemissionfactorsbythemaximumpoweroutputofthedieselengine,inhp.

3.2.4. Ancillary Equipment Emission Increases

Inadditiontoemissionsfromtheproposednewkilnandfuelsilo,theproposedprojectwillresultinemissionsincreasesfromancillaryequipmentatthemillassociatedwiththekiln.NotethatonlyFilterablePM,FilterablePM10,andFilterablePM2.5areemittedfromtheancillaryequipmentassociatedwiththeproposedproject.DetailedemissioncalculationsforeachprocessareincludedinAppendixB.

3.2.4.1. Sawing and Debarking

IncreasesinfugitivePMemissionsfromsawinganddebarkingwerebasedontheincreasedlumberthroughputthroughthoseportionsofthefacility.Acontrolefficiencyof95percentwasappliedtoaccountfortheactivitiesbeingperformedindoors.6ThePMemissionfactorforsawingisfromtheEPAFactorInformationRetrieval(WebFIRE)database.7,Theemissionfactorforsawing(0.35poundofTotalPMpertonofwoodprocessed)wasoriginallypublishedinAP‐42witha“D”rating.ItislikelythatthisnumberismuchhigherthanappropriateandresultsininaccuratePMemissioncalculations.ThemostrecentversionofAP‐42,Section10.5,PlywoodManufacturing(publishedinJanuary2002)doesnotlistanemissionfactorforsawing.GiventhelackofamoreaccuratevalueavailableforPMemissionsfromsawing,Interforhaschosentousethe0.35lb/tonvalueforconservatism,asastartingpoint.BasedonobservationsandtestingsummarizedbytheNorthCarolinaDivisionofAirQuality(NCDAQ),itwasassumedthat1.89%ofPMisPM10andthatallPM10isconservativelyPM2.5.8Theemissionfactorsfordebarkingareobtainedfrompubliclyavailablesources(e.g.airpermitapplicationssubmittedbywoodlumberfacilitiestostateenvironmentalagencies).ThefactorsusedarebasedonmorerecentactualtestingofdebarkersasratherthanolderpublishedU.S.EPAfactors.Duetothemoisturecontentofthebark,Interforexpectsactualemissionstobemuchlessthanthehistoricemissionfactorsdeveloped.

6PerEPARegion10ParticulateMatterPotentialtoEmitEmissionFactorsforActivitiesatSawmills,ExcludingBoilers,LocatedinPacificNorthwestIndianCountry(May2014),emissionscanbereducedby100%forsawmillactivitiesbeingperformedindoorsasemissionswillstruggletoescapethroughdoorwaysandotheropenings.Forconservatism,Interforisassumingthat5%ofemissionsescapefromdoorsorotheropenings.

7CompilationofAirPollutantEmissionFactors,Volume1:StationaryPointandAreaSources,FourthEditionwithSupplementsA,B,andC,AP‐42.,pertheEPAFactorInformationRetrieval(WebFIRE)database,updated9/7/2016forSCCCode3‐07‐008‐02,LogSawing.

8Peradocumententitled"EstimatingEmissionsFromGenerationandCombustionof'Waste'Wood‐Draft"(July1998)bytheNCDAQ,thepercentageofPMemittedfromsawingoperationsthatisPM10is1.89%.Thisfactorwasdevelopedfordrywood;theamountofPMthatisPM10whensawingwetwoodismostlikelyevenlower.

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 3-5

3.2.4.2. Planer Mill

IncreasesinPMemissionsfromtheplanermillwerecalculatedusinguncontrolledemissionfactorsfrompubliclyavailablesources(e.g.airpermitapplicationssubmittedbylumberfacilitiestostateenvironmentalagencies).ControlefficiencyforcycloneswerebasedonU.S.EPAairpollutioncontroltechnologyfactsheetsforsinglecyclones.9

3.2.4.3. Material Transfer Sources

IncreasesinfugitivePMemissionsfromthetruckloadingandtransferofchips,bark,sawdust,andwoodshavingswerecalculatedusingemissionfactorsbasedonEquation1ofU.S.EPA’sAP‐42,Section13.2.4,AggregateHandlingandStoragePiles.10ThisestimateisexpectedtobeahighlyconservativeassessmentofthepotentialPMemissions.

3.2.4.4. Planer Hog (Hogger) and Chipper

TheincreaseinfugitivePMemissionsfromthehoggerandchipperwerebasedontheincreasedlumberthroughputforthoseunits.Acontrolefficiencyof90percentwasappliedtoaccountfortheactivitiesbeingperformedindoors.TheemissionfactorsusedforbothprocessesarefromU.S.EPA’sFactorInformationRetrieval(WebFIRE)databasefordebarking.11Aspreviouslydiscussed,Interforbelievesthatthefactorsfordebarkersmayresultinaninaccurateoverestimateofactualemissions.However,Interforisusingthesefactorstoestimateemissionsfromthehoggerandchipperasnootherfactorsarereadilyavailableandbecausethesefactorsshouldresultinaconservativeestimationofemissions.

3.2.4.5. Roads

FugitivePMemissionsfromtheincreasedtrucktrafficonthefacilityroadwayswereestimatedbasedonthevehiclemilestravelled(VMT)bytrucksthatwilltransportadditionalmaterialstoandfromthefacility.Vehiclemilestraveledonsitewereestimatedbasedonthedistanceoftheanticipatedtruckrouteforeachmaterialandthenumberoftripsnecessarytosupportcontinuousoperationofthenewkiln.EmissioncalculationsforfugitivepavedroaddustemissionsweredevelopedbasedonAP‐42,Section13.2.1,PavedRoadsandforfugitiveunpavedroaddustfromSection13.2.2,UnpavedRoads.12,13

3.2.5. Project Emissions Increases

Table3‐1showsthetotalemissionsincreasefortheproposedprojectcomparedtothePSDSER.

9EPA‐452/F‐03‐005(https://www3.epa.gov/ttncatc1/dir1/fcyclon.pdf).

10U.S.EPAAP‐42,Section13.2.4,AggregateHandlingandStorageFiles,November2006.

11CompilationofAirPollutantEmissionFactors,Volume1:StationaryPointandAreaSources,FourthEditionwithSupplementsA,B,andC,AP‐42.,pertheEPAFactorInformationRetrieval(WebFIRE)database,updated9/7/2016forSCCCode3‐07‐008‐01,LogDebarking.

12U.S.EPAAP‐42,Section13.2.1,PavedRoads,January2011.

13U.S.EPAAP‐42,Section13.2.2,UnpavedRoads,November2006.

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 3-6

Table3‐1.ProjectEmissionsIncrease

AsillustratedinTable3‐1,projectemissionincreasesfromtheproposedproject,willbebelowthePSDSERforallpollutantsexceptVOC.

Pollutant

PotentialEmissionsofNewUnits(tpy)1,2,3

AssociatedUnitsEmissionsIncrease(tpy)4

ProjectNetEmissionsIncreases(tpy)5

PSDSERThresholds

(tpy)PSDPermittingTriggered?

CriteriaNOX 17.30 ‐‐ 17.30 40 NoCO 44.31 ‐‐ 44.31 100 NoSO2 4.38 ‐‐ 4.38 40 NoFilterablePM 11.54 11.01 22.55 25 NoTotalPM10 6.43 1.58 8.01 15 NoTotalPM2.5 6.13 1.41 7.54 10 NoVOC 240.50 ‐‐ 240.50 40 Yes

GHGs 6

GHGs(CO2e) 36,725 ‐‐ 36,725 75,000 No

HAPsHydrogenSulfide ‐‐ ‐‐ ‐‐ 10 NoLead 2.70E‐03 ‐‐ 2.70E‐03 0.6 NoSulfuricAcidMist ‐‐ ‐‐ ‐‐ 7 No

3.NetEmissionsIncreaseequaltopotentialemissionsofnewunitsasthereisnomodifiedunit.

6.ForPSDpermittingforCO2tobetriggered,firstPSDmustbetriggeredforanotherregulatedpollutant,thenprojectemissionsfrombothCO2(massbasis)andCO2emustbegreaterthantheSER.

4.Associatedunitsemissionsincreasesincludeemissionsfromthesawmill,debarkingoperation,plannermill,materialtransfers,plannerhogandchipper,androadtravel.DetailedemissionsareincludedinTableB‐14

1.Theproposedprojectwillnotmodifyanyexistingunit.Therefore,baselineactualemissionsandpotentialemissionsofmodifiedunitsarenotapplicable.

5.ProjectNetEmissionsIncreases=NetEmissionsIncrease(PotentialEmissionsfromNewUnits)+AssociatedUnitsEmissionsIncrease

2.Potentialemissionsfromtheproposedcontinuouskiln,fuelsilo,andemergencygeneratoraredetailedinTableB‐3,TableB‐4,andTableB‐6.

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 4-1

4. REGULATORY REVIEW

ThePerryMillissubjecttocertainfederalandstateairregulations.Thissectionoftheapplicationsummarizestheairpermittingrequirementsandkeyairqualityregulationsthatwillapplytothefacilityunderbothfederalandstatepermittingprograms.ApplicabilitytoNSR,TitleV,NewSourcePerformanceStandards(NSPS),NESHAP,andEPDstaterulesareaddressed.

4.1. NEW SOURCE REVIEW APPLICABILITY

TheNSRpermittingprogramgenerallyrequiresasourcetoobtainapermitandundertakeotherobligationspriortoconstructionofanyprojectatanindustrialfacilityiftheproposedprojectresultsinthepotentialtoemitairpollutioninexcessofcertainthresholdlevels.TheNSRprogramiscomprisedoftwoelements:NNSRandPSD.TheNNSRprogrampotentiallyappliestonewconstructionormodificationsthatresultinemissionincreasesofaparticularpollutantforwhichareasclassifiedas“nonattainment.”ThePSDprogramappliestoprojectincreasesofthosepollutantsforwhichtheareathefacilityislocatedinisclassifiedas“attainment”or“unclassifiable.”

Aspreviouslydiscussed,thePerryMillislocatedinHoustonCounty,whichhasbeendesignatedbytheU.S.EPAas“attainment”or“unclassifiable”forallcriteriapollutants.14Therefore,thefacilityisnotsubjecttoNNSRpermittingrequirements.However,newconstructionormodificationsthatresultinemissionsincreasesarepotentiallysubjecttoPSDpermittingrequirements.

ThePSDprogramonlyregulatesemissionsfrom“major”stationarysourcesofregulatedairpollutants.AstationarysourceisconsideredPSDmajorifpotentialemissionsofanyregulatedpollutantexceedthemajorsourcethresholds.ThePSDmajorsourcethresholdis250tpyofanon‐GHGcriteriapollutantand100,000tpyofGHGsintheformofCO2e.15

AsthePerryMillisamajorPSDsource,emissionincreasesfromproposedprojectsmustbecomparedtothePSDSERtodetermineifPSDpermittingisrequired.TheemissionincreaseanalysiswaspresentedinSection3.2ofthisreport.Table4‐1presentsasummaryoftheanalysis.

1440CFR81.311.

15Woodproductmanufacturingfacilitiesarenotonthe“Listof28”sourceswhicharesubjecttoalowermajorsourcethresholdforcriteriapollutantsof100tpy.

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 4-2

Table4‐1.NetEmissionIncreasesComparedtoPSDSER

AsillustratedinTable4‐1,theproposedprojectnetemissionincreaseexceedsthePSDSERforVOC.Accordingly,PSDpermittingisrequiredforthatpollutant.

4.2. FEDERAL REGULATORY APPLICABILITY

40CFRPart70(TitleV),40CFRPart60(NSPS)and40CFRParts61and63(NESHAP)werereviewedtodetermineapplicabilitytoproposedemissionunitsatthefacility.

Pollutant

ProjectNetEmissionsIncreases(tpy)5

PSDSERThresholds

(tpy)PSDPermittingTriggered?

CriteriaNOX 17.30 40 NoCO 44.31 100 NoSO2 4.38 40 NoFilterablePM 22.55 25 NoTotalPM10 8.01 15 NoTotalPM2.5 7.54 10 NoVOC 240.50 40 Yes

GHGs 6

GHGs(CO2e) 36,725 75,000 No

HAPsHydrogenSulfide ‐‐ 10 NoLead 2.70E‐03 0.6 NoSulfuricAcidMist ‐‐ 7 No

3.NetEmissionsIncreaseequaltopotentialemissionsofnewunitsasthereisnomodifiedunit

6.ForPSDpermittingforCO2tobetriggered,firstPSDmustbetriggeredforanotherregulatedpollutant,thenprojectemissionsfrombothCO2(massbasis)andCO2emustbegreaterthantheSER.

4.Associatedunitsemissionsincreasesincludeemissionsfromthesawmill,debarkingoperation,plannermill,materialtransfers,plannerhogandchipper,androadtravel.DetailedemissionsareincludedinTableB‐14

1.Theproposedprojectwillnotmodifyanyexistingunit.Therefore,baselineactualemissionsandpotentialemissionsofmodifiedunitsarenotapplicable.

5.ProjectNetEmissionsIncreases=NetEmissionsIncrease(PotentialEmissionsfromNewUnits)+AssociatedUnitsEmissionsIncrease

2.Potentialemissionsfromtheproposedcontinuouskiln,fuelsilo,andemergencygeneratoraredetailedinTableB‐3,TableB‐4,andTableB‐6.

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 4-3

4.2.1. Title V Operating Permit Program

TheTitleVprogramwasestablishedaspartofthe1990CleanAirActAmendmentsandisinthefederalregulationsat40CFRPart70‐71.Georgiahasdevelopedtheirownprogramunder40CFRPart70,whichisprovidedinChapter391‐3‐1‐.03(10)oftheGeorgiaRulesforAirQualityControl.TitleVrequiresthatallnewandexistingmajorsourcesofairemissionsobtainfederallyapprovedstateadministeredoperatingpermits.AmajorsourceasdefinedundertheTitleVprogramisafacilitythathasthepotentialtoemiteithermorethan100tonsperyear(tpy)foranycriteriapollutant,morethan10tpyforanysinglehazardousairpollutant(HAP),andmorethan25tpyforallHAP.Additionally,40CFRPart70.2definesfacilitieswithpotentialemissionsgreaterthan100,000tpyofCO2earesubjecttoregulationundertheTitleVpermittingprogram.PotentialemissionsofmultiplepollutantsexceedtheTitleVmajorsourcethresholdandassuchthePerryMillwillcontinuetoberegulatedasaTitleVMajorSource.AstheprojectrequiresPSDpermitting,theprojectwillbeauthorizedasasignificantmodificationtothePerryMill’sTitleVpermit.

4.2.2. New Source Performance Standards

NSPS,locatedin40CFR60,requirenew,modified,orreconstructedsourcestocontrolemissionstothelevelachievablebythebest‐demonstratedtechnologyasspecifiedintheapplicableprovisions.Moreover,anysourcesubjecttoanNSPSisalsosubjecttothegeneralprovisionsofNSPSSubpartA,exceptasnoted.InterforassessedapplicabilityofNSPStothenewcontinuous,direct‐firedkilnandassociatedfuelsiloonly.

4.2.2.1. 40 CFR 60 Subpart Dc - Small Industrial-Commercial-Institutional Steam Generating Units

NSPSSubpartDc,SmallIndustrial‐Commercial‐InstitutionalSteamGeneratingUnits,appliestosteamgeneratingunitsratedbetween10and100MMBtu/hrconstructed,modified,orreconstructedafterJune9,1989.Theterm“steamgeneratingunit”isdefinedunderthisregulationasshownbelow:

“Steamgeneratingunitmeansadevicethatcombustsanyfuelandproducessteamorheatswateroranyotherheattransfermedium.Thistermincludesanyductburnerthatcombustsfuelandispartofacombinedcyclesystem.Thistermdoesnotincludeprocessheatersasdefinedinthissubpart.”16

Thenewcontinuousdirect‐firedkilnwilloperatewithagreensawdustgasifierburnerataheatinputcapacityof40MMBtu/hr,andwillbeconstructedin2018‐2019.However,thegasifierburnerswillnotgeneratesteambecausethecombustiongasesfromthefuel(greensawdust)willdirectlycontactthelumberduringthedryingprocess.Therefore,SubpartDcisnotapplicablefortheproposedproject.

4.2.2.2. 40 CFR 60 Subpart IIII - Stationary Compression Ignition Internal Combustion Engines

NSPSSubpartIIII,StandardsofPerformanceforStationaryCompressionIgnitionInternalCombustionEngines,ispotentiallyapplicabletostationaryinternalcombustionengines(ICE)basedonthedateeachenginewasconstructed,reconstructed,ormodified.Theruleprovidesperformancestandardsforbothenginemanufacturersandoperators.Engineoperatorsmustmeetthespecifiedemissionstandardsandfueltypespecifications.ThePerryMillplanstooperateonediesel‐firedemergencyfirepump(FWP1).AsFWP1willbemanufacturedafterApril1,2006,theunitissubjecttotherequirementsunderthispart.FWP1willberatedat305hp.PursuanttoCFR60.4202(d),FWP1mustbecertifiedtomeettheapplicableemissionstandardsofTable4ofNSPSSubpartIIII.AsENG1isafirepumpenginewithamaximumengine 1640CFR60.41c.

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 4-4

powergreaterthan300hpandlessthan600,andwasmanufacturedafter2009,itissubjecttotheemissionlimitsdetailedinTable4toSubpartIIIIofPart60—EmissionStandardsforStationaryFirePumpEngines.Manufacturerspecificationsguaranteethecomplianceoftheenginewiththeemissionslimits.Inaddition,Interforwilloperateandmaintaintheengineaccordingtothemanufacturer’srequiredschedules,includingpartsreplacements,andtheenginewillbeequippedwithanon‐resettablehourmeterpertherequirementsof40CFR60.4209(a).

4.2.2.3. 40 CFR 60 Subpart JJJJ - Stationary Spark Ignition Internal Combustion Engines

NSPSSubpartJJJJ,StandardsofPerformanceforStationarySparkIgnitionInternalCombustionEngines,ispotentiallyapplicabletostationaryICEbasedonthedateeachenginewasconstructed,reconstructed,ormodified.TherulesetsemissionsstandardsforNOX,CO,andVOCemissionsforenginesclassifiedbysizeanddateofmanufactureorreconstruction.Theproposedfirepumpisdiesel‐firedandwillnotbesubjecttotherequirementsinthisNSPS.

4.2.2.4. Non-Applicability of All Other NSPS

NSPSstandardsaredevelopedforparticularindustrialsourcecategoriesandtheapplicabilityofaparticularNSPStoafacilitycanbereadilyascertainedbasedontheindustrialsourcecategorycovered.AllotherNSPSarecategoricallynotapplicabletotheproposedproject.

4.2.3. National Emission Standards for Hazardous Air Pollutants

NESHAP,locatedin40CFR63,havebeenpromulgatedforsourcecategoriesthatemitHAPtotheatmosphere.AfacilitythatisamajorsourceofHAPisdefinedashavingpotentialemissionsgreaterthan25tpyoftotalHAPand/or10tpyofasingleHAP.FacilitieswithapotentialtoemitHAPatanamountlessthanthemajorsourcethresholdsareotherwiseconsideredanareasource.TheNESHAPallowableemissionlimitsaremostoftenestablishedonthebasisofamaximumachievablecontroltechnology(MACT)determinationfortheparticularsource.TheNESHAPapplytosourcesinspecificallyregulatedindustrialsourcecategories(CleanAirActSection112(d))oronacase‐by‐casebasis(Section112(g))forfacilitiesnotregulatedasaspecificindustrialsourcetype.

ThePerryMillisclassifiedasamajorsourceofHAPasthemillhaspotentialHAPemissionsgreaterthanthemajorsourcethresholds.ThedeterminationofapplicabilitytoNESHAPrequirementsformajorsourcesofHAParedetailedinthefollowingsections.InterforassessedapplicabilityofNESHAPtothenewcontinuous,direct‐firedkilnandassociatedfuelsiloonly.

4.2.3.1. 40 CFR 63 Subpart A - General Provisions

NESHAPSubpartA,GeneralProvisions,containsnationalemissionstandardsforHAPdefinedinSection112(b)oftheCleanAirAct.Allaffectedsources,whicharesubjecttoanotherNESHAP,aresubjecttothegeneralprovisionsofNESHAPSubpartA,unlessspecificallyexcludedbythesource‐specificNESHAP.

4.2.3.2. 40 CFR 63 Subpart DDDD - Plywood and Composite Wood Products

NESHAPSubpartDDDDregulatesHAPemissionsfromplywoodandcompositewoodproducts(PCWP)manufacturingfacilitiesthataremajorHAPsources.ThePCWPMACTwasinitiallyfinalizedbyU.S.EPAonJuly30,2004,andwasreissuedandamendedafterreconsiderationonFebruary16,2006.TherulewaspartiallyvacatedandremandedbytheD.C.CircuitCourtofAppealsinJune2007,whichledtotherulebeingfinalizedin

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 4-5

October2007.EPAisintheprocessofrequestingandcollectinginformationfromplywoodandcompositewoodproductfacilities,toevaluatefurtherruleamendments.However,atthistime,sincenorulechangeshavebeenproposed,Interforevaluatedtheruleapplicabilitybasedonthefinalrulefrom2007.Uponissuanceofaproposedorfinalamendmenttothisruleinthefuture,Interforwillevaluatepotentialmillapplicability.

Lumberkilnsareprocessunitswithintheexisting“affectedsource”underthePCWPMACT,definedin40CFR63.2232(b)as:

Thecollectionofdryers,refiners,blenders,formers,presses,boardcoolers,andotherprocessunitsassociatedwiththemanufacturingofplywoodandcompositewoodproducts.Theaffectedsourceincludes,butisnotlimitedto,greenendoperations,refining,dryingoperations(includinganycombustionunitexhauststreamroutinelyusedtodirectfireprocessunit(s)),resinpreparation,blendingandformingoperations,pressingandboardcoolingoperations,andmiscellaneousfinishingoperations(suchassanding,sawing,patching,edgesealing,andotherfinishingoperationsnotsubjecttoothernationalemissionstandardsforhazardousairpollutants(NESHAP)).Theaffectedsourcealsoincludesonsitestorageandpreparationofrawmaterialsusedinthemanufactureofplywoodand/orcompositewoodproducts,suchasresins;onsitewastewatertreatmentoperationsspecificallyassociatedwithplywoodandcompositewoodproductsmanufacturing;andmiscellaneouscoatingoperations(§63.2292).TheaffectedsourceincludeslumberkilnsatPCWPmanufacturingfacilitiesandatanyotherkindoffacility.

However,basedon§63.2252,forprocessunitsnotsubjecttothecomplianceoptionsorworkpracticerequirementsspecifiedin§63.2240(including,butnotlimitedto,lumberkilns),thePerryMillisnotrequiredtocomplywiththecomplianceoptions;workpracticerequirements;performancetesting;monitoring;startup,shutdown,andmalfunction(SSM)plans;andrecordkeepingorreportingrequirementsofNESHAPSubpartDDDD,oranyotherrequirementsinNESHAPSubpartA,GeneralProvisions,exceptfortheinitialnotificationrequirementsin§63.9(b).Althoughlumberkilnsareanaffectedsource,therearenoapplicablerequirementsforthenewdirect‐firedcontinuouskilnatthemill,exceptfortheinitialnotification.

Pursuantto40CFR63.9(b)(iii),affectedsourcesmayusetheapplicationforapprovalofconstructiontofulfilltheinitialnotificationrequirements.

4.2.3.3. 40 CFR 63 Subpart ZZZZ - Stationary Reciprocating Internal Combustion Engines

NESHAPSubpartZZZZ,NationalEmissionStandardsforHazardousAirPollutantsforStationaryReciprocatingInternalCombustionEngines,appliestostationaryreciprocatingcombustionengines(RICE)atamajororareasourceofHAPemissions.Per40CFR63.6590(a)(2)(iii),newsourcesarethosebuiltafterJune12,2006locatedatamajorsourceofHAPemissions;thereisnosizethresholdforthesubjectengines.Thenewdiesel‐firedemergencyfirepump(FWP1)isconsideredanewstationaryRICEunderNESHAPSubpartZZZZ.ThefirepumpwillsatisfytherequirementsofNESHAPSubpartZZZZbycomplyingwithNSPSSubpartIIII.17

4.2.3.4. 40 CFR 63 Subpart DDDDD - Industrial, Commercial, and Institutional Boilers and Process Heaters

NESHAPSubpartDDDDD,NationalEmissionsStandardsforHazardousAirPollutantsforMajorSources:Industrial,Commercial,andInstitutionalBoilersandProcessHeaters(MajorSourceBoilerMACT)regulates

1740CFR63.6590(c)

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 4-6

boilersandprocessheatersatmajorsourcesofHAP.Thenewkilnclearlydoesnotmeetthedefinitionofaboiler.Aprocessheaterisdefinedin40CFR63.7575,as

…anencloseddeviceusingcontrolledflame,andtheunit'sprimarypurposeistotransferheatindirectlytoaprocessmaterial(liquid,gas,orsolid)ortoaheattransfermaterial(e.g.,glycoloramixtureofglycolandwater)foruseinaprocessunit,insteadofgeneratingsteam.Processheatersaredevicesinwhichthecombustiongasesdonotcomeintodirectcontactwithprocessmaterials.Adevicecombustingsolidwaste,asdefinedin§241.3ofthischapter,isnotaprocessheaterunlessthedeviceisexemptfromthedefinitionofasolidwasteincinerationunitasprovidedinsection129(g)(1)oftheCleanAirAct.Processheatersdonotincludeunitsusedforcomfortheatorspaceheat,foodpreparationforon‐siteconsumption,orautoclaves.Wasteheatprocessheatersareexcludedfromthisdefinition.

Thecontinuouslumberkilnwillbedirect‐fired,asthecombustiongasesfromthefuelwilldirectlycontactthelumberduringthedryingprocess.Therefore,thenewlumberkilnisnotconsideredaprocessheater,andBoilerMACTisnotapplicable.

4.2.3.5. Non-Applicability of All Other NESHAP

NESHAPstandardsaredevelopedforparticularindustrialsourcecategoriesforeithermajororareasourcesofHAPandtheapplicabilityofaparticularNESHAPtoafacilitycanbereadilyascertainedbasedontheindustrialsourcecategorycovered.AllotherNESHAParecategoricallynotapplicabletothemill.

4.2.4. Compliance Assurance Monitoring Regulations

Under40CFR64,theComplianceAssuranceMonitoring(CAM)Regulations,facilitiesarerequiredtoprepareandsubmitmonitoringplansforcertainemissionunitswithaTitleVapplication.TheCAMPlansprovideanongoingandreasonableassuranceofcompliancewithemissionlimits.Underthegeneralapplicabilitycriteria,thisregulationonlyappliestoemissionunitsthatuseacontroldevicetoachievecompliancewithanemissionlimitandwhosepre‐controlledemissionlevelsexceedthemajorsourcethresholdsundertheTitleVpermittingprogram.Thenewcontinuouskilnwillnotuseacontroldevice;therefore,thenewkilnwillnotbesubjecttoCAM.Thefuelsilowilluseacyclone,whichisrequiredtobeoperatedaspartofthehigh‐pressureblowersystem.Theuncontrolledemissionsforthefuelsiloresultinemissionslessthanthemajorsourcethresholds;therefore,CAMwouldnotapply.

4.3. STATE REGULATORY APPLICABILITY

Inadditiontofederalairregulations,theGeorgiaRulesforAirQualityControl(GRAQC)391‐3‐1,establishesregulationsapplicableattheemissionunitlevel(sourcespecific)andatthefacilitylevel.18Therulesalsocontainrequirementsrelatedtotheneedforconstructionand/oroperatingpermits.

4.3.1. GRAQC 391-3-1-.02(2)(b) – Visible Emissions

Thisregulationlimitsthevisibleemissionsfromallsourcesto40%opacity,providedthatthesourceisnotsubjecttosomeotheremissionlimitationunderGRAQC391‐3‐1‐.02(2).19Allequipmentassociatedwiththeproposedprojectaresubjecttothisrule.

18GRAQCeffectiveJuly23,2018

19GRAQC391‐3‐1‐.02(2)(b)1

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 4-7

4.3.2. GRAQC 391-3-1-.02(2)(c) – Incinerators

ThisregulationlimitsthePMandvisibleemissionsfromincinerators.PertheGRAQC,anincineratorisdefinedasfollows:

…alldevicesintendedorusedforthereductionordestructionofsolid,liquid,orgaseouswastebyburning.20

Althoughtheproposedlumberkilnwillburngreensawdustproducedasabyproductfromthesawmill,themainpurposeofthekilnisnotthedestructionofsolidwaste.Therefore,Rule(c)willnotapplytotheproposedkiln.

4.3.3. GRAQC 391-3-1-.02(2)(d) – Fuel Burning Equipment

ThisregulationlimitsPMemissionsfromallfuel‐burningequipment.ItalsolimitsopacityandNOXemissionsfromequipmentconstructedormodifiedafterJanuary1,1972.Georgiadefinesfuel‐burningequipmentas:

…equipmenttheprimarypurposeofwhichistheproductionofthermalenergyfromthecombustionoffuel.Suchequipmentisgenerallythatusedfor,butnotlimitedto,heatingwater,generatingorsuperheatingsteam,heatingairasinwarmairfurnaces,furnishingprocessheatindirectly,throughtransferbyfluidsortransmissionsthroughprocessvesselwalls.21

Althoughthelumberdryingkilnwillcombustafuel,theprimarypurposeoftheunitsisnottoproducethermalenergyusedforindirectheating.Therefore,thekilnisnotsubjecttoRule(d).

4.3.4. GRAQC 391-3-1-.02(2)(e) – Particulate Emission from Manufacturing Processes

Thisregulation,commonlyknownastheprocessweightrule(PWR)establishesPMlimitsforallsourcesifnotspecifiedelsewhere.ThePMemissionsarelimitedbasedonthefollowingequations(forequipmentconstructedormodifiedafterJuly2,1968):

E=4.1×P0.67 forP≤30ton/hr E=55×P0.11–40 forP>30ton/hr where: E=allowablePMemissionrate[lb/hr] P=processinputweightrate[tons/hr]Thisruleappliestoallequipmentassociatedwiththeproposedproject.Thefacilitywillcontinuetobeincompliancewiththisruleafterthecompletionoftheproposedproject.

4.3.5. GRAQC 391-3-1-.02(2)(g) – Sulfur Dioxide

ThisregulationestablishesSO2emissionlimitsforfuel‐burningsources.NewfuelburningsourcesconstructedafterJanuary1,1972,capableoffiringfossilfuelatarateexceeding250MMBtu/hraresubjecttoSO2emissionlimitations.Thekilnwillexclusivelycombustwoodwaste,whichisnotafossilfuel.Thekiln,therefore,isnotsubjecttotheemissionlimitationintherule.However,therulealsospecifiesthatallfuelburningsourceswith

20GRAQC391‐3‐1‐.01(hh)21GRAQC391‐3‐1‐.01(cc)

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 4-8

heatinputcapacitieslessthan100MMBtu/hrshallnotburnfuelcontainingmorethan2.5%sulfurbyweight.Thenewkilnwillcombustexclusivelywood,andtherefore,beininherentcompliancewiththisrule.

4.3.6. GRAQC 391-3-1-.02(2)(n) – Fugitive Dust

Thisregulationrequiresfacilitiestotakereasonableprecautionstopreventfugitivedustfrombecomingairborne.Allunitspartoftheproposedprojectwillbecoveredbythisgenerallyapplicablerule.Interforwilltaketheappropriateprecautionstopreventfugitivedustfrombecomingairborneandtoensurethatthepercentopacityislessthan20percent.

4.3.7. GRAQC 391-3-1-.02(2)(tt) – VOC Emissions from Major Sources

ThisregulationlimitsVOCemissionsfromfacilitiesthatarelocatedinorneartheoriginalAtlanta1‐hourozonenonattainmentarea.ThePerryMillisnotlocatedwithinthegeographicareacoveredbythisruleandis,therefore,notsubjecttothisregulation.

4.3.8. GRAQC 391-3-1-.02(2)(uu) – Visibility Protection

Rule(uu)requiresGeorgiaEPDtoprovideananalysisofaproposedmajorsourceoramajormodificationtoanexistingsource’santicipatedimpactonvisibilityinanyfederalClassIareatotheappropriateFederallandManager(FLM).Thisprojectdoesnotqualifyasamajormodificationforvisibility‐impactingpollutants(NOX,TotalPM10,SO2,andH2SO4),andthereforenovisibilityimpactmodelingwillbeperformed.

4.3.9. GRAQC 391-3-1-.02(2)(yy) – Emissions of Nitrogen Oxides from Major Sources

ThisregulationlimitsNOXemissionsfromfacilitiesthatarelocatedinorneartheoriginalAtlanta1‐hourozonenonattainmentarea.ThePerryMillisnotlocatedwithinthegeographicareacoveredbythisruleandis,therefore,notsubjecttothisregulation.

4.3.10. GRAQC 391-3-1-.02(2)(lll) – NOX Emissions from Fuel-burning Equipment

ThisregulationlimitstheNOXemissionfromfuel‐burningequipmentwithamaximumdesignheatinputcapacityequaltoorgreaterthan10MMBtu/hrandlessthanorequalto250MMBtu/hrthatarelocatedinorneartheoriginalAtlanta1‐hourozonenonattainmentarea.ThePerryMillisnotlocatedwithinthegeographicareacoveredbythisruleandis,therefore,notsubjecttothisregulation.

4.3.11. GRAQC 391-3-1-.02(2)(mmm) – NOX Emissions from Stationary Gas Turbines and Stationary Engines used to Generate Electricity

ThisregulationrestrictsNOXemissionsfromsmallcombustionturbineslocatedinorneartheAtlantanonattainmentareathatareusedtogenerateelectricity.ThePerryMillisnotlocatedwithinthegeographicareacoveredbythisruleandis,therefore,notsubjecttothisregulation.

4.3.12. GRAQC 391-3-1-.02(2)(rrr) – NOX Emissions from Small Fuel-Burning Equipment

ThisregulationlimitsNOXemissionsfromfacilitiesthatarelocatedinorneartheoriginalAtlanta1‐hourozonenonattainmentarea.ThePerryMillisnotlocatedwithinthegeographicareacoveredbythisruleandis,therefore,notsubjecttothisregulation.

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 4-9

4.3.13. GRAQC 391-3-1-.03(1) – Construction (SIP) Permitting

Theproposedprojectwillrequirephysicalconstructionactivitiestoallowconstructionofthenewcontinuouslumberdryingkiln.EmissionincreasesassociatedwiththeproposedprojectareabovethedeminimisconstructionpermittingthresholdsspecifiedinGRAQC391‐3‐1‐.03(6)(i).Further,asdiscussedinSection4.1,PSDpermittingisrequiredforVOC.Therefore,aconstructionpermitapplicationisnecessary.

4.3.14. GRAQC 391-3-1-.03(10) – Title V Operating Permits

ThePerryMillisamajorstationarysource,sincethepotentialemissionofregulatedpollutantsexceedthethresholdsestablishedbyGeorgia’sTitleVOperatingPermitProgram.ThecurrentpermitissettoexpireonJuly24,2023.TheadditionofnewconditionstoallowtheprojecttoavoidPSDpermittingforcertainpollutantsandtoestablishappropriateBACTforpollutantsundergoingPSDpermittingwillberequired.AstheprojectrequiresPSDpermitting,itconstitutesamodificationunderTitleIoftheCleanAirAct,andcannotbeprocessedasaSection502(b)10operationalflexibilitychange.22Thechangealsocannotbeprocessedasaminormodificationasitrequiresacase‐by‐casedetermination(BACT).23Forthesereasons,theproposedprojectconstitutesaTitleVsignificantmodification.

4.3.15. Incorporation of Federal Regulations by Reference

ThefollowingfederalregulationsareincorporatedintheGRAQCbyreferenceandwereaddressedpreviouslyinthisapplication:

GRAQC391‐3‐1‐.02(8)–NSPS GRAQC391‐3‐1‐.02(9)–NESHAP GRAQC391‐3‐1‐.02(11)–CAM

4.3.16. Non-Applicability of Other GRAQC

AthoroughexaminationoftheGeorgiaSIPruleapplicabilitytotheprojectrevealsmanySIPregulationswillnotapplyanddonotimposeadditionalrequirementsonthenewkiln,associatedfuelsilo,andfirepump.SuchSIPrulesincludethosespecifictoaparticulartypeofunrelatedindustrialoperation.

22GRAQC391‐3‐1‐.03(10)(b)523GRAQC391‐3‐1‐.03(10)(e)5

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 5-1

5. BEST AVAILABLE CONTROL TECHNOLOGY ASSESSMENT

ThissectiondiscussestheregulatorybasisforBACT,approachusedincompletingtheBACTanalyses,andtheBACTanalysesfornewandmodifiedequipmentemittingpollutantstriggeringPSDreview.SupportingdocumentationisincludedinAppendicesDandE.

5.1. BACT DEFINITION

TherequirementtoconductaBACTanalysisissetforthinthePSDregulations[40CFR52.21(j)(2)]andadoptedintotheGRAQCbyreference:

(j)ControlTechnologyReview.

(2)AnewmajorstationarysourceshallapplybestavailablecontroltechnologyforeachregulatedNSRpollutantthatitwouldhavethepotentialtoemitinsignificantamounts.

BACTisdefinedinthePSDregulations[40CFR52.21(b)(12)]andisincorporatedintotheGRAQCas:24

...anemissionslimitation(includingavisibleemissionstandard)basedonthemaximumdegreeofreductionforeachpollutantsubjecttoregulationunderActwhichwouldbeemittedfromanyproposedmajorstationarysourceormajormodificationwhichtheDirector,onacase‐by‐casebasis,takingintoaccountenergy,environmental,andeconomicimpactsandothercosts,determinesisachievableforsuchsourceormodificationthroughapplicationofproductionprocessesoravailablemethods,systems,andtechniques,includingfuelcleaningortreatmentorinnovativefuelcombustiontechniquesforcontrolofsuchpollutant.Innoeventshallapplicationofbestavailablecontroltechnologyresultinemissionsofanypollutantwhichwouldexceedtheemissionsallowedbyanyapplicablestandardunder40CFRparts60and61.[primaryBACTdefinition]IftheDirectordeterminesthattechnologicaloreconomiclimitationsontheapplicationofmeasurementmethodologytoaparticularemissionsunitwouldmaketheimpositionofanemissionsstandardinfeasible,adesign,equipment,workpractice,operationalstandard,orcombinationthereof,maybeprescribedinsteadtosatisfytherequirementfortheapplicationofbestavailablecontroltechnology.Suchstandardshall,tothedegreepossible,setforththeemissionsreductionachievablebyimplementationofsuchdesign,equipment,workpracticeoroperation,andshallprovideforcompliancebymeanswhichachieveequivalentresults.[allowanceforsecondaryBACTstandardundercertainconditions]

TheprimaryBACTdefinitioncanbebestunderstoodbybreakingitapartintoitsseparatecomponents.

5.1.1. Emission Limitation

anemissionslimitationFirstandforemost,BACTisanemissionlimit.WhileBACTisprefacedupontheapplicationoftechnologiestoachievethatlimit,thefinalresultofBACTisalimit.Ingeneral,thislimitwouldbeanemissionratelimitofa

24TheGRAQCsubstitutetheword“Director”fortheword“Administrator”.

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 5-2

pollutant(i.e.,lb/hr).25Ifanemissionsmeasurementisinfeasible,thendesign,equipment,workpractice,operationalstandard,orcombinationthereofmaybeestablished.

5.1.2. Case-by-Case Basis

acase‐by‐casebasis,takingintoaccountenergy,environmentalandeconomicimpactsandothercost

UnlikemanyoftheCleanAirActprograms,thePSDprogram’sBACTevaluationiscase‐by‐case.AsnotedbyU.S.EPA,

Thecase‐by‐caseanalysisisfarmorecomplexthanmerelypointingtoaloweremissionslimitorhighercontrolefficiencyelsewhereinapermitorapermitapplication.TheBACTdeterminationmusttakeintoaccountallofthefactorsaffectingthefacility,suchasthechoiceof[fuel]…TheBACTanalysis,therefore,involvesjudgmentandbalancing.26

Toassistapplicantsandregulatorswiththecase‐by‐caseprocess,in1987U.S.EPAissuedamemorandumthatimplementedcertainprograminitiativestoimprovetheeffectivenessofthePSDprogramwithintheconfinesofexistingregulationsandstateimplementationplans.27Amongtheinitiativeswasa“top‐down”approachfordeterminingBACT.Inbrief,thetop‐downprocesssuggeststhatallavailablecontroltechnologiesberankedindescendingorderofcontroleffectiveness.Themoststringentor“top”controloptionisthedefaultBACTemissionlimitunlesstheapplicantdemonstrates,andthepermittingauthorityinitsinformedopinionagrees,thatenergy,environmental,and/oreconomicimpactsjustifytheconclusionthatthemoststringentcontroloptionisnotachievableinthatcase.Uponeliminationofthemoststringentcontroloptionbaseduponenergy,environmental,and/oreconomicconsiderations,thenextmoststringentalternativeisevaluatedinthesamemanner.ThisprocesscontinuesuntilBACTisselected.

Thefivestepsinatop‐downBACTevaluationcanbesummarizedasfollows:

Step1.Identifyallpossiblecontroltechnologies;Step2.Eliminatetechnicallyinfeasibleoptions;Step3.Rankthetechnicallyfeasiblecontroltechnologiesbaseduponemissionreductionpotential;Step4.Evaluaterankedcontrolsbasedonenergy,environmental,and/oreconomicconsiderations;andStep5.SelectBACT.

Whilethetop‐downBACTanalysisisaproceduralapproachsuggestedbyU.S.EPApolicy,thisapproachisnotspecificallymandatedasastatutoryrequirementoftheBACTdetermination.AsdiscussedinSection5.1.1,theBACTlimitisanemissionslimitationanddoesnotrequiretheinstallationofanyspecificcontroldevice.

25Emissionlimitscanbebroadlydifferentiatedas“rate‐based”or“mass‐based.”Forakiln,arate‐basedlimitwouldtypicallybeinunitsoflb/ton(massemissionspertonmaterialinput).Incontrast,atypicalmass‐basedlimitwouldbeinunitsoflb/hr(massemissionspertime).

26U.S.EPAResponsestoPublicCommentsontheProposedPSDPermitfortheDesertRockEnergyFacility,July31,2008,p.41‐42.

27MemodatedDecember1,1987,fromJ.CraigPotter(EPAHeadquarters)toEPARegionalAdministrators,titled“ImprovingNewSourceReviewImplementation.”

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 5-3

5.1.3. Achievable

“basedonthemaximumdegreeofreduction…whichtheDirector…determinesisachievable…throughapplicationofproductionprocessesoravailablemethods,systemsandtechniques,includingfuelcleaningortreatmentorinnovativefuelcombustiontechniques”

BACTistobesetatthelowestvaluethatisachievable.However,thereisanimportantdistinctionbetweenemissionratesachievedataspecifictimeonaspecificunit,andanemissionlimitationthataunitmustbeabletomeetcontinuouslyoveritsoperatinglife.

AsdiscussedbytheD.C.CircuitCourtofAppeals,

InNationalLimeAss'nv.EPA,627F.2d416,431n.46(D.C.Cir.1980),wesaidthatwhereastatuterequiresthatastandardbe“achievable,”itmustbeachievable“undermostadversecircumstanceswhichcanreasonablybeexpectedtorecur.”28

U.S.EPAhasreachedsimilarconclusionsinpriordeterminationsforPSDpermits.

Agencyguidanceandourpriordecisionsrecognizeadistinctionbetween,ontheonehand,measured‘emissionsrates,’whicharenecessarilydataobtainedfromaparticularfacilityataspecifictime,andontheotherhand,the‘emissionslimitation’determinedtobeBACTandsetforthinthepermit,whichthefacilityisrequiredtocontinuouslymeetthroughoutthefacility’slife.Statedsimply,ifthereisuncontrollablefluctuationorvariabilityinthemeasuredemissionrate,thenthelowestmeasuredemissionratewillnecessarilybemorestringentthanthe“emissionslimitation”thatis“achievable”forthatpollutioncontrolmethodoverthelifeofthefacility.Accordingly,becausethe“emissionslimitation”isapplicableforthefacility’slife,itiswhollyappropriateforthepermitissuertoconsider,aspartoftheBACTanalysis,theextenttowhichtheavailabledatademonstratewhethertheemissionsrateatissuehasbeenachievedbyotherfacilitiesoveralongterm.29

Thus,BACTmustbesetatthelowestfeasibleemissionraterecognizingthattheemissionunitmustbeincompliancewiththatlimitforthelifetimeoftheunitonacontinuousbasis.Thus,whileviewingindividualunitperformancecanbeinstructiveinevaluatingwhatBACTmightbe,anyactualperformancedatamustbeviewedcarefully,asrarelywillthedatabeadequatetotrulyassesstheperformancethataunitwillachieveduringitsentireoperatinglife.Whilestatisticalvariabilityofactualperformancecanbeusedtoinferwhatis“achievable,”suchtestingrequiresadetailedtestplanakintowhatteamsinU.S.EPAusetodevelopMACTstandardsoveraseveralyearperiod,andisfarbeyondwhatisreasonabletoexpectofanindividualsource.Incontrasttolimitedsnapshotsofactualperformancedata,emissionlimitsfromsimilarsourcescanreasonablybeusedtoinferwhatis“achievable”foragivenunit.30

ToassistinmeetingtheBACTlimit,thesourcemustconsiderproductionprocessesoravailablemethods,systemsortechniques,aslongasthoseconsiderationsdonotredefinethesource.Aspreviouslystated,ifan

28AsquotedinSierraClubv.EPA(97‐1686).

29U.S.EPAEnvironmentalAppealsBoarddecision,Inre:NewmontNevadaEnergyInvestmentL.L.C.PSDAppealNo.05‐04,decidedDecember21,2005.EnvironmentalAdministrativeDecisions,Volume12,Page442.

30Emissionlimitsmustbeusedwithcareinassessingwhatis“achievable.”Limitsestablishedforfacilitieswhichwereneverbuiltmustbeviewedwithcare,astheyhaveneverbeendemonstratedandthatcompanynevertookasignificantliabilityinhavingtomeetthatlimit.Likewise,permittedunitswhichhavenotyetcommencedconstructionmustalsobeviewedwithspecialcareforsimilarreasons.

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 5-4

emissionsmeasurementisinfeasible,thendesign,equipment,workpractice,operationalstandard,orcombinationthereofmaybeestablished.

5.1.4. Floor

Emissions[shallnot]exceed…40CFRParts60and61

TheleaststringentemissionrateallowableforBACTisanyapplicablelimitundereitherNewSourcePerformanceStandards(NSPS–Part60)orNationalEmissionStandardsforHazardousAirPollutants(NESHAP–Parts61and63).StateSIPlimitationsmustalsobeconsideredwhendeterminingtheemissionsfloor.

5.2. BACT REQUIREMENT

TheBACTrequirementappliestoeachnewormodifiedemissionunitfromwhichthereareemissionsincreasesofpollutantssubjecttoPSDreview.TheproposedprojectissubjecttoPSDpermittingforVOC,andthus,subjecttoBACTforthispollutant.31Theproposedcontinuouskilnandemergencyfire‐waterpumparesubjecttoBACTforVOC.ThefuelsiloisnotsubjecttoBACTasitisnotasourceofVOC.Therewillbenoothernewormodifiedemissionsourcesatthefacility.

5.3. BACT ASSESSMENT METHODOLOGY

ThefollowingsectionsprovidedetailsontheassessmentmethodologyutilizedinpreparingtheBACTanalysesfortheproposedfacility.Aspreviouslynoted,theminimumcontrolefficiencytobeconsideredinaBACTassessmentmustresultinanemissionratelessthanorequaltoanyapplicableNSPSorNESHAPemissionrateforthesource.ThecontinuouskilnundergoingBACTisnotsubjecttoanyNSPSorNESHAPemissionlimitsforVOC.WhileaNESHAPexiststhatregulatesHAPemissionsfromPCWPsources,lumberkilnsarenotsubjecttoanynumericalHAPlimitationsorworkpracticestandardsthatcouldbeconsideredBACTforVOC.32Theemergencyfire‐waterpumpwillbesubjecttoanon‐methanehydrocarbon(NMHC)emissionlimitof4g/kW‐hr,pursuanttoNSPSSubpartIIII.

5.3.1. Identification of Potential Control Technologies

PotentiallyapplicableemissioncontroltechnologieswereidentifiedforthecontinuouslumberkilnbyresearchingtheU.S.EPAcontroltechnologydatabase,technicalliterature,controlequipmentvendorinformation,statepermittingauthorityfiles,andbyusingprocessknowledgeandengineeringexperience.TheReasonablyAvailableControlTechnology(RACT)/BACT/LowestAchievableEmissionRate(LAER)Clearinghouse(RBLC),adatabasemadeavailabletothepublicthroughtheU.S.EPA’sOfficeofAirQualityPlanningandStandards(OAQPS)TechnologyTransferNetwork(TTN),liststechnologiesandcorrespondingemissionlimitsthathavebeenapprovedbyregulatoryagenciesinpermitactions.Thesetechnologiesaregroupedintocategoriesbyindustryandcanbereferencedindeterminingwhatemissionslevelswereproposedforsimilartypesofemissionunits.

31Aspreviouslymentioned,thisapplicationusesthetwoterms“VOC”and“TotalVOC”interchangeably.Inallinstances,thebasis,forthepurposeofthisPSDapplicationandBACTAnalysis,isasterpenes(accountingformethanolandformaldehydeasappropriate).

3240CFR63.2230and63.2252,

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 5-5

InterforperformedsearchesoftheRBLCdatabaseinJuly2018toidentifytheemissioncontroltechnologiesandemissionlimitsthatwereimposedbypermittingauthoritiesasBACTwithinthepasttenyearsforemissionsourcescomparabletotheproposedfacility.Thefollowingcategorywassearched:

WoodLumberKilns(RBLCCode30.800)33Asnotedpreviously,nootherunitsaresubjecttoBACTreview.Therefore,noadditionalRBLCsearchesorothertechnicalreviewswereperformed.AcopyoftheRBLCresultsareincludedinAppendixE.

5.3.2. Economic Feasibility Calculation Process

Economicanalysesareperformedtocomparetotalcosts(capitalandannual)pertonofpollutantremovedforvariouspotentialcontroltechnologiesthathavebeendeemedtechnicallyfeasible.Capitalcostsincludetheinitialcostofthecomponentsintrinsictothecompletecontrolsystem.Annualoperatingcostsincludethefinancialrequirementstooperatethecontrolsystemonanannualbasisincludingoverhead,maintenance,outages,rawmaterials,andutilities.Thecapitalcostestimatingtechniqueusedisbasedonafactoredmethodofdeterminingdirectandindirectinstallationcosts.Thatis,installationcostsareexpressedasafunctionofknownequipmentcosts.ThismethodisconsistentwiththelatestU.S.EPAOAQPSguidancemanualonestimatingcontroltechnologycosts.34TotalPurchasedEquipmentCostrepresentsthedeliveredcostofthecontrolequipment,auxiliaryequipment,andinstrumentation.Auxiliaryequipmentconsistsofallthestructural,mechanical,andelectricalcomponentsrequiredfortheefficientoperationofthedevice.Auxiliaryequipmentcostsareestimatedasastraightpercentageoftheequipmentcost.Directinstallationcostsconsistofthedirectexpendituresformaterialsandlaborforsitepreparation,foundations,structuralsteel,erection,piping,electrical,paintingandfacilities.Indirectinstallationcostsincludeengineeringandsupervisionofcontractors,constructionandfieldexpenses,constructionfees,andcontingencies.Otherindirectcostsincludeequipmentstartup,performancetesting,workingcapital,andinterestduringconstruction.Annualcostsarecomprisedofdirectandindirectoperatingcosts.Directannualcostsincludelabor,maintenance,replacementparts,rawmaterials,utilities,andwastedisposal.Indirectoperatingcostsincludeplantoverhead,taxes,insurance,generaladministration,andcapitalcharges.Replacementpartcostswereincludedwhereapplicable,whilerawmaterialcostswereestimatedbasedupontheunitcostandannualconsumption.Withtheexceptionofoverhead,indirectoperatingcostswerecalculatedasapercentageofthetotalcapitalcosts.Theindirectcapitalcostswerebasedonthecapitalrecoveryfactor(CRF)definedas:

1

1 1

whereiistheannualinterestrateandnistheequipmentlifeinyears.Theequipmentlifeisbasedonthenormallifeofthecontrolequipmentandvariesonanequipmenttypebasis.Thesameinterestappliestoallcontrol

33AdetailedRBLCsearchwasnotdonefortheemergencyfirepumpengine,asthatsourceisanemergencysourcewithintermittentoperation,anditisassumedthatcompliancewiththepertinentregulatoryrequirements(e.g.NSPSIIII)willsatisfyBACTforthatsource.

34U.S.EPA,OAQPSControlCostManual,6thedition,EPA452/B‐02‐001,July2002.http://www.epa.gov/ttn/catc/dir1/c_allchs.pdf

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 5-6

equipmentcostcalculations.Forthisanalysis,aninterestrateof7%wasusedbasedoninformationprovidedinthemostrecentOAQPSControlCostManual.35NotethatalleconomiccalculationsarebasedonJune2018dollars.DetailedcostcalculationsforeconomicanalysesprovidedwithinthisBACTanalysisarepresentedinAppendixD.

5.4. LUMBER DRYING KILN – VOC BACT

5.4.1. Identification of Potential Control Techniques (Step 1)

CandidatecontroloptionsidentifiedfromtheRBLCsearchandtheliteraturereviewincludethoseclassifiedaspollutionreductiontechniques.VOCreductionoptionsinclude:

Adsorption Biofiltration Condensation ThermalOxidation WetScrubbing ProperMaintenanceandOperatingPractices

Thesecontroltechnologiesarebrieflydescribedinthefollowingsections.

5.4.1.1. Adsorption

Regenerativeadsorptionsystemsaretypicallyabatchoperationinvolvingtwoormorefixedadsorptionbeds.Oneormoreofthebedsoperatesinadsorptionmodewhiletheothersoperateinregenerationmode.Severaladsorbentmaterialswithsubstantialsurfaceareaperunitvolumecanbeusedinadsorbersincludingactivatedcarbon,organicresinpolymers,andinorganicmaterialssuchaszeolite.AninduceddraftfanistypicallyusedtoforcetheVOC‐ladengasthroughtheadsorptionbedwheretheVOCmoleculesarephysicallyboundtotheporespaceintheadsorbentbyVanderWaalsnuclearattractionforces.Therearemanytypesofcarbon,polymer,andzeoliteadsorbentsavailablewithdifferentaffinitiesforadsorbingvariousVOC.AkeyselectioncriterionfordeterminingtheappropriateadsorbentistherangeofporesizesrelativetothelargestmolecularsizeoftheVOCtobeadsorbed.ThebatchnatureoftheadsorptionprocessconcludeswhentheadsorbentbedbecomessaturatedwithVOCandmustberegenerated.Thegas‐solidinterfacewithinthebedatwhichadsorptionisoccurringisreferredtoasthemasstransferzone(MTZ),andthelocationofthisMTZwithinthebeddeterminesitslevelofbedsaturationandthetimeatwhichitmustberegenerated.WhentheMTZnearstheendofthebed,theVOCconcentrationoftheexhaustgaswillincreaseproducingaphenomenonreferredtoas“breakthrough.”Afterbreakthroughhasoccurredinanadsorbentbed,itmustberegeneratedusingathermalswingorvacuumprocess.ThermalswingregenerationusessteamtoraisethetemperatureoftheloadedadsorbentbedtotheboilingpointoftheVOCatwhichpointtheVOCisdesorbedandisdischargedfromthebedwiththesteam.TheVOC‐ladensteamisthenroutedtoacondensertoproducealiquidwater‐VOCmixture.TheVOCisthenseparatedfromthewaterusingadecantationordistillationprocessandcanberecycledbacktotheprocessfromwhichitwasgeneratedorroutedtoanappropriatedisposalsite.

35U.S.EPA,OAQPSControlCostManual,6thedition,Section2,Chapter1,page1‐52.http://www.epa.gov/ttn/catc/dir1/c_allchs.pdf

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 5-7

VacuumregenerationlowersthepressureoftheadsorbentbedbelowthevaporpressureoftheadsorbedVOCattheambienttemperatureofthebed.Atthisreducedpressure,theVOCboilsoffoftheadsorbentandcanbecollectedinacondenserorroutedtoanoxidizer.Essentially,adsorberscaptureVOCfromrelativelydiluteconcentrationstreamsandreleasetheseVOCintoahigherconcentrationstreamthatcanbereadilycontrolledusinganotherVOCdestructionorrecoverytechnology.Oncetheregenerationcycleiscomplete,thefreshadsorbentbedisreadytobegincapturingadditionalVOCinanotheradsorptioncycle.36ThetypicalVOCinletconcentrationrequiredforeffectiveadsorptionfallsintherangeof400to2,000ppmv,andadsorbersandtheirassociatedfollow‐upcontroldevices(i.e.,condenserordecanter)aretypicallycapableofachievingVOCcontrolefficienciesgreaterthan95percent.37

5.4.1.2. Biofiltration

Inbiofiltration,off‐gasescontainingbiodegradableorganiccompoundsarevented,undercontrolledtemperatureandhumidity,throughabiologicallyactivematerial.Theprocessusesabiofilmcontainingapopulationofmicroorganismsimmobilizedonaporoussubstratesuchaspeat,soil,sand,wood,compost,ornumeroussyntheticmedia.Asanairstreampassesthroughthebiofilter,thecontaminantsintheairstreampartitionfromthegaseousphasetotheliquidphaseofthebiofilm.Oncecontaminantspassintotheliquidphase,theybecomeavailableforthecomplexoxidativeprocessbythemicroorganismsinhabitingthebiofilm.

5.4.1.3. Condensation

CondensersoperatebyloweringthetemperatureoftheexhaustgasstreamscontainingcondensableVOCtoatemperatureatwhichthetargetVOC’svaporpressureislowerthanitsenteringpartialpressure.Thisconditioniscommonlyreferredtoasthesaturationpoint.BeforetheVOCcancondense,anysensibleheatpresentintheexhaustgasabovethesaturationpointmustberemoved.CoolingtheexhauststreamtoatemperaturebelowthesaturationpointremovesthelatentheatfromtheexhaustandallowstheVOCtocondenseonthesurfaceofthecondensertubesforcollectionandrecycletotheprocessordisposaltoanappropriatelocation.Thetubeslocatedwithinthecondensercontainre‐circulatingcoolingliquidthatprovidesaheatsinkforrejectingbothsensibleandlatentheatfromthehotexhaustgasstream.Availablecoolingfluids(dependingonthenecessaryoutlettemperatureoftheexhauststreamtoachievehighlevelsofrecoveryforthecondensableVOC)includechilledwater,brine,orrefrigerants.Oncethecoolingliquidispassedthroughthecondenser,itischilledtotherequiredcondenserinlettemperatureandrecycledbacktothecoolingliquidinletofthecondenser.38 TheVOCefficiencyachievedbyacondenser,asasoleadd‐oncontroldevice,isafunctionof:1)theheatcapacityandtemperatureoftheinletexhauststream,2)theheattransfercharacteristicsofthecondenser(includingtheheattransferareaandtheheattransfercoefficient),and3)theoutlettemperatureoftheexhaustgasexitingthecondenser.CondensersaremosteffectiveinsinglecomponentsystemsinvolvingemissionstreamswithahighpercentageofacondensableVOC,becauselessheatmustberemovedfromtheexhaustgastoreducethesensibleheatofnon‐condensablegasesandtherequiredcondensertemperaturetoachievehighlevelsofrecovery.UnlikeotherVOCcontroldevicesforwhichquantifyingcontrolefficiencycanrequireemissionstesting,onlytheoutletexhaustgastemperatureisrequiredtoestimatetheVOCcontrolefficiencyofacondenserifthetemperature,VOCconcentration,andflowrateofthenon‐condensablesintheinletexhauststreamareall 36U.S.EPA,CleanAirTechnologyCenter,TechnicalBulletinChoosinganAdsorptionSystemforVOC:Carbon,Zeolite,orPolymer?,EPA456/F‐99‐004,May1999.

37Ibid.

38U.S.EPA,OfficeofAirQualityPlanningandStandards,ControlofVolatileOrganiccompoundEmissionsfromBatchProcesses–AlternativeControlTechniqueInformationDocument,EPA‐450/R‐94‐020,February1994.

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 5-8

known.SincethecontrolefficiencyofacondenserisdynamicbasedontheoutlettemperatureandinletconcentrationofVOCintheexhauststream,condensersexhibitawiderangeofVOCcontrolefficiencyfromaslowas50percenttoashighas99percent.39,40

5.4.1.4. Thermal Oxidation

AthermaloxidizersuppliessufficientcombustionairandsupplementalfuelatasuitabletemperaturetoallowforoxidationofVOCandothercombustiblecompoundspresentintheexhauststreamwithinthecombustionchamber.Oxidizersarecategorizedbyeitherathermalorcatalyticdesignandcanbefurthersubdividedintounitswithandwithoutexhaustgasheatrecovery.Straightthermaloxidizerswithoutheatrecoveryarereservedforapplicationswheretheheatingvalueoftheexhauststreamsroutedtotheoxidizerishighenoughthatlargeamountsofsupplementalfuelcombustionorhighlevelsofheatrecoveryarenotnecessarytobringtheexhaustgasestooxidationreactiontemperatures.InordertoprovideVOCcontrolinapracticalandefficientmanner,straightthermaloxidizersrequireaVOCinletconcentrationofgreaterthan1,500ppmv,becauseatthisconcentration,theheatofcombustionproducedfromoxidizingVOCpresentintheexhaustgasissufficienttosustainadequateoperatingtemperatureswithouttheadditionoflargequantitiesofexpensiveauxiliaryfuel.41Oxidizerswithheatrecoveryareeitherconsideredrecuperativeorregenerativedependingonthedesignoftheincomingprocessgastoexhaustgasheatexchangesystem.Recuperativeoxidizers(labeledhereinasaTO)useplate‐to‐plateorshell‐and‐tubegasheatexchangerstorecoverupto70percentofthesensibleheatpresentinthehotexhausttotransferittotheincomingprocessgas.U.S.EPAexpectsthataTOcanachieveadestruction/removalefficiency(DRE)ofgreaterthan98percentdependingonthesystemrequirementsoftheaircontaminantstream.42Aregenerativethermaloxidizer(RTO)usesahigh‐densitypackedheattransfermedia,typicallyceramicrandomsaddlepackingorhoneycombmonolithstructures,topreheatincomingwastegasstreamsandtoachieve85to95percentheatrecovery.TheRTOconsistsofatleasttwomodulesthatarecycledbetweeninletandoutletservicetomaintainappropriateoperatingtemperaturesandtoconserveasmuchthermalenergyaspossible.ThehighlevelofheatintegrationofferedbyRTOsisparticularlysuitedforhighflowrateandlowVOCconcentrationwastegasstreamsthatdonotvaryincompositionorflowrateovertime.Whennecessary,thefeedgasstreaminanRTOcanalsobefurtherheatedtotheoxidizer’soperatingtemperatures(1,400to2,000°F)throughsupplementalfuelcombustion.RTOshavebeenusedeffectivelyinapplicationswheretheinletVOCconcentrationisaslowas100ppmv,and,therefore,theyarethepreferredoxidizerdesignforlowVOCconcentrationexhauststreams.43U.S.EPAexpectsthatanRTOcanachieveadestruction/removalefficiencyofgreaterthan95percentdependingonthesystem’srequirementsandthecharacteristicsofthecontaminatedstream.44Thermaloxidationsystemsdesignedtopassthegasstreamoveracatalystbed(usuallyanoblemetalsuchaspalladiumorplatinum),wherecombustiblecompoundscanbeoxidizedatafasterrateandatalowertemperaturethanispossiblewithaTOorRTO,arecalledcatalyticoxidationsystems(CatOx).Theprocess

39Ibid.

40U.S.EPA,CleanAirTechnologyCenter,TechnicalBulletinRefrigeratedCondensersforControlofOrganicAirEmissions,EPA456/R‐01‐004,December2001.

41U.S.EPA,AirPollutionControlTechnologyFactSheet–RecuperativeIncinerator.EPA‐452/F‐03‐020.

42U.S.EPA,AirPollutionControlTechnologyFactSheet–RecuperativeIncinerator.EPA‐452/F‐03‐020.

43U.S.EPA,AirPollutionControlTechnologyFactSheet–RegenerativeIncinerator.EPA‐452/F‐03‐021.

44Ibid.

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 5-9

requirestemperaturesof600to1,000°FtoachievehighdestructionefficienciesforVOC.45Belowthisrange,thereactionratedropssharplyandeffectiveoxidationofVOCisnolongerfeasible.

5.4.1.5. Wet Scrubbing

Wetscrubbingofgasorvaporpollutantsinagasstream,liketheexhaustthatwillexitthecontinuouskiln,isapotentialmethodforreducingVOCemissions.Wetscrubbingistypicallyconductedusingapackedcolumnwherepollutantsareabsorbedbyacounter‐currentflowofscrubbingliquid.WetscrubbingalsorequiresthattheVOCsthatareintheexhaustgasstreamarehighlysolubleinwater.

5.4.1.6. Proper Maintenance and Operating Practices

VOCemissionscanbereducedthroughpropermaintenanceandoperatingpracticesoftheproposedlumberdryingkiln.Themanufacturer’srecommendationsshouldbeusedwhendeterminingtheappropriateoperatingspecificationsanddevelopingascheduleforroutinemaintenanceofthekiln.

5.4.2. Elimination of Technically Infeasible Control Options (Step 2)

Aftertheidentificationofcontroloptions,thesecondstepintheBACTassessmentistoeliminateanytechnicallyinfeasibleoptions.Acontroloptioniseliminatedfromconsiderationifthereareprocess‐specificconditionsthatwouldprohibittheimplementationofthecontrolorifthehighestcontrolefficiencyoftheoptionwouldresultinanemissionlevelthatishigherthananyapplicableregulatorylimits.ThefollowingsectionsevaluatethefeasibilityoftheabovementionedcontroltechnologiesforreducingVOCemissionsfromtheproposedcontinuouskiln.Notethat,basedonareviewofbothbatchandcontinuouslumberdryingkilnsintheU.S.EPA’sRBLCdatabase,acontroldevicehasneverbeenappliedtoalumberdryingkiln.

5.4.2.1. Adsorption

Thekilnexhaustcontainsthewatervaporthathasevaporatedfromthelumberasitisdriedandwillhavearelativehumidityover100%.Athighmoisturecontents,thewatermoleculesandhydrocarbonsintheexhauststreamwillcompetewitheachotherforactiveadsorptionsite,reducingtheefficiencyoftheadsorptionsystem.Thiscontroldeviceis,therefore,deemedtechnicallyinfeasible.

5.4.2.2. Biofiltration

Themicroorganismsusedinbiofiltrationcannotsurviveattemperaturesexceeding105°F;however,thetemperatureoftheexhauststreamfromthekilnwillbeapproximately120°F.Furthermore,theprimaryconstituentoftheVOCintheexhauststreamisterpenes,whicharehighlyviscousandwouldcausethebiofiltertoeasilyfoul.Becauseofthenatureofthelong‐chainedhydrocarbonsintheexhauststream,abiofilterwithareasonablefootprint/retentiontime,willhaveareducedcontrolefficiencyrelativetoaunittreatingstreamswithlargeconcentrationsofmethanolorformaldehyde.Themicroorganismsrequireamuchlongerretentiontime/sizeofaunitinordertoprovideanincreasedefficiency.Forexample,engineeringfirmshavepreviouslynotedthattoincreasethecontrolefficiencyanadditional5%attheseremovallevelswouldessentiallyrequireabiofiltertwiceaslarge.Thiscontroldeviceisthereforedeemedtechnicallyinfeasible.

5.4.2.3. Condensation

CondensationrequiresthattheexhauststreambecooledtoalowenoughtemperatureforthevaporpressuretobelowerthantheVOCconcentration.TheprimaryconstituentoftheVOCintheexhauststreamfromthelumber

45U.S.EPA,AirPollutionControlTechnologyFactSheet–CatalyticIncinerator.EPA‐452/F‐03‐018.

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 5-10

kilnisterpenes,whichwouldrequirethetemperatureoftheexhauststreamtobeloweredtowellbelow0°Finordertohavealowenoughvaporpressuretousecondensation.Temperaturesthislowwouldcausethewatervaporinthestreamtofreeze,andtheicewouldclogtheunit.Assuch,condensationisnotatechnicallyfeasiblecontroltechnology.

5.4.2.4. Thermal Oxidation

ThehighmoisturecontentandlowexittemperatureoftheexhauststreamwouldlikelymakeanRTOtechnicallyinfeasible.WhileregenerativecatalyticoxidizerscanoperateatlowertemperaturesthantheRTO,theexittemperatureoftheexhauststreamfromthekilnisstilltoolowforthisoptiontobefeasible.Furthermore,theparticulatematterandothercontaminantsintheexhauststreamwouldcausealossofcatalyticactivity.Also,thelowtemperatureoftheexhauststreamprecludesthesystemfromusingaCatOxsystemforVOCcontrol.Basedonthereasonsstatedaboveandthefactthatwerenolumberdryingkiln,batchorcontinuous,intheRBLCdatabaseortheairpermitfilereviewthatutilizedthermaloxidation,Interformayeliminatethermaloxidationfromconsiderationbasedontechnicalinfeasibility.However,Interforis,forconservatism,furtherconsideringanRTOinthefuturestepsfortheBACTdeterminationtodeterminewhattheeconomicandenvironmentalimpactfromtheuseofanRTOwouldbeinthesituationthatitistechnicallyfeasiblewiththistypeofunit(apointwhichInterfordoesnotconcede).

5.4.2.5. Wet Scrubbing

WhilesomeVOCsthatwillbepresentintheexhauststreamarehighlysolubleinwater,otherVOCs,mostnotablyα‐pinene,areonlyveryslightlysolubleinwaterduetothelowerHenry’sLawconstantasdescribedinPerry’sChemicalEngineer’sHandbook.LowerHenry’sLawconstantVOCswouldrequiremuchlongerresidencetimewithinascrubberpackedcolumnandwouldeliminatethisasatechnicallyviablesolutionfortheconstantstreamthatwouldneedtobehandledbyacontinuouskiln.

5.4.2.6. Proper Maintenance and Operating Practices

PropermaintenanceandoperatingpracticesofthekilnisatechnicallyfeasibleoptionforminimizingtheVOCemissionsfromthekilnandwillbeconsideredfurtherinthefuturestepsforBACTdetermination.

5.4.3. Rank of Remaining Control Technologies (Step 3)

Thethirdofthefivestepsinthetop‐downBACTassessmentprocedureistoranktechnicallyfeasiblecontroltechnologiesbycontroleffectiveness.TheremainingcontroltechnologiesarepresentedinTable5‐1.AsdiscussedinStep2,InterfordoesnotconcedethattheuseofanRTOonalumberdryingkilnistechnicallyfeasible;however,thiscontroloptionisbeingevaluatedinthisandthefuturestepsoftheBACTdeterminationforconservatism.

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 5-11

Table5‐1.RemainingVOCControlTechnologies

5.4.4. Evaluation of Most Stringent Controls (Step 4)

Thefourthofthefivestepsinthetop‐downBACTassessmentprocedureistoevaluatethemosteffectivecontrolanddocumenttheresults.Thishasbeenperformedfortheremainingcontroltechnologiesonthebasisofeconomic,energy,andenvironmentalconsiderations,andisdescribedherein.

5.4.4.1. Regenerative Thermal Oxidation

EveniftheuseofanRTOwastechnicallyfeasibleonalumberdryingkiln,thecostofusinganRTOexceedsthebenefitoftheVOCreductionitoffers.ThecurrentcostofcontrollingVOCwithanRTOisestimatedatapproximately$12,909pertonofVOCremoved.ThishighcostforVOCcontrolislargelyduetothehighmoisturecontentofthekilnexhauststreamandlowexhausttemperature,asheatingwatervaporintheexhauststreamtoRTOoperatingtemperaturessignificantlyincreasesthenaturalgasheatingrequirement.Therewouldalsobeassociatedenergyandenvironmentalimpactsresultantfromuseofthenaturalgas,includingadditionalpollutantemissionssuchasNOXfromnaturalgasfromcombustion.

5.4.4.2. Proper Maintenance and Operating Practices

Theonlyremainingtechnologyispropermaintenanceandoperatingpracticesofthekiln,alogicaloptionsinceaproperlymaintainedandoperatedkilncaneffectivelyminimizeVOCformation.ThiscontroloptionisconsideredBACTforVOCforthecontinuouskiln.

5.4.5. Selection of BACT (Step 5)

Basedonsteps1through4oftheBACTanalysis,Interforhasdeterminedthatpropermaintenanceandgoodoperatingpracticesaretheonlycontrolstechnicallyandeconomicallyfeasiblefortheproposedcontinuouslumberdryingkiln.Allotherpotentialcontroltechnologieswereeliminatedinearlierstepsoftheprocess.InordertocomplywithBACT,Interforwilldevelopanoperatingandmaintenanceplanforthenewcontinuouskiln.AppendixEcontainstheRBLCsearchresultswithlistedemissionfactorsinlbVOCperMBF.Ofthefactorslisted,thereislimiteddataandreferencesavailableonhowtheVOCfactorwasderivedandtheappropriatebasisofthefactor.Additionally,manyoftheemissionfactorslistedareforbatchkilns,ascontinuouskilnsarestillanemergingtechnology.

5.5. EMERGENCY FIRE-WATER PUMP - VOC BACT

VOCfromtheemergencyfire‐waterpumpisgeneratedasaresultofdieselcombustion.CarboninthefuelthatisnotoxidizedcompletelyandresultsinVOCformation.

Rank ControlTechnologyPotentialControlEfficiency(%)

1 RTO 98%2 ProperMaintenanceandOperatingPractices BaseCase

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 5-12

5.5.1. Identification of Potential Control Techniques (Step 1)

VOCreductionoptionsinclude:

RegenerativeThermalOxidizer(RTO) OxidationCatalyst Goodcombustiontechniques

Thesecontroltechnologiesarebrieflydescribedinthefollowingsections.

5.5.1.1. Regenerative Thermal Oxidizer (RTO)

AnRTOistypicallyusedforvolatileorganiccompound(VOC)controlbyoxidizingtheVOCtoCO2.Similarly,anRTOcanalsobeusedtooxidizeCOtoCO2withadestructionefficiencyofaround98%.46TheRTOsystemusesabedofceramicmaterialtoabsorbandretainheatfromthecombustionexhaustgasandusesthisheattopreheattheincomingfluegasstream.

5.5.1.2. Oxidation Catalyst

VOCemissionsresultingfromfuelcombustioncanbedecreasedviaanoxidationcatalystcontrolsystem.Thereactionispromotedbyseveralnoblemetal‐enrichedcatalystsathightemperatures.Underoptimumoperatingtemperatures,thistechnologycangenerallyachieveapproximately95%reductionefficiencyforVOCemissions.47

Oxidationefficiencyalsodependsonexhaustflowrateandcomposition.Residencetimerequiredforoxidationtotakeplaceattheactivesitesofthecatalystmaynotbeachievedifexhaustflowratesexceeddesignspecifications.Also,sulfurandothercompoundsmayfoulthecatalyst,leadingtodecreasedefficiency.

Catalystfoulingoccursslowlyundernormaloperatingconditionsandisacceleratedbyevenmoderatesulfurconcentrationsintheexhaustgas.Thecatalystmaybechemicallywashedtorestoreitseffectiveness,buteventuallyirreversibledegradationoccurs.Thecatalystreplacementtimeframevariesdependingontypeandoperatingconditions.

5.5.1.3. Good combustion techniques

Ensuringthatthetemperature,oxygenavailability,andresidencetimeareadequateforcompletecombustionminimizesorganicformation.Thistechniqueincludescontinuedoperationofthekilnattheappropriateoxygenrangeandtemperature.Inaddition,usingrawmaterialscontainingrelativelylowcarbonandhydrocarbonscanreducetheamountoforganicsformed.

5.5.2. Elimination of Technically Infeasible Control Options (Step 2)

Aftertheidentificationofcontroloptions,thesecondstepintheBACTassessmentistoeliminatetechnicallyinfeasibleoptions.Acontroloptioniseliminatedfromconsiderationifthereareprocess‐specificconditionsthatwouldprohibittheimplementationofthecontrolorifthehighestcontrolefficiencyoftheoptionwouldresultinanemissionlevelthatishigherthananyapplicableregulatorylimits.

46BasedupontheOAQPSManual,Section3.2,Chapter2,page2‐7.47BaseduponEPA'sAirPollutionControlTechnologyFactSheet:http://www.epa.gov/ttn/catc/dir1/fcataly.pdf

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 5-13

Althoughthermalorcatalyticoxidationaretechnicallyfeasible,thesetechnologiesmaynotprovideconsistentVOCcontrolefficienciesandmaybedifficulttooperatewhenusedtoreduceVOCemissionsfromsourcesthatoperateforshortperiodsoftimeandthatexperiencefrequentstarts/stops.Sinceitcantaketimefortheexhauststreamtoreachtherequiredoperatingtemperaturerangeforefficientoxidation,theVOCcontrolefficiencyofthermalorcatalyticoxidationforanengineislowerthanforaunitthatrunsatsteady‐state.Exceptforemergencies,theenginewillnormallyonlybeoperatedforreadinesstesting.

5.5.3. Rank of Remaining Control Technologies (Step 3)

Thethirdofthefivestepsinthetop‐downBACTassessmentprocedureistoranktechnicallyfeasiblecontroltechnologiesbycontroleffectiveness.TheremainingcontroltechnologiesarepresentedinTable5‐2.

Table5‐2.RemainingVOCControlTechnologies

5.5.4. Evaluation of Most Stringent Controls (Step 4)

Thefourthofthefivestepsinthetop‐downBACTassessmentprocedureistoevaluatethemosteffectivecontrolanddocumenttheresults.

Aspreviouslystated,EPAdeterminedinthedevelopmentofNSPSSubpartIIIIthatadd‐oncontrolsareeconomicallyinfeasibleforemergencyICE.BasedonEPA’seconomicanalysis,InterforhasdeterminedthatthetopandonlyremainingavailableandtechnicallyfeasibleCOcontroloption,combustiondesigncontrols,willbeappliedtoachievecompliancewiththeproposedBACTlimit.

5.5.5. Selection of BACT (Step 5)

Asdiscussedabove,InterforproposesacombinedBACTemissionlimitfornon‐methanehydrocarbon(NMHC)fortheengineequaltothatoftheapplicableNSPSSubpartIIIIstandard,or4g/kW‐hr.

TocomplywiththeproposedBACTlimits,Interforwillpurchaseafire‐waterpumpcertifiedbythemanufacturertomeettheseemissionslevels.Operationoftheengineforthepurposesofmaintenancechecksandreadinesstestingwillbelimitedto100hoursperyear.InterforbelievesthattheproposedBACTlimitisconsistentwiththemoststringentlimitsestablishedforcomparableemergencyfirepumpunits.

Rank ControlTechnologyPotentialControlEfficiency(%)

1 RTO 98%2 OxydationCatalyst‐withReheat 95%3 ProperMaintenanceandOperatingPractices BaseCase

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 6-1

6. CLASS I AREA ANALYSIS

Sections160‐169oftheCAA,asamendedbytheCAAAmendmentsof1990,establishadetailedpolicyandregulatoryprogramtoprotectthequalityoftheairinregionsoftheUnitedStatesinwhichtheairiscleanerthanrequiredbytheNAAQStoprotectpublichealthandwelfare.OneofthepurposesofthePSDprogramis“topreserve,protect,andenhancetheairqualityinnationalparks,nationalwildernessareas,nationalmonuments,nationalseashores,andotherareasofspecialnationalorregionalnatural,recreational,scenic,orhistoricvalue.”UnderthePSDprovisions,CongressestablishedalandclassificationschemeforthoseareasofthecountrywiththequalitybetterthantheNAAQS.ClassIallowsverylittledeteriorationofairqualityandincludes:

1. internationalparks;2. nationalwildernessareaswhichexceed5,000acresinsize;3. nationalmemorialparkswhichexceed5,000acresinsize;and4. nationalparkswhichexceedsixthousandacresinsize.

AllotherareasaredesignatedasClassIIareasanddonotrequireevaluation.TheInterforPerryMilllieswithina300kilometerradiusandoutsideofa50kilometerradiusofmultipledifferentClassIareasinthesoutheasternUnitedStates.Therefore,InterforhasperformedaQ/DanalysistodemonstratethatnovisibilityimpactswilloccuratthisClassIarea.ThelistofClassIareasthatarelocatedwithin300kmofthePerryMillareshowninTable6‐1below.

Table6‐1.ClassIAreaswithin300kmofInterforPerryMill

InaQ/Danalysis,thecombinedannualemissionsincreaseintonsperyear(Q)ofSO2,NOX,TotalPM10,andH2SO4isdividedbythedistance,inkilometers,fromthefacilitytotheClassIarea(D).48IfQ/Dislessthan10,thennoAirQualityRelatedValues(AQRV)analysisisrequired.AsshowninTable6‐2,thecombinedannualemissionsincreaseoftheaforementionedpollutantsis29.77tonsperyearasaresultoftheproposedproject.

48AspartofthePSDanalysis,thePerryMillmustevaluatepossiblevisibilityimpactsofClassIareas;however,VOC(thepollutantwiththenetemissionsincreaseexceedingtheSER),isnotalistedpollutantwithknownimpactstotheAQRVsofClassIareas.

ClassIArea ResponsibleFLM

OkefenokeeWildernessArea FishandWildlifeServiceWolfIslandWildernessArea FishandWildlifeServiceSaintMarks FishandWildlifeServiceBradwellBay ForestServiceCohuttaWilderness ForestService

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 6-2

Table6‐2.CombinedAnnualEmissionsIncrease

Table6‐3below,providestheQ/Danalysisforallsiteslocatedwithin300km.AllQ/Dvaluesshownarelessthan10.

Table6‐3.Q/DAnalysis

TheprojectisonlytriggeringPSDforVOCwhichisnotconsideredavisibilityimpairingpollutant.Therefore,thatfactcombinedwiththelowQ/DimpactsindicatesthatClassIareaswillnotbeadverselyimpactedbythisproject.AsrequiredbythemostrecentEPDPSDguidance,InterforisprovidingletterstotheFederalLandManager(FLM)responsibleforeachClassIarealistedaboveconcurrentwiththisapplication.

NOX

DirectParticulate1

SO2

SumofEmissions(tpy)

1.DirectparticulateincludesallfilterableandcondensablePM10.

2.FLAG2010Approach:Q=Maximum24hourbasis*8,760/2000.

PollutantFacility‐WideMaximum24‐hrEmissionsIncrease

(lb/hr)

3.95

1.83

1.00

FLAG2010ApproachAnnualEmissions2

(tpy)

17.30

8.01

4.38

29.69

Responsible

MinimumDistancefromSite

SumofAnnualizedVAPEmissions‐Q

Flag2010Approach

ClassIArea FLM (km) (tpy) Q/D

OkefenokeeFish&Wildlife FWS 204 0.15WolfIslandFish&Wildlife FWS 257 0.12SaintMarksFish&Wildlife FWS 258 0.12BradwellBayWilderness FS 258 0.12CohuttaWilderness FS 276 0.11

29.69

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 7-1

7. ADDITIONAL IMPACT ANALYSIS

7.1. AIR QUALITY ANALYSIS

AnambientairimpactsanalysiswillnotbeperformedfortheprojectbecauseVOCarenotmodeledforNAAQSorPSDIncrementcompliancepurposes.Additionally,becausetheprojectisexclusivelyrelatedtoVOC,aClassIIvisibilityanalysisisalsonotrequired.

7.2. MOBILE SOURCES

AsshownindetailinAppendixB,Interforprojectsthattrucktrafficonunpavedroadswillincreasebyapproximately5,741vehiclemilestraveled(VMT)peryear.TheincreaseinTotalPM/PM10/PM2.5emissionshasbeenaccountedforintheapplicationandsupportingcalculations.

7.3. GROWTH IMPACTS

Agrowthanalysisisintendedtoquantifytheamountofnewgrowththatislikelytooccurinsupportofthefacilityandtoestimateemissionsresultingfromthatassociatedgrowth.Associatedgrowthincludesresidentialandcommercial/industrialgrowthresultingfromthenewfacility.Residentialgrowthdependsonthenumberofnewemployeesandtheavailabilityofhousinginthearea,whileassociatedcommercialandindustrialgrowthconsistsofnewsourcesprovidingservicestothenewemployeesandthefacility.Interforanticipatesthatfewadditionalpersonnelwillbeemployedtoaidtheoperationofthecontinuouskiln.Therefore,additionalgrowthfromthisprojectisexpectedtobeminimal.

7.4. SOILS AND VEGETATION

Thefollowingdiscussionwillreviewtheproject’spotentialtoimpactitsagriculturalsurroundingsbasedonthefacility’sallowableemissionratesandresultinggroundlevelconcentrationsofVOC.Theeffectsofgaseousairpollutantsonvegetationmaybeclassifiedintothreeratherbroadcategories:acute,chronic,andlong‐term.Acuteeffectsarethosethatresultfromrelativelyshort(lessthan1month)exposurestohighconcentrationsofpollutants.Chroniceffectsoccurwhenorganismsareexposedformonthsorevenyearstocertainthresholdlevelsofpollutants.Long‐termeffectsincludeabnormalchangesinecosystemsandsubtlephysiologicalalterationsinorganisms.Acuteandchroniceffectsarecausedbythegaseouspollutantactingdirectlyontheorganism,whereaslong‐termeffectsmaybeindirectlycausedbysecondaryagentssuchaschangesinsoilpH. VOCareregulatedbytheU.S.EPAasprecursorstotroposphericozone.Elevatedground‐levelozoneconcentrationscandamageplantlifeandreducecropproduction.VOCinterferewiththeabilityofplantstoproduceandstorefood,makingthemmoresusceptibletodisease,insects,otherpollutants,andharshweather.OzoneisformedbytheinteractionofNOX,VOC,andsunlightintheatmosphere.ThePerryMillislocatedinHoustonCounty,whichisdesignatedasattainment,orunclassifiableforNO2andozone.Also,thePerryMillemitshigherquantitiesofVOCthanNOX,andtherefore,ozoneformationisprimarilydependentuponNOXemissionsandproperatmosphericconditions.SinceNOXemissionsareonlyincreasingslightlyasaresultofthisproject,aminimalincreaseinozoneproductionisexpected.ThusInterfordoesnotpredicttherewillbeanysignificantnegativeimpactonsoilorvegetationasaresultofthisproject.

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 7-2

7.5. VISIBILITY IMPAIRMENT

Theprojectisnotexpectedtoproduceanyperceptiblevisibilityimpactsintheimmediatevicinityoftheplant.Giventhelimitationsof20%and40%opacityofemissions,noimmediatevisibilityimpairmentisanticipated.AsthisprojectisnotevaluatingPSDforanycriteriapollutantsassociatedwithvisibilityimpacts,noClassIIvisibilityevaluationisrequired.

7.6. OZONE IMPACT ANALYSIS

Thissectionincludesananalysisofozoneimpactsfromtheproposedproject.TherearenoexistingozonemonitorsinHoustonCounty,wherethePerryMillislocated.TheclosestozonemonitorcanbefoundinBibbCounty.The3‐yearrollingaverageozoneconcentration,whichisusedwhencomparingmonitorresultstodetermineattainmentstatus,isshowninTable7‐1.Pleasenotethatthemostrecentuptodatedataavailable(upto2016)wasincluded.

Table7‐1.OzoneConcentrationatBibbCountyMonitor

OzoneisformedwhenNOXandVOCreactinthepresenceofsunlight.InGeorgia,thisreactionisNOXlimitedduetothepresenceofhighamountsofbiogenicVOC.NOXprimarilyisemittedfrommobilesourcesandindustrialsources.Therefore,ozoneformationisdirectlyimpactedbyNOXemissions,whichisareflectionofpopulationdensity,vehiclemilestravelled(VMT),andindustrialNOXemissions.

Anassessmentofthemonitordatawithandwithouttheprojectwasconducted.Astheprojectisnotexpectedtoalterpopulationdensityorvehiclemilestravelledbyasignificantamount,theonlychangeasaresultoftheprojectwouldbeindustrialNOXemissionsinthecounty.Expectedchangesinpopulationdensity,VMT,andNOXdensityforHoustonCountyasaresultoftheprojectarepresentedinTable7‐2.Inordertoindicatethisgraphically,thisdataisalsoshowninFigure7‐1.

2012‐2014 2013‐2015 2014‐2016

Macon‐Forestry Macon Bibb 44 0.067 0.064 0.066

3‐YearRollingAverage(ppm)1

1.Ozoneconcentrationforeachyear2012through2016wereobtainedfromGeorgiaEPD'sAmbientAirSurveillanceReport,AppendixA,Ozone8‐HourAverage4thMaxvalueforeachrespectiveyear.The3‐yearrollingaveragereportstheaverageofthe3yearsindicated.

DistancetoFacility(km)SiteName City County

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 7-3

Table7‐2.UrbanizationDataforHoustonCounty

Figure7‐1.UrbanizationDataforHoustonCounty

Pertherevisedandupdated40CFRPart51,AppendixW,precursoremissionimpactstoozoneandPM2.5

(secondaryPM2.5)shouldbeconsideredaspartofaPSDpermittinganalysis.TheozoneprecursorsarethepollutantsVOCandNOX.InterforreviewedU.S.EPA’sDecember2,2016memorandumandFebruary23,2017erratamemorandumtitled“GuidanceontheDevelopmentofModeledEmissionRatesforPrecursors(MERPs)asaTierlDemonstrationToolforOzoneandPM2.5underthePSDPermittingProgram”.ThisguidancedetailsaTierIapproach(underAppendixW)toestimatesinglesourceimpactsonsecondaryformationofozoneandPM2.5.TheMERPscanbeusedtodescribetheemissionrateofaprecursorpollutantthatisexpectedtoresultinasignificantchangeinambientconcentrationofthesecondarypollutant.Inotherwords,MERPScanbeusedtodeterminewhetheraprojectemissionsincreasewillresultintotalimpactsabovethesignificantimpactlevels(SILs).

PopulationDensity1 VMT/Day2 NOXDensity3,4

(people/sq.mile)(10,000

miles/day)(tpy/sq.mile)

HoustonCounty(pre‐project) 408.7 367.4 18.36

HoustonCounty(post‐project) 408.7 367.4 18.40

3.NOXdensitycalculatedusingNOXemissionsin"NonattainmentAreaDesignationsforGeorgiaUnderthe2008Revised8‐hourOzoneNationalAmbientAirQualityStandardTechnicalAnalysis"forHoustoncountyareaperthecounty'swebsite.

4.NOXdensityforHoustonpost‐projectcalculatedbysummingpotentialemissionsofNOXfromtheprojecttothe2008Non‐AttainmentData.

Scenario

1.PopulationdensityforHoustonobtainedfrom:https://www.census.gov/quickfacts/fact/table/houstoncountygeorgia,US/PST0452172.VMT/dayvaluesforHoustonobtainedfrom"NonattainmentAreaDesignationsforGeorgiaUnderthe2008Revised8‐hourOzoneNationalAmbientAirQualityStandardTechnicalAnalysis"

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

340.0

350.0

360.0

370.0

380.0

390.0

400.0

410.0

420.0

HoustonCounty(pre‐project) HoustonCounty(post‐project)

NOXDensity(tpy/sq.mile)

PopulationDensity/VMT/Day

County

PopulationDensity(people/sq.mile)VMT/Day(10,000miles/day)NOxDensity(tpy/sq.mile)

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 7-4

Aspartofconsiderationofmodelinganalyses,pertherevisedandupdated40CFRPart51,AppendixW,precursoremissionimpactstoozoneandPM2.5(secondaryPM2.5)shouldbeconsidered.TheozoneprecursorsarethepollutantsVOCandNOX,whereastheprecursoremissionsofinterestforsecondaryPM2.5areNOXandSO2.ThefollowingTable7‐3istakenfromTable2oftheJuly11,2018GuidanceontheUseofEPA’sMERPstoAccountforSecondaryFormationofOzoneandPM2.5inGeorgia.

Table7‐3.DefaultMERPValuesforGeorgiaPSDApplications

7.6.1. Ozone MERPs Assessment

UtilizingtheproposedprojectemissionincreasesofVOC(240.50tpy)andNOX(17.30tpy)fromTable3‐1andtheMERPvalues(156tpyNOX,and3,980tpyVOC)providedinTable7‐3(fromtheJuly11,2018GuidanceontheUseofEPA’sMERPstoAccountforSecondaryFormationofOzoneandPM2.5inGeorgia),demonstratesthatthereshouldbenoconcernsregardingadverseozoneambientimpactsfromthisproposedproject,perthefollowingcalculationasoutlinedintheguidancedocument:(17.30tpyNOXfromproject/156tpyNOX8‐hrdailymaximumO3MERP)+(240.50tpyVOCfromproject/3,980tpyVOC8‐hrdailymaximumO3MERP)=0.111+0.060=0.171*100=17%Sincethereisnodirectcomponentofozonewhichcanbemodeled,asitsformationisdependentontheprecursoremissionsofVOCandNOX,thentheresultsoftheTier1analysisforozone(17%)canbecompareddirectlytothethresholdlevelofconcernof100%.Inotherwords,solongastheanalysisabovedoesnotshowresultsgreaterthan100%,therecanbeapresumptionofnoadverseimpactassociatedwithozone.Therefore,thereshouldbenoadverseimpactassociatedwithprecursoremissionsforozoneaspartofthisproject.

7.6.2. PM2.5 MERPs Assessment

ForPM2.5,sincetheprojectdoesnotexceedthePSDSERsfordirectPM2.5,orSO2orNOX,anevaluationofPM2.5

associatedimpactsisnotrequired.AnynumericevaluationofprojectemissionsincreaseforthesepollutantswouldundoubtedlybelessthantheassociatedMERPssincetheyarelessthanthePSDSERs.Therefore,thereisnopresumedconcernoradverseimpactassociatedwithsecondaryPM2.5onanannualbasis.

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 8-1

8. TOXIC AIR POLLUTANT EMISSIONS IMPACT ASSESSMENT

EPDregulatestheemissionsoftoxicairpollutants(TAPs)throughaprogramapprovedundertheprovisionsofGRAQCRule391‐3‐1‐.02(2)(a)3(ii).ATAPisdefinedasanysubstancethatmayhaveanadverseeffectonpublichealth,excludinganyspecificsubstancethatiscoveredbyaStateorFederalambientairqualitystandard.ProceduresgoverningtheEPD’sreviewoftoxicairpollutantemissionsaspartofairpermitreviewsarecontainedinEPD’sGuidelineforAmbientImpactAssessmentofToxicAirPollutantEmissions(theGuideline).49

TheGuidelinehasestablishedtheAllowableAmbientConcentration(AAC)foreachTAP,whichareincludedinAppendixAoftheGuideline.ThereareseveralTAPsemittedfromthefacility.PerdiscussionwithEPD50,onlyacetaldehyde,formaldehydeandmethanolweremodeledaspartofthisapplicationastheyarethepollutantsofconcernforthesetypeofprocesses.Astheemergencydiesel‐firedfirepumphaslimitedoperation(emergencysituations,andmaintenance/readinesstesting),thisunitwasexcludedfromthetoxicsevaluation.

8.1. MODELING ASSESSMENT

Duetothenumberofstacksandvariablestackparameters,refinedmodelingtechniqueswereselectedforthiscomplianceassessmentandSCREEN3wasnotutilizedforthismodelingassessment.Thefollowingsectiondescribesthemodelingprotocolandsourceparametersusedintherefineddispersionmodelingassessmentforthefacility.ThisassessmentwasperformedinaccordancewiththeGuideline.

Section6oftheGuidelinerequirestheuseoftheIndustrialSourceComplex(ISCST3)dispersionmodelortheAmericanMeteorologicalSociety/EnvironmentalProtectionAgencyRegulatoryModel(AERMOD)todeterminethemaximumgroundlevelconcentration(MGLC)foraTAPundertherefinedmodelingprocedures.ISCST3wasselectedforthisassessment.ISCST3isacomputersolutiontotheGaussianplumedispersionmodelandisusedtodeterminepollutantconcentrationsattheplumecenterlineandatthegroundleveldownwindofthereleasepoints.RefinedmodelingwasconductedinaccordancewiththeISCST3User’sGuides.

8.1.1. Source Parameters

TAPemissionsweremodeledaspointsourcesforthisrefinedassessment.Forpointsources,ISCST3requiresthestackheight(m),insidestackexitdiameter(m),temperature(K),andvolumetricexhaustgasflowrate(acfm)orexitgasvelocity(m/s)tobespecified.Table8‐4providesasummaryofthelocation,baseelevation,andstackparametersusedinthedispersionmodelforthepointsources.Table8‐5providesasummaryoftheemissionratesforthepointsourcesevaluatedinthisassessment.Abriefdiscussionofthedesigncapacityanddescriptionofthereleasepointsforeachsourceisdiscussedinthefollowingsections.

8.1.1.1. New Continuous Kiln

ModeledsourceparametersareconsistentwiththeGuidelineforthecontinuouskilnsource.Thekilnwillberatedatapproximately120MMBF/yr,haveaburnercapacityofapproximately40MMBtu/hr,andhavetwopoweredvents,oneoneachendofthekiln.Thekilnwillalsohavetwoexitopenings,oneoneachendofthekiln.Potentialemissionsfromthenewcontinuouskilnwerediscussedinprevioussections.Forthenewcontinuouskiln,itisassumedthat80%oftheemissionswillbethroughthetwopoweredvents,and20%ofthe

49GuidelineforAmbientImpactAssessmentofToxicAirPollutantEmissions.GeorgiaDepartmentofNaturalResources,EnvironmentalProtectionDivision,AirProtectionBranch,Revised,May2017.50InputsfromMr.MannyPatelonAugust23,2018.BasedoninputfromMannyPatel,onlythesepollutantsweremodeled,andnoevaluationincomparisontotheMERswasconducted.

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 8-2

emissionswillbethroughthetwoexitopeningsattheendsofthekiln.Thetwopoweredventsaremodeledasstacks,andtheemissionsviathekilndoorsaremodeledaspointsourcesconsistentwithdiscussionsonPage10oftheGuideline(May2017).Avelocityof0.001m/sisusedforthekilndoors(openings)consistentwiththeGuideline.Theheightofthekilndoorsis15.5ft.Assuch,thereleaseheightinputtedintothemodelis7.75ftconsistentwiththeGuideline.

8.1.1.2. Existing Batch Kilns

Interforoperatesfive(5)existingbatch,indirectlumberkilnsatthePerryMill.EmissionsofTAPfromthebatchkilnswerebasedupontheEPDRecommendedEmissionFactorsforLumberKilnPermittinginGeorgiadocument.Anemissionfactorof0.0054lb/MBF,0.0149lb/MBF,and0.236lb/MBFwereusedtoestimateemissionsofacetaldehyde,formaldehyde,andmethanol,respectively.Adescriptionofthecapacity,exhaustvents,andTAPemissionratesofthesekilnsisprovidedinTable8‐1.

Table8‐1.BatchKilnInformation

Kiln DryingCapacity(MBF/yr)

NumberofVentsperSide

VentSize(in)

AcetaldehydeEmissionRate(lb/hr)

FormaldehydeEmissionRate

(lb/hr)

MethanolEmissionRate(lb/hr)

DK‐1 56,230 7 12x12 3.47E‐02 9.56E‐02 1.51

DK‐2 13,418 1 24x24 8.27E‐03 2.28E‐02 0.36

DK‐3 7,741 1 24x24 4.77E‐03 1.32E‐02 0.21

DK‐4 46,800 6 12x12 2.88E‐02 7.96E‐02 1.26

DK‐5 46,800 4 12x12 2.88E‐02 7.96E‐02 1.26

Forbatchkilns,theGuidelinespecifiesthatalltheemissionsshouldbemodeledasexitingthroughthedoorsofthekilnandtomodelthereleaseasapointsourceorvolumesource.Thekilndoorsareclosedduringoperationofabatchlumberkilnandemissionsarebelievedtoprimarilyoccurthroughthekilnvents.Reliableexhaustflowdataforeachkilnventwasnotavailable.Assuch,asinglepointsourcehasbeenusedforeachofthebatchkilns.Interforrelieduponaconservativeexhaustvelocityof0.001m/sforeachpointsource.Kilns2and3(DK‐2andDK‐3)havehorizontalvents;therefore,thekilnsaremodeledwithastackheightequivalenttotheactualheightofthekilnvents.Kilns1,4,and5(DK‐1,DK‐4,andDK‐5)haveangledroofventsthatareneithercompletelyhorizontalnorvertical.Becausetheventcoverthatisopenedandclosedduringoperationofthekilnsmayobstructairflow,Interforisconservativelymodelingtheventsasobstructed,verticalvents.Assuch,DK‐1,DK‐4,andDK‐5aremodeledwithastackheightthatisthreeactualstackdiameterslessthantheactualreleaseheightpertheGuideline.

Toensurethatthemodelaccountedforbuoyancy(plumerise),Interforcalculatedanadjustedstackdiameterbasedonthediameterofasinglekilnvent.Anassumed10,000acfmexhaustflowrateisusedtocalculatetheadjustedstackdiameterforDK‐2andDK‐3.PerinputfromEPD,astackexitvelocityof20m/sisusedtoestimatetheadjustedstackdiameterforDK‐1,DK‐4,andDK‐5.AsstatedinSection4.1oftheGuideline,adjustedstackdiameter(m)iscalculatedas31.6timestheoriginalstackdiameter(m)timesthesquarerootofthe

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 8-3

originalstackexitvelocity(m/s).ThecalculationoftheadjustedstackdiametercalculationfortheexistingkilnsisshowninTable8‐2.

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 8-4

Table8‐2.AdjustedStackDiameterCalculationforExistingKilns

EmissionUnitID

EmissionUnit

DescriptionStackID

ObstructedorUnobstructed? Orientation

AdjustedExhaustFlowrate

AdjustedStack

Diameter3

ModeledExhaustVelocity

(m) (ft) (acfm) (ft/sec) (m/s) (m) (m/s)

DK‐11 Kiln1 SDK1 Obstructed Vertical 0.344 1.13 3,937 66 20 48.604 0.001DK‐22 Kiln2 SDK2 Unobstructed Horizontal 0.688 2.26 10,000 42 12.7 77.462 0.001

DK‐32 Kiln3 SDK3 Unobstructed Horizontal 0.688 2.26 10,000 42 12.7 77.462 0.001DK‐41 Kiln4 SDK4 Obstructed Vertical 0.344 1.13 3,937 66 20 48.604 0.001DK‐51 Kiln5 SDK5 Obstructed Vertical 0.344 1.13 3,937 66 20 48.604 0.001

1.ForDK‐1,DK‐4,andDK‐5,adjustedstackvelocitysettomaximumof20m/speremailfromJeng‐HonSu(EPD)toChrisPool(Trinity)on11/6/2018.

AdjustedExhaustFlowrate(acfm)=AdjustedStackVelocity(ft/s)*60(s/min)*[π/4*{StackDiameter(ft)}2]

2.ForDK‐2andDK‐3,adjustedexhaustflowrateassumedtobe10,000acfm.

AdjustedStackVelocity(ft/s)=AdjustedExhaustFlowrate(acfm)/60(s/min)/[π/4*{StackDiameter(ft)}2]

3.AdjusteddiameterbasedonGeorgiaEPDToxicsGuidance(RevisedMay2017).Adjusteddiameter(m)=31.6×stackdiameter(m)×[adjustedstackexitvelocity(m/s)]^0.5

StackDiameter AdjustedStackVelocity

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 8-5

8.1.1.3. Existing Wood-Fired Boilers

Interforoperatesthree(3)wood‐firedboilersatthePerryMill,eachratedatapproximately28MMBtu/hrinheatinputcapacity.EmissionfactorsfromU.S.EPA’sAP‐42Section1.6,WoodResidueCombustioninBoilers,Table1.6‐3wereusedtoestimateemissionsofacetaldehydeandmethanol.Noemissionfactorisavailableformethanol;therefore,emissionsofmethanolareassumedtobezerofromtheboilers.TAPemissionsfromeachboileraresummarizedinTable8‐3.Eachoftheboilersismodeledasapointsourceasemissionsareexhaustedthroughastack.

Table8‐3.BoilerEmissionRates

Pollutant AP‐42EmissionFactor(lb/MMBtu)

EmissionRate(lb/hr)

Acetaldehyde 8.3E‐04 2.32E‐02Formaldehyde 4.4E‐03 0.12Methanol ‐ ‐

Aspreviouslystated,Table8‐4providesasummaryofthelocation,baseelevation,andstackparametersusedinthedispersionmodelforthepointsources.Table8‐5providesasummaryoftheemissionratesforthepointsourcesevaluatedinthisassessment.

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 8-6

Table8‐4.PointSourceParameters

EmissionUnitID

EmissionUnit

DescriptionStackID

ObstructedorUnobstructed? Orientation

EastingZone17S

NorthingZone17S

ElevationExhaustFlowrate

(m) (m) (m) (m) (ft) (m) (ft) (F) (K) (acfm) (m/s) (ft/sec)

DK‐1 Kiln1 SDK1 Obstructed Vertical 243,183 3,593,672 97.34 6.741 22.1 48.604 ‐‐ 240 388.71 ‐‐ 0.001 ‐‐DK‐2 Kiln2 SDK2 Unobstructed Horizontal 243,176 3,593,688 97.44 9.144 30 77.462 ‐‐ 240 388.71 ‐‐ 0.001 ‐‐DK‐3 Kiln3 SDK3 Unobstructed Horizontal 243,173 3,593,695 97.45 9.144 30 77.462 ‐‐ 240 388.71 ‐‐ 0.001 ‐‐DK‐4 Kiln4 SDK4 Obstructed Vertical 243,165 3,593,711 97.48 7.960 26.1 48.604 ‐‐ 240 388.71 ‐‐ 0.001 ‐‐DK‐5 Kiln5 SDK5 Obstructed Vertical 243,160 3,593,728 97.55 6.741 22.1 48.604 ‐‐ 240 388.71 ‐‐ 0.001 ‐‐

SDK6A Unobstructed Vertical 243,142 3,593,522 94.63 10.973 36 0.813 2.67 120 322.04 20,000 18.186 59.67SDK6B Unobstructed Vertical 243,114 3,593,511 94.24 10.973 36 0.813 2.67 120 322.04 20,000 18.186 59.67SDK6C Unobstructed Horizontal 243,154 3,593,527 94.83 2.362 7.75 7.036 23.08 120 322.04 ‐‐ 0.001 ‐‐SDK6D Unobstructed Horizontal 243,103 3,593,506 93.99 2.362 7.75 7.036 23.08 120 322.04 ‐‐ 0.001 ‐‐

B‐1 Boiler1 SB01 Unobstructed Vertical 243,197 3,593,619 96.66 10.058 33 0.762 2.5 276 408.71 12,181 12.603 41.35B‐2 Boiler2 SB02 Unobstructed Vertical 243,199 3,593,613 96.60 10.058 33 0.762 2.5 276 408.71 12,181 12.603 41.35B‐3 Boiler3 SB03 Unobstructed Vertical 243,203 3,593,607 96.54 10.058 33 0.762 2.5 276 408.71 12,181 12.603 41.35

1.Forkilnswithobstructed,verticalstacks,stackheightadjusteddownwardby3stackdiametersperGeorgiaEPDToxicsGuidance(RevisedMay2017)

DK‐6ContinuousKiln6

ExhaustVelocityStackHeight1 StackDiameterExitGas

Temperature

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 8-7

Table8‐5.PointSourceEmissionRates

Acetaldehyde Formaldehyde Methanol Acetaldehyde Formaldehyde Methanol

EmissionUnitID

EmissionUnit

DescriptionStackID 75‐07‐0 50‐00‐0 67‐56‐1 75‐07‐0 50‐00‐0 67‐56‐1

DK‐1 Kiln1 SDK1 3.47E‐02 9.56E‐02 1.51 4.37E‐03 1.21E‐02 0.19DK‐2 Kiln2 SDK2 8.27E‐03 2.28E‐02 0.36 1.04E‐03 2.88E‐03 4.55E‐02DK‐3 Kiln3 SDK3 4.77E‐03 1.32E‐02 0.21 6.01E‐04 1.66E‐03 2.63E‐02DK‐4 Kiln4 SDK4 2.88E‐02 7.96E‐02 1.26 3.63E‐03 1.00E‐02 0.16DK‐5 Kiln5 SDK5 2.88E‐02 7.96E‐02 1.26 3.63E‐03 1.00E‐02 0.16

SDK6A 0.25 0.21 0.88 3.11E‐02 2.66E‐02 0.11SDK6B 0.25 0.21 0.88 3.11E‐02 2.66E‐02 0.11SDK6C 6.16E‐02 5.29E‐02 0.22 7.77E‐03 6.66E‐03 2.78E‐02SDK6D 6.16E‐02 5.29E‐02 0.22 7.77E‐03 6.66E‐03 2.78E‐02

B‐1 Boiler1 SB01 2.32E‐02 0.12 ‐‐ 2.93E‐03 1.55E‐02 ‐‐B‐2 Boiler2 SB02 2.32E‐02 0.12 ‐‐ 2.93E‐03 1.55E‐02 ‐‐B‐3 Boiler3 SB03 2.32E‐02 0.12 ‐‐ 2.93E‐03 1.55E‐02 ‐‐

1.PerGAToxicModelingGuidance(RevisedMay2017),forcontinuouskilnswithpoweredvents,thetotalairtoxicemissionsshouldbesplitassuming80percentexitthroughpoweredvents(SDK6AandSDK6B)and20percentexitthroughdoors(SDK6CandSDK6D).

DK‐6ContinuousKiln61

lb/hr g/s

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 8-8

8.1.2. Land Use Classification

Classificationoflanduseintheimmediateareasurroundingafacilityisimportantindeterminingtheappropriatedispersioncoefficientstoselectforaparticularmodelingapplication.Theselectionofeitherruralorurbandispersioncoefficientsforaspecificapplicationshouldfollowoneoftwoprocedures.Theseincludealanduseclassificationprocedureorapopulation‐basedproceduretodeterminewhethertheareaisprimarilyurbanorrural.Ofthetwomethods,thelanduseprocedureisconsideredmoredefinitive.AsspecifiedinSection7.2.1.1.b.ioftheGuidelineonAirQualityModels,thelandusewithinthetotalareacircumscribedbya3kilometer(km)radiuscircle(28.3km2)aboutthefacilitywasclassifiedusingthemeteorologicallandusetypingschemeproposedbyAuer.IflandusetypesI1(HeavyIndustrial),I2(LightIndustrial),C1(Commercial),R2(Residential;SmallLotSingleFamily&Duplex),andR3(Residential;Multi‐Family)accountfor50percentormoreofthecircumscribedarea,urbandispersioncoefficientsshouldbeused;otherwise,ruraldispersioncoefficientsareappropriate.

Figure8‐1.LandUseClassificationforDispersionCoefficients(3kmradius)

Figure8‐1presentsanaerialimageofthe28.3km2areasurroundingthefacilityincomparisontothe1992UnitedStatesGeologicalSurvey(USGS)NationalLandCoverDataset(NLCD92).The1992UnitedStatesGeologicalSurvey(USGS)NationalLandCoverDataset(NLCD92)setisconvenienttouseforcharacterizinglandusesurroundingaparticularfacilitysinceitcanbeprocessedinAERSURFACE.TheAERSURFACEtoolwasdevelopedtoaidusersinobtainingsurfacecharacteristicvaluesforinputintoAERMETforAERMODmeteorologicaldataprocessing.AERSURFACE(v.13016)wasusedtocountthenumberofoccurrencesforeachofthe21USGSNLCD92landuseclasseswithinthe3kmradiuscircle(28.3km2)aboutthefacility.

EachUSGSNLCD92landuseclasswascomparedtothemostappropriateAuerlandusecategorytoquantifythetotalurbanandruralarea.Table8‐6summarizestheresultsofthislanduseanalysis.As85.9%oftheareacanbeclassifiedasrural,ruraldispersioncoefficientswereused.TheAERSURFACEfilesareenclosedinAppendixG.

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 8-9

Table8‐6.SummaryofLandUseAnalysis

USGSNLCD92 AuerScheme Rural/Urban

LandArea

LandClass

LandClassDescription LandUseType

LandUseDescription

11 OpenWater A5 WaterSurfaces/Rivers/Lakes Rural 0.24%

12 PerennialIce/Snow A5 WaterSurfaces/Rivers/Lakes Rural 0.00%

21 LowIntensityResidential R1 CommonResidential Rural 13.52%

22 HighIntensityResidential R2andR3

CompactResidential(SingleFamily,Multi‐Family&

Duplex)

Urban4.14%

23 Commercial/Industrial/Transportation

I1,I2,andC1

HeavyandLight‐ModerateIndustrial&Commercial

Urban9.94%

31 BareRock/Sand/Clay A3 Undeveloped Rural 0.27%

32 Quarries/StripMines/Gravel A4 UndevelopedRural Rural 0.00%

33 Transitional A3 Undeveloped/Uncultivated Rural 3.51%

41 DeciduousForest A4 UndevelopedRural Rural 4.38%

42 EvergreenForest A4 UndevelopedRural Rural 12.22%

43 MixedForest A4 UndevelopedRural Rural 5.98%

51 Shrubland A3 Undeveloped/Uncultivated Rural 0.00%

61 Orchards/Vineyard/Other A2 AgriculturalRural Rural 0.00%

71 Grasslands/Herbaceous A3 Undeveloped/Uncultivated Rural 0.00%

81 Pasture/Hay A2 AgriculturalRural Rural 6.00%

82 RowCrops A2 AgriculturalRural Rural 27.30%

83 SmallGrains A2 AgriculturalRural Rural 0.00%

84 Fallow A2 AgriculturalRural Rural 0.00%

85 Urban/RecreationalGrasses A1 MetropolitanNatural Rural 2.36%

91 WoodyWetlands A4 UndevelopedRural Rural 10.11%

92 EmergentHerbaceousWetlands

A4 UndevelopedRural Rural0.02%

8.1.3. Modeling Protocol

ThefollowingprovidesabriefsummaryoftheprotocolofmethodsusedtodeterminetheMGLCs:

ISCST3(v02035)wasused; Theregulatorydefaultmodeloptionwasused; RuraldispersioncoefficientswereusedasdiscussedinSection8.1.2; DownwashwasnotusedasspecifiedbyGeorgiaToxicGuidelines; TheNorthAmericanDatumof1983(NAD83)wasusedtospecifyreceptorandsourcelocations;

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants 8-10

50m.spacedreceptorswereplacedalongthepropertyline.ACartesiangridextending5,000metersawayfromthepropertylineinalldirectionwasusedwithreceptorspacingofnomorethan100m.ThisrefinedgridisofsufficientsizetoensurethereceptorindicatingtheMGLChasatleastonereceptoronallsidesshowingalowerconcentration.

ReceptorandsourceelevationsweredeterminedbyprocessingtheirrespectiveNAD83UTMcoordinatesinAERMAPusing1‐arcsecondNationalElevationDataset(NED)dataobtainedfromtheUSGSNationalSeamlessMapServer;and

Five‐yearsofISCmeteorologicaldatafortheMaconsurface(No.3813)andWaycrossupperair(No.13861)stationsforcalendaryears1984through1988wereused(anemometerheightof23ft).Themeteorologicaldatasetwasselectedbasedonproximityofthemeteorologicalstationstothesite.

8.1.4. Modeling Results

UsingthesourceparametersspecifiedinTable8‐4andTable8‐5andtheprotocoldescribedaboveinSection8.1.3,ISCST3wasexecutedforfive‐yearsofmeteorologicaldatatodeterminethemaximum1‐hr,24‐hour,andannualconcentrationsforeachpollutant(asapplicable)ateachreceptorlocation.Table8‐7summarizestheMGLCforeachaveragingperiod.Hourlyconcentrationswereadjustedtoa15‐minaveragingperiodbasedontheGuideline(15‐minMGLC=1‐hrMGLC*1.32).

Table8‐7.ISCST3AirDispersionModelingResults

AsshowninTable8‐7,theMGLCforeachaveragingperiodisbelowtheircorrespondingAACestablishedbyGAEPD.AllairdispersionmodelingfilesareincludedinAppendixF.

Year

Maximum1‐HourImpact1

Maximum15‐MinImpact2 15‐minAAC3

IsMGLC>15‐minAAC?

Maximum24‐hrImpact1 24‐hrAAC3

IsMGLC>24‐hrAAC?

MaximumAnnualImpact1

AnnualAAC3

IsMGLC>AnnualAAC?

Pollutant CASNo. (µg/m3) (µg/m3) (µg/m3) (Y/N) (µg/m3) (µg/m3) (Y/N) (µg/m3) (µg/m3) (Y/N)

1984 57.18 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ 0.56 ‐‐ ‐‐1985 57.44 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ 0.51 ‐‐ ‐‐1986 57.56 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ 0.57 ‐‐ ‐‐1987 57.30 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ 0.61 ‐‐ ‐‐1988 49.28 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ 0.64 ‐‐ ‐‐Max 57.56 75.97 4,500 N N/A N/A N/A 0.64 4.55 N1984 49.05 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ 0.83 -- --

1985 49.27 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ 0.87 -- --

1986 49.37 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ 0.71 -- --

1987 49.15 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ 0.76 -- --

1988 42.27 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ 0.70 -- --

Max 49.37 65.17 245 N N/A N/A N/A 0.87 1.10 N1984 294 ‐‐ ‐‐ ‐‐ 83.36 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐1985 291 ‐‐ ‐‐ ‐‐ 103 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐1986 298 ‐‐ ‐‐ ‐‐ 86.68 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐1987 310 ‐‐ ‐‐ ‐‐ 97.73 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐1988 293 ‐‐ ‐‐ ‐‐ 86.92 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐Max 310 410 32,800 N 103 619 N N/A N/A N/A

1.First‐highmodeledimpact.

2.Modeled1‐hourconcentrationmultipliedby1.32toconvertto15‐minuteimpactperGAAirToxicsGuidance(May2017).

3.AppendixAoftheGAAirToxicsGuidance(May2017).FormaldehydeAnnualAACprovidedbyMr.Jeng‐HonSu(EPD)toMr.ChrisPool(Trinity)viaemailonOctober18,2018.

50‐00‐0Formaldehyde

Acetaldehyde 75‐07‐0

Methanol 67‐56‐1

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants A

APPENDIX A: FACILITY DIAGRAMS

75

240,000 241,000 242,000 243,000 244,000 245,000 246,000

3,590,000

3,591,000

3,592,000

3,593,000

3,594,000

3,595,000

3,596,000

3,597,000

3,598,000

Georgia

Florida

South Carolina

Alabama

Tennessee

Perry Mill

Figure A-1. Area MapInterfor U.S. Inc. - Perry, Houston County, Georgia

UTM Easting (m)

UTM

Nor

thing

(m)

Coordinates reflect UTM projection Zone 17, NAD83.

181101.0133September 2018

Interfor U.S. Inc. – Perry MillPerry, Georgia

Figure A-2Process Flow Diagram

Legend

Material Flow

Steam Line

Process/Process Equipment

Log Storage

Pile

Logs Logs Cut to Length

LogsDebarker

Logs Various Saws & Conveyors

Green Lumber

Sorter Green Lumber

Stacker

Saw Prep Room

Cut Green Lumber

Green Chipper

Chips

Sawmill Shaker Screens

Chips

Chip Bin

Bark

Bark Scrap

Bark

Hog

Biomass fuel

Boiler Fuel House

ESPBP-1

ST-1

ESPBP-2

ST-2

ESPBP-3

ST-3

Boiler No. 3 Multiclone

BC-3

Wood-fired Boiler No. 3

B-3

Drying Kiln No. 1 DK-1

VG-1

VG-2

VG-3

Shavings & Dust Bin

Planer Mill Cyclone No. 1

PC-1

Shavings

Wood Blocks

Hogged Wood

PC1S

Planer Hog

Planer Mill No. 1PLM1

Sorter

Dry Lumber

Wood Blocks

Reman Planer Mill No. 2

PLM2

Hogged Wood

Reman Cyclone No. 2PC-2

PC2S

Dry Lumber

Stacker

Dry Lumber

Storage Shed

Finished Lumber Storage

Dry Lumber

Re-man Hog

Steam Condensate

Biomass fuel

Green Lumber

Large Chips

Sawdust

Emissions

Boiler No. 2 Multiclone

BC-2

Wood-fired Boiler No. 2

B-2

Boiler No. 1 Multiclone

BC-1

Wood-fired Boiler No. 1

B-1

Dry Lumber

Drying Kiln No. 2 DK-2

Drying Kiln No. 3 DK-3

Drying Kiln No. 4 DK-4

VG-4

Drying Kiln No. 5 DK-5

VG-5

Fuel SiloFS-01

Green Sawdust

Drying Kiln No. 6 DK-6

VG-6

Proposed Process/Process Equipment

FS-01S

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants B

APPENDIX B: EMISSION CALCULATIONS

Appendix B - Emission Calculations

Interfor - Perry, Georgia

Table B-1. Direct-Fired Continuous Kiln Emission Factors

Pollutant Reference1,2

Criteria

Total PM 0.14 lb/MBF 1-A

Total PM10 0.104 lb/MBF 1-A

Total PM2.5 0.099 lb/MBF 1-A

SO2 0.025 lb/MMBtu 1-B

NOX 0.28 lb/MBF 1-C

Total VOC 4.00 lb/MBF 1-D

CO 0.73 lb/MBF 1-C

TRS, H2S, H2SO4, Fluoride

Lead 1.54E-05 lb/MMBtu 2-A

Greenhouse Gases

CO2 206.4 lb/MMBtu 3

CH4 1.58E-02 lb/MMBtu 3

N2O 7.92E-03 lb/MMBtu 3

CO2e 209.1 lb/MMBtu 3

HAPs

Acetaldehyde 0.045 lb/MBF 1-D

Formaldehyde 0.0386 lb/MBF 1-D

Methanol 0.161 lb/MBF 1-D

Total HAP 0.245 lb/MBF 1-D

1. From document entitled: EPD Recommended Emission Factors for Lumber Kiln Permitting in Georgia. References:

B. AP-42 Table 1.6-2.

C. EPD Application No. TV-21615 for West Fraser Augusta Mill.

D. NCASI Data. Total HAP calculated as sum of individual HAP factors.

A. NCASI TB 1013, Table 4.3 Mechanical Collector Median

CO2 1

CH4 25

N2O 298

3. Per 40 CFR Part 98, Subpart C, Tables C-1 and C-2, default factor for wood and wood residuals. The CO2e factor is calculated based on the emission

factors for CO2, CH4, and N2O and the GWP for each pollutant (effective January 1, 2014) per 40 CFR 98, Subpart A, Table A-1:

Emission Factor

Presumed negligible

2. Emission factors for direct-fired, continuous lumber kilns obtained from Interfor Preston PSD Air Permit Application No. 40720 submitted to EPD

January 25, 2016. References per EPD Application No. 40720:

A. Simpson Lumber Company, LLC (Application No. 20735), which relies upon testing data from Bibler

Brothers Lumber Company in Russellville, AR; Rayonier Wood Products LLC-Swainsboro Sawmill (Permit

No. 2421-107-0011-V-02-3); unpublished NCASI data; and AP-42 Section 1.6.

Trinity Consultants Page 1 of 14 CDK EF

Appendix B - Emission Calculations

Interfor - Perry, Georgia

Table B-2. New Direct-Fired Continuous Kiln Information

Heat Input1 Fuel HHV2

Annual

Hours of

Operation

Kiln ID (MMBtu/hr) (Btu/lb) (hr/yr) (MBF/hr) (MMBF/yr)

Kiln 6 40.0 4,500 8,760 13.7 120

1. Per information provided by Interfor on May 23, 2018.

3. Per information provided by Interfor on May 23, 2018.

Table B-3. Potential Emissions from Direct-Fired Continuous Kiln1

Pollutant (lb/hr) (tpy)

PM31.92 8.40

Total PM103 1.42 6.24

Total PM2.53 1.36 5.94

SO2 1.00 4.38

NOX 3.84 16.80

Total VOC254.79 240.00

CO 10.00 43.80

TRS, H2S, H2SO4, Fluoride

Lead 6.16E-04 2.70E-03

CO2e 8,365 36,637

HAPs

Acetaldehyde 0.62 2.70

Formaldehyde 0.53 2.32

Methanol 2.21 9.66

Total HAP 3.35 14.7

1. Potential annual emissions were calculated using the following equations based on the units of the emission factor:

Potential emissions [tpy] = Emission factor [lb/MBF] * Annual production capacity [MMBF/yr] * 1,000 / 2,000 lb/ton

2. VOC is computed as terpene + methanol + formaldehyde.

3. Total PM/PM10/PM2.5 emissions are the sum of filterable and condensable particulate.

Potential emissions [tpy] = Emission factor [lb/MMBtu] * Heat input capacity [MMBtu/hr] * Annual hours of operation [hr/yr] /

2,000 lb/ton

Negligible

Production Capacity3

Kiln 6 Emissions

2. The average high heating value for wood/bark/fines is 4,500 Btu/lb, per U.S. EPA's AP-42, Section 1.6, Wood Residue Combustion

in Boilers (Sept. 2003).

Trinity Consultants Page 2 of 14 Kilns PTE

Appendix B - Emission Calculations

Interfor - Perry, Georgia

Table B-4. New Kiln Fuel Silo Potential Emissions

Emission

Factor1,2

Control

Efficiency4

(lb/ton) (tph) (tpy) (%) (lb/hr)5 (tpy)6

Filterable PM 3.2 95.00% 0.71 3.11

Filterable PM10 0.17 95.00% 3.78E-02 1.65E-01

Filterable PM2.5 0.17 95.00% 3.78E-02 1.65E-01

Kiln heat input capacity and fuel heating value are detailed in Table B-2.

Annual throughput are based on annual hours of operation 8,760 hrs/yr

6. Potential Annual Emissions [tpy] = Emission factor [lb/ton] × Potential Throughput [ton/yr] / 2,000 lb/ton

Potential Throughput calculated by the following equation: Potential Throughput (tpy) = Burner Heat Input (MMBtu/hr) / Fuel HHV

(Btu/lb) * Annual Hours of Operation (hrs/yr) * 106 Btu/MMBtu / 2,000 lb/ton

4.44 38,933

3. Potential Throughput (ton/hr) = Kiln Maximum Heat Input Capacity (MMBtu/hr) / Fuel Heating Value (Btu/ton) * 10^6 / 2,000 lbs/ton

1. Uncontrolled emission factors from similar silo with cyclone configuration obtained from West Fraser - Augusta PSD Air Permit

Application No. 43928 submitted to EPD in January 2017.

4. Controlled PM/PM10/PM2.5 emission factors calculated assuming a control efficiency of 95% for the cyclone. As the silo will store green

sawdust, PM emissions are expected to be minimal from the silo and associated cyclone. 

2. The emission factors are for filterable PM/PM10/PM2.5. Condensable PM is negligible for this process; therefore, Filterable

PM/PM10/PM2.5 equal Total PM/PM10/PM2.5.

5. Potential Annual Emissions [lb/hr] = Emission factor [lb/ton] × Potential Throughput [ton/hr]

Pollutant

Potential EmissionsPotential Throughput3

Trinity Consultants Page 3 of 14 Fuel Silo PTE

Appendix B - Emission Calculations

Interfor - Perry, Georgia

Table B-5. Fire Pump Operating Parameters

Parameter FWP11Units

Fuel Diesel

Maximum Power Output1

305 hp, output

Potential Operation2500 hr/yr

Heating Value of Diesel3

19,300 Btu/lb

Power Conversion37,000 Btu/hp-hr

1. Manufacturer specified parameters.

2. FWP1 conservatively estimated to run a maximum of 500 hr/yr

3. Conversion factor for diesel fuel as noted in AP-42, Section 3.3, Table 3.3-1 footnote.

Trinity Consultants Page 4 of 14 Fire Pump

Appendix B - Emission Calculations

Interfor - Perry, Georgia

Table B-6. Fire Pump Potential Criteria Pollutant Emissions

Pollutant (lb/hp-hr) (lb/MMBtu) (lb/hr) (tpy)

NOX1 6.58E-03 -- 2.01 0.50

VOC 6.58E-03 -- 2.01 0.50

CO 6.68E-03 -- 2.04 0.51

Filterable PM1,4

3.29E-04 -- 0.10 0.025

Total PM43.29E-04 -- 0.10 0.025

Total PM104 3.29E-04 -- 0.10 0.025

Total PM2.54

3.29E-04 -- 0.10 0.025

SO22 1.09E-05 -- 3.32E-03 8.30E-04

CO2 1.15 -- 350.75 87.69

CH45 4.63E-05 6.61E-03 1.41E-02 3.53E-03

N2O5 9.26E-06 1.32E-03 2.82E-03 7.06E-04

GHGs (CO2e)6 1.15 -- 351.94 87.99

NSPS IIII Emission

Limit

NOX = g/kW-hr

NMHC = g/kW-hr

PM = 0.2 g/kW-hr

Emission factors werer converted to lb/hp-hr by dividing 608 per AP-42, Section 3.3, Table 3.3-1 footnote.

CH4 = 0.003 kg/MMBtu

N2O = 0.0006 kg/MMBtu

CO2 1

CH4 25

N2O 298

5. CH4 and N2O factors are from 40 CFR Part 98, Table C-2 for petroleum fuels. Factors were converted from kg/MMBtu to

lb/MMBtu.

7. Short-term emissions are calculated as follows:

Emissions (lb/hr) = Emission Factor (lb/hp-hr) * Engine Capacity (hp).

8. Annual emissions are calculated as follows:

Annual Emissions (tpy) = Hourly Emissions (lb/hr) * Annual Operation (hr/yr) / 2,000 (lb/ton).

6. CO2e is calculated using Global Warming Potentials (GWPs) from 40 CFR Part 98, Subpart A, Table A-1 effective January 1, 2014.

GWPs used for CO2, CH4, and N2O are listed below.

4

2. Sulfur content (15 ppmv) in accordance with 40 CFR 60.4207(b) as required by NSPS Subpart IIII.

3. Otherwise emission factors from AP-42 Section 3.3 (Gasoline and Diesel Industrial Engines), Table 3.3-1 (10/96). Emission factors

in lb/MMBtu were converted to lb/hp-hr by multiplying the power conversion factor of 7,000 Btu/hp-hr and 1MMBtu/1,000,000

Btu. VOC was estimated using the exhaust emission factor for diesel fuel. For VOC, maximum of AP-42 TOC factor and NSPS Subpart

IIII NMHC factor was selected.

4. Filterable PM, Total PM, Total PM10, Total PM2.5 assumed equivalent to NSPS IIII PM limit.

Emission Factor3

FWP1 Potential

Emissions7,8

1. FWP1 fire pump PM, NMHC, NOX emissions factors are based on NSPS IIII emission limits.

Trinity Consultants Page 5 of 14 Fire Pump

Appendix B - Emission Calculations

Interfor - Perry, Georgia

Table B-7. Fire Pump Potential HAP Emissions

Pollutant (lb/hp-hr) (lb/MMBtu) (lb/hr) (tpy)

Acetaldehyde 5.37E-06 7.67E-04 1.64E-03 4.09E-04

Acrolein 6.48E-07 9.25E-05 1.97E-04 4.94E-05

Benzene 6.53E-06 9.33E-04 1.99E-03 4.98E-04

Formaldehyde 8.26E-06 1.18E-03 2.52E-03 6.30E-04

Toluene 2.86E-06 4.09E-04 8.73E-04 2.18E-04

Xylenes 2.00E-06 2.85E-04 6.08E-04 1.52E-04

1,3 Butadiene 2.74E-07 3.91E-05 8.35E-05 2.09E-05

Naphthalene 5.94E-07 8.48E-05 1.81E-04 4.53E-05

Acenaphthylene 3.54E-08 5.06E-06 1.08E-05 2.70E-06

Acenaphthene 9.94E-09 1.42E-06 3.03E-06 7.58E-07

Fluorene 2.04E-07 2.92E-05 6.23E-05 1.56E-05

Phenanthrene 2.06E-07 2.94E-05 6.28E-05 1.57E-05

Anthracene 1.31E-08 1.87E-06 3.99E-06 9.98E-07

Fluoranthene 5.33E-08 7.61E-06 1.62E-05 4.06E-06

Pyrene 3.35E-08 4.78E-06 1.02E-05 2.55E-06

Benzo(a)anthracene 1.18E-08 1.68E-06 3.59E-06 8.97E-07

Chrysene 2.47E-09 3.53E-07 7.54E-07 1.88E-07

Benzo(b)fluoranthene 6.94E-10 9.91E-08 2.12E-07 5.29E-08

Benzo(k)fluoranthene 1.09E-09 1.55E-07 3.31E-07 8.27E-08

Benzo(a)pyrene 1.32E-09 1.88E-07 4.01E-07 1.00E-07

Indeno(1,2,3-cd)pyrene 2.63E-09 3.75E-07 8.01E-07 2.00E-07

Dibenz(a,h)anthracene 4.08E-09 5.83E-07 1.24E-06 3.11E-07

Benzo(g,h,l)perylene 3.42E-09 4.89E-07 1.04E-06 2.61E-07

Total HAP: 2.07E-03

Max Single HAP: 6.30E-04

2. Short-term emissions are calculated as follows:

Emissions (lb/hr) = Emission Factor (lb/hp-hr) * Engine Capacity (hp).

3. Annual emissions are calculated as follows:

Annual Emissions (tpy) = Hourly Emissions (lb/hr) * Annual Operation (hr/yr) / 2,000 (lb/ton).

Emission Factor1

FWP1 Potential

Emissions2,3

1. Otherwise emission factors from AP-42 Section 3.3 (Gasoline and Diesel Industrial Engines), Table 3.3-2 (10/96). Emission factors

in lb/MMBtu were converted to lb/hp-hr by multiplying the power conversion factor of 7,000 Btu/hp-hr and 1MMBtu/1,000,000

Btu.

Trinity Consultants Page 6 of 14 Fire Pump

Appendix B - Emission Calculations

Interfor - Perry, Georgia

Table B-8. Associated Emissions Increase From Sawing and Debarking

Emission Control

Factor Efficiency3

Emission Source Pollutant (lb/ton)1,2(%) (tpy)4

Filterable PM 0.350 95% 4.20

Filterable PM105 0.007 95% 0.08

Filterable PM2.56 0.007 95% 0.08

Filterable PM 2.63E-04 0% 7.01E-02

Filterable PM10 2.63E-04 0% 7.01E-02

Filterable PM2.56

5.00E-05 0% 1.33E-02

Associated actual throughput increase is estimated based on potential throughput and 2017 actual throughput

Potential 2017 Actual Throughput Increase

Debarking 1,064,299 531,296 533,003 (tpy)

Sawmill throughput estimated as 90% of logs that are debarked.

Sawmill 479,703 (tpy)

4. Associated Annual Emissions Increase (tpy) = Emission factor (lb/ton) × [1 - Control Efficiency (%)] × Associated Actual Throughput

Increase (ton/yr) / 2,000 (lb/ton)

5. Per the document entitled "Estimating Emissions From Generation and Combustion of 'Waste' Wood ‐ Draft" (July 1998) by the North

Carolina Division of Air Quality (NCDAQ), the percentage of PM emitted from sawing operations that is PM10 is 1.89%.

6. It is assumed that Filterable PM10 = Filterable PM2.5. As this source does not involve combustion units, it is assumed that condensable

emissions are negligible.

3. Per EPA Region 10 Particulate Matter Potential to Emit Emission Factors for Activities at Sawmills, Excluding Boilers, Located in Pacific

Northwest Indian Country (May 2014), emissions can be reduced by 100% for sawmill activities being performed indoors as emissions

will struggle to escape through doorways and other openings. For conservatism, Interfor is assuming that 5% of emissions escape from

doors or other openings.

EUID

Sawmill SM01

Debarking DB01

Associated

Emissions

Increase

1. Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources, Fourth Edition with Supplements A, B,

and C, AP-42. , per the EPA Factor Information Retrieval (WebFIRE) database, updated 9/7/2016 for SCC Code 3-07-008-02, Log Sawing.

2. Emission factors for debarking obtained from Georgia-Pacific Wood Products LLC - Warrenton Lumber Facility PSD Air Permit

Application No. 237752 submitted to EPD in April 2018. References per EPD Application No. 237752 for Debarker (102S):

Uncontrolled emission factor is calculated based on the test data of 4.5 x 10-5 lb/ton with safety factor.

Trinity Consultants Page 7 of 14 Sawmill and Debarking Increase

Appendix B - Emission Calculations

Interfor - Perry, Georgia

Table B-9. Planer Mill Associated Emissions Increase

Emission

Factor1,2

Control

Efficiency3

Associated

Emissions

Increase

(lb/ton) (%) (tpy)4

Filterable PM 3.2 80% 5.85

Filterable PM10 0.17 20% 1.24

Filterable PM2.5 0.17 20% 1.24

Associated actual throughput increase is estimated based on potential throughput and 2017 actual throughput

Potential 2017 Actual

Throughput

Increase

Planer Mill Shaving Produced 44,299 26,020 18,279 tpy

Annual Operational Hours 8,760 hrs/yr

Pollutant

1. Uncontrolled emission factors from planner mill obtained from West Fraser - Augusta PSD Air

Permit Application No. 43928 submitted to EPD in January 2017.

2. The emission factors are for filterable PM/PM10/PM2.5. Condensable PM is negligible for cyclone;

therefore, Filterable PM/PM10/PM2.5 equal Total PM/PM10/PM2.5.

4. Associated Annual Emissions Increase (tpy) = Emission factor (lb/ton) × [1 - Control Efficiency (%)]

× Associated Actual Throughput Increase (ton/yr) / 2,000 (lb/ton)

3. Control efficiency is based on air pollution control technology fact sheets for single cyclones EPA-

452/F-03-005 (https://www3.epa.gov/ttncatc1/dir1/fcyclon.pdf). For conservatism, control

efficiency for PM2.5 used for PM10 emissions.

Trinity Consultants Page 8 of 14 Planer Mill Emissions Increase

Appendix B - Emission Calculations

Interfor - Perry, Georgia

Table B-10. Associated Emissions Increase for Material Transfer Sources

Emission Source EUID Filterable PM Filterable PM10 Filterable PM2.5

Filterable

PMFilterable

PM10

Filterable

PM2.5

Chip Truck Loading TLCH 2.16E-04 1.02E-04 1.54E-05 3.26E-03 1.54E-03 2.34E-04

Bark Truck Loading TLBK 2.16E-04 1.02E-04 1.54E-05 2.98E-03 1.41E-03 2.14E-04

Sawdust Truck Loading TLSD 2.16E-04 1.02E-04 1.54E-05 3.41E-03 1.61E-03 2.44E-04

Shavings Truck Loading TLSH 2.16E-04 1.02E-04 1.54E-05 2.13E-03 1.01E-03 1.52E-04

Bark Transfer MTCH 2.16E-04 1.02E-04 1.54E-05 2.98E-03 1.41E-03 2.14E-04

Sawdust Transfer MTBK 2.16E-04 1.02E-04 1.54E-05 3.41E-03 1.61E-03 2.44E-04

Chips Transfer MTSD 2.16E-04 1.02E-04 1.54E-05 3.26E-03 1.54E-03 2.34E-04

Shavings Transfer MTSH 2.16E-04 1.02E-04 1.54E-05 2.13E-03 1.01E-03 1.52E-04

Total 2.36E-02 1.11E-02 1.69E-03

1. Emission factor per AP-42 Section 13.2.4, Aggregate Handling and Storage Piles (Nov. 2006), Equation 1, as follows:

E = k(0.0032)((U/5)^1.3)/((M/2)^1.4)

where E = emission factor in pounds per ton

k = particle size multiplier as follows:

0.74 for PM

0.35 for PM10

0.053 for PM2.5

U = 7.43 mph; average wind speed for Macon, GA from TANKS 4.0.9d

M = 16 %; material moisture content

Associated actual throughput increase is estimated based on potential throughput and 2017 actual throughput

Potential 2017 Actual Throughput Increase

Chips 183,252 152,978 30,274 tpy

Shavings 45,757 26,020 19,737 tpy

Associated actual throughput increase is estimated based on potential throughput and production ratios

New Continuous Kiln Throughput 120 MMBF/yr

Existing Kilns Throughput 171 MMBF/yr

Bark 67,065 -- 27,657 tpy

Sawdust 76,598 -- 31,588 tpy

2. Associated Annual Emissions Increase (tpy) = Emission Factor (lb/ton) × Associated Throughput (ton/year) / 2,000 lb/ton

3. The emission factors are for filterable PM/PM10/PM2.5. Condensable PM is negligible for this process; therefore, Filterable PM/PM10/PM2.5 equal Total PM/PM10/PM2.5.

Emission Factors1 Associated Emissions Increase2

(lb/ton) (tpy)

Trinity Consultants Page 9 of 14 Material Transfer Increase

Appendix B - Emission Calculations

Interfor - Perry, Georgia

Table B-11. Associated Emissions Increase for Planer Hog and Chipper

Emission Control

Factor1 Efficiency2

Emission Source EUID Pollutant (lb/ton) (%) (tpy)3

Filterable PM 2.00E-02 90% 3.03E-02

Filterable PM10 1.10E-02 90% 1.67E-02

Filterable PM2.54 1.10E-02 90% 1.67E-02

Filterable PM 2.00E-02 90% 5.92E-02

Filterable PM10 1.10E-02 90% 3.26E-02

Filterable PM2.54 1.10E-02 90% 3.26E-02

Sum of Filterable PM 8.95E-02

Sum of Filterable PM10 4.92E-02

Sum of Filterable PM2.5 4.92E-02

3. Associated Annual Emissions Increase (tpy) = Emission Factor (lb/ton) × Associated Throughput (ton/year) / 2,000 lb/ton

Throughput Increase

Chipper 30,274 tpy

Bark Hog 59,245 tpy

4. It is assumed that Filterable PM10 = Filterable PM2.5. As this source does not involve combustion units, it is assumed that condensable emissions are negligible.

The throughput for the Chipper is based on the production of chips at the facility, whereas the throughput for the Bark Hog is based on the production of

both bark and sawdust at the facility.

Associated

Emissions

Increase

Bark Hog BH01

1. Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources, Fourth Edition with Supplements A, B, and C, AP-42. , per

the EPA Factor Information Retrieval (WebFIRE) database, updated 9/7/2016 for SCC Code 3-07-008-01, Log Debarking.

2. Based on guidance by the Texas Commission on Environmental Quality (TCEQ) entitled "Rock Crushing Plants" (Feb. 2002), a control efficiency of 90%

should be applied for work performed fully enclosed."

Chipper CH01

Trinity Consultants Page 10 of 14 Material Transfer Increase

Appendix B - Emission Calculations

Interfor - Perry, Georgia

Table B-12. Inputs for Emissions from Road Travel

Paved Roads

Unpaved

Roads

Source (tons) (tons) (tons) (ft) (ft) (Days) (VMT/day) (VMT/yr) (VMT/day) (VMT/yr)

Log Truck 23,250 43,458 20,208 20 40 30.0 1,800 1,500 250 80.83 27.56 6,889 22.96 5,741

Lumber Truck 5,200 6,308 1,108 20 40 30.0 1,800 -- 250 4.43 1.51 378 -- --

Bark Truck 54 1,669 1,615 20 40 30.0 2,200 -- 250 6.46 2.69 673 -- --

Chip Truck 5,762 7,425 1,663 15 40 27.5 1,200 -- 250 6.65 1.51 378 -- --

Shavings Truck 1,276 1,727 451 15 35 25.0 1,500 -- 250 1.80 0.51 128 -- --

Forklift 15 27 12 13 30 21.5 2,000 -- 250 0.05 1.81E-02 5 -- --

Bobcat 3 6 3 1 3 2.0 100 200 250 1.04E-02 1.98E-04 4.94E-02 3.95E-04 9.88E-02

Leased Trailers -- 8,187 8,187 15 40 27.5 900 -- 250 32.75 5.58 1,395 -- --

1. Engineering estimate for empty and loaded weights of trucks. The distance traveled on-site provided by Interfor.

Increased

Number of

Trucks Per

Day

Increased Vehicle Miles Traveled

Paved Roads Unpaved Roads

Associated

Increase in

Actual

Number of

Trucks Per

Year

Truck Weight

Empty1

Truck Weight

Loaded1

Average Weight

(W)

Distance Traveled per Round

Trip1

Events Per

Year

Pre-Project

Number of

Trucks Per

Year

Post-Project

Number of

Trucks Per

Year

Trinity Consultants Page 11 of 14 Road Emissions Increase

Appendix B - Emission Calculations

Interfor - Perry, Georgia

Table B-13. Associated Fugitive Emissions Increase from Road Travel

Filterable PM Filterable PM10 Filterable PM2.5

Source PM PM10 PM2.5 (tpy) (tpy) (tpy)

Unpaved Road Travel

Log Truck 9.01E-02 7.34E-03 7.34E-04 0.26 2.11E-02 2.11E-03

Lumber Truck 9.01E-02 7.34E-03 7.34E-04 -- -- --

Bark Truck 9.01E-02 7.34E-03 7.34E-04 -- -- --

Chip Truck 8.66E-02 7.05E-03 7.05E-04 -- -- --

Shavings Truck 8.30E-02 6.76E-03 6.76E-04 -- -- --

Forklift 7.75E-02 6.31E-03 6.31E-04 -- -- --

Bobcat 2.66E-02 2.17E-03 2.17E-04 1.31E-06 1.07E-07 1.07E-08

Leased Trailers 8.66E-02 7.05E-03 7.05E-04 -- -- --

Paved Road Travel

Log Truck 0.11 2.14E-02 5.25E-03 0.37 7.37E-02 1.81E-02

Lumber Truck 0.11 2.14E-02 5.25E-03 2.02E-02 4.04E-03 9.93E-04

Bark Truck 0.11 2.14E-02 5.25E-03 3.60E-02 7.20E-03 1.77E-03

Chip Truck 9.79E-02 1.96E-02 4.81E-03 1.85E-02 3.70E-03 9.09E-04

Shavings Truck 8.89E-02 1.78E-02 4.36E-03 5.69E-03 1.14E-03 2.80E-04

Forklift 7.62E-02 1.52E-02 3.74E-03 1.72E-04 3.44E-05 8.44E-06

Bobcat 6.76E-03 1.35E-03 3.32E-04 1.67E-07 3.34E-08 8.19E-09

Leased Trailers 9.79E-02 1.96E-02 4.81E-03 6.83E-02 1.37E-02 3.36E-03

0.78 0.12 2.75E-02

PM - k (lb/VMT) = 4.9 Particle size multiplier for PM per AP-42, Table 13.2.2-2

PM10 - k (lb/VMT) = 1.5 Particle size multiplier for PM10 per AP-42, Table 13.2.2-2

PM2.5 - k (lb/VMT) = 0.15 Particle size multiplier for PM2.5 per AP-42, Table 13.2.2-2

PM - a = 0.7 Empirical constant for PM per AP-42, Table 13.2.2-2

PM10 and PM2.5 - a = 0.9 Empirical constant for PM10 and PM2.5 per AP-42, Table 13.2.2-2

b = 0.45 Empirical constant for industrial roads per AP-42, Table 13.2.2-2

s (%) = 1.60% Surface silt content based on maximum value from Georgia-Pacific Wood Products LLC - Warrenton Lumber Facility PSD Air Permit Application No. 237752 submitted to EPD in April 2018.

P = 120 No. days with rainfall greater than 0.01 inch, Per AP-42, Figure 13.2.2-1

% control efficiency = 0.0 % control efficiency

PM - k (lb/VMT) = 0.011 Particle size multiplier for PM per AP-42, Table 13.2.1-1

PM10 - k (lb/VMT) = 0.0022 Particle size multiplier for PM10 per AP-42, Table 13.2.1-1

PM2.5 - k (lb/VMT) = 0.00054 Particle size multiplier for PM2.5 per AP-42, Table 13.2.1-1

sL (g/m2) = 0.53 Road surface average silt loading from Georgia-Pacific Wood Products LLC - Warrenton Lumber Facility PSD Air Permit Application No. 237752 submitted to EPD in April 2018.

W = Average weight (in tons) of the vehicle traveling the road

% control efficiency = 46.0 % control efficiency due to operation of sweeper truck

Control efficiency is based on Air & Waste Management Association Air Pollution Engineering Manual, Chapter 4 Fugitive Emissions, Table 5.

1. Unpaved Roads Emission Factor (lb/VMT) = [k (s/12)^a × (W/3)^b] × [(365 - P)/365] × (100% - % control efficiency), per AP-42 Section 13.2.2, Unpaved Roads (Nov. 2006), Equations 1a

and 2, with variables defined as follows:

2. Paved Roads Emission Factor (lb/VMT) = [k (sL)^0.91 × (W)^1.02] × (100% - % control efficiency), per AP-42 Section 13.2.1, Paved Roads (Jan. 2011), Equation 1, with variables defined as

follows:

3. Associated emissions increase calculated as appropriate emission factor multiplied by vehicle miles traveled per time period.

INRD

Total Road Emissions

EUID

Emission Factor1,2

(lb/VMT)

Associated Fugitive Emissions Increase3

Trinity Consultants Page 12 of 14 Road Emissions Increase

Appendix B - Emission Calculations

Interfor - Perry, Georgia

Table B-14. Associated Emissions Increase Summary

Sawmill1 Debarking1 Planer Mill2

Material

Transfer3

Planer Hog and

Chipper4 Road Travel5 Total6

Pollutant (tpy) (tpy) (tpy) (tpy) (tpy) (tpy) (tpy)

Filterable PM 4.20 0.07 5.85 2.36E-02 0.09 0.78 11.01

Total PM10 0.08 0.07 1.24 1.11E-02 0.05 0.12 1.58

Total PM2.5 0.08 0.01 1.24 1.69E-03 0.05 0.03 1.41

1. See Table B-8.

2. See Table B-9.

3. See Table B-10

4. See Table B-11

5. See Table B-13.

6. Sum of emissions for all associated units.

Trinity Consultants Page 13 of 14 Associated Emissions Increase

Appendix B - Emission Calculations

Interfor - Perry, Georgia

Table B-15. Project Net Emissions Increase Analysis

Pollutant

Potential

Emissions of

New Units

(tpy)1,2,3

Associated

Units Emissions

Increase (tpy)4

Project Net

Emissions

Increases

(tpy)5

PSD SER

Thresholds

(tpy)

PSD Permitting

Triggered?

Criteria

NOX 17.30 -- 17.30 40 No

CO 44.31 -- 44.31 100 No

SO2 4.38 -- 4.38 40 No

Filterable PM 11.54 11.01 22.55 25 No

Total PM10 6.43 1.58 8.01 15 No

Total PM2.5 6.13 1.41 7.54 10 No

VOC 240.50 -- 240.50 40 Yes

GHGs 6

GHGs (CO2e) 36,725 -- 36,725 75,000 No

HAPs

Hydrogen Sulfide -- -- -- 10 No

Lead 2.70E-03 -- 2.70E-03 0.6 No

Sulfuric Acid Mist -- -- -- 7 No

3. Net Emissions Increase equal to potential emissions of new units as there is no modified unit.

6. For PSD permitting for CO2 to be triggered, first PSD must be triggered for another regulated pollutant, then project emissions from

both CO2 (mass basis) and CO2e must be greater than the SER.

4. Associated units emissions increases include emissions from the sawmill, debarking operation, planner mill, material transfers, planner

hog and chipper, and road travel. Detailed emissions are included in Table B-14

1. The proposed project will not modify any existing unit. Therefore, baseline actual emissions and potential emissions of modified units

are not applicable.

5. Project Net Emissions Increases = Net Emissions Increase (Potential Emissions from New Units)+ Associated Units Emissions Increase

2. Potential emissions from the proposed continuous kiln, fuel silo, and emergency generator are detailed in Table B-3, Table B-4, and

Table B-6.

Trinity Consultants Page 14 of 14 PSD Step 1 Analysis

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants C

APPENDIX C: SIP APPLICATION FORMS

Georgia SIP Application Form 1.00, rev. January 2016 Page 1 of 5

State of Georgia Department of Natural Resources Environmental Protection Division Air Protection Branch

Stationary Source Permitting Program 4244 International Parkway, Suite 120

Atlanta, Georgia 30354 404/363-7000

Fax: 404/363-7100

SIP AIR PERMIT APPLICATION

EPD Use Only

Date Received: Application No.

FORM 1.00: GENERAL INFORMATION

1. Facility Information

Facility Name: Interfor U.S. Inc – Perry Mill

AIRS No. (if known): 04-13- 153 - 00011

Facility Location: Street: 903 Jernigan Street

City: Perry Georgia Zip: 31069 County: Houston

Is this facility a "small business" as defined in the instructions? Yes: No:

2. Facility Coordinates

Latitude: 32 27’ 6.5” NORTH Longitude: 83 44’ 01” WEST

UTM Coordinates: EAST NORTH ZONE

3. Facility Owner

Name of Owner: Interfor US, Inc.

Owner Address Street: 700 West Park Drive

City: Peachtree City State: Georgia Zip: 30269

4. Permitting Contact and Mailing Address

Contact Person: Valerie Kakritz Title: Safety Administrator

Telephone No.: 478-988-3842 Ext. Fax No.:

Email Address: [email protected]

Mailing Address: Same as: Facility Location: Owner Address: Other:

If Other: Street Address:

City: State: Zip:

5. Authorized Official

Name: Harry Koryzma Title: General Manager

Address of Official Street: P.O. Box 970

City: Perry State: Georgia Zip: 31069

This application is submitted in accordance with the provisions of the Georgia Rules for Air Quality Control and, to the best of my knowledge, is complete and correct.

Signature:

Date:

Georgia SIP Application Form 1.00, rev. January 2016 Page 2 of 5

6. Reason for Application: (Check all that apply)

New Facility (to be constructed) Revision of Data Submitted in an Earlier Application

Existing Facility (initial or modification application) Application No.:

Permit to Construct Date of Original Submittal: Permit to Operate

Change of Location

Permit to Modify Existing Equipment: Affected Permit No.:

7. Permitting Exemption Activities (for permitted facilities only):

Have any exempt modifications based on emission level per Georgia Rule 391-3-1-.03(6)(i)(3) been performed at the facility that have not been previously incorporated in a permit?

No Yes, please fill out the SIP Exemption Attachment (See Instructions for the attachment download)

8. Has assistance been provided to you for any part of this application?

No Yes, SBAP Yes, a consultant has been employed or will be employed.

If yes, please provide the following information:

Name of Consulting Company: Trinity Consultants

Name of Contact: Chris Pool

Telephone No.: 404-751-0226 Fax No.: (678) 441-9978

Email Address: [email protected]

Mailing Address: Street: 3495 Piedmont Road, Building 10, Suite 905

City: Atlanta State: Georgia Zip: 30305

Describe the Consultant’s Involvement:

Prepared the PSD application

9. Submitted Application Forms: Select only the necessary forms for the facility application that will be submitted.

No. of Forms Form

1 2.00 Emission Unit List 1 2.01 Boilers and Fuel Burning Equipment

2.02 Storage Tank Physical Data 2.03 Printing Operations 2.04 Surface Coating Operations 2.05 Waste Incinerators (solid/liquid waste destruction)

1 2.06 Manufacturing and Operational Data 1 3.00 Air Pollution Control Devices (APCD)

3.01 Scrubbers 3.02 Baghouses & Other Filter Collectors 3.03 Electrostatic Precipitators

1 4.00 Emissions Data 5.00 Monitoring Information

6.00 Fugitive Emission Sources 1 7.00 Air Modeling Information

10. Construction or Modification Date

Estimated Start Date: 2019

Georgia SIP Application Form 1.00, rev. January 2016 Page 3 of 5

11. If confidential information is being submitted in this application, were the guidelines followed in the “Procedures for Requesting that Submitted Information be treated as Confidential”?

No Yes

12. New Facility Emissions Summary

Criteria Pollutant New Facility

Potential (tpy) Actual (tpy)

Carbon monoxide (CO)

Nitrogen oxides (NOx)

Particulate Matter (PM) (filterable only)

PM <10 microns (PM10)

PM <2.5 microns (PM2.5)

Sulfur dioxide (SO2)

Volatile Organic Compounds (VOC)

Greenhouse Gases (GHGs) (in CO2e)

Total Hazardous Air Pollutants (HAPs)

Individual HAPs Listed Below:

13. Existing Facility Emissions Summary

Criteria Pollutant Current Facility After Modification

Potential (tpy) Actual (tpy) Potential (tpy) Actual (tpy)

Carbon monoxide (CO) 816 <816 859.9 <859.9

Nitrogen oxides (NOx) 74.7 <74.7 92.0 <92.0

Particulate Matter (PM) (filterable only) 53.1 <53.1 64.6 <64.6

PM <10 microns (PM10) 31.8 <31.8 38.3 <38.3

PM <2.5 microns (PM2.5) 22.5 <22.5 28.6 <28.6

Sulfur dioxide (SO2) 1.1 <1.1 5.5 <5.5

Volatile Organic Compounds (VOC) 338 <338 578.3 <578.3

Greenhouse Gases (GHGs) (in CO2e) 77,748 <77,748 114,473 <114,473

Total Hazardous Air Pollutants (HAPs) 34.6 <34.6 49.3 <49.3

Individual HAPs Listed Below:

Methanol 20.2 <20.2 29.8 <29.8

Georgia SIP Application Form 1.00, rev. January 2016 Page 4 of 5

14. 4-Digit Facility Identification Code:

SIC Code: 2421 SIC Description: Sawmills and Planing Mills, General

NAICS Code: 321113 NAICS Description: Sawmills

15. Description of general production process and operation for which a permit is being requested. If necessary, attach additional sheets to give an adequate description. Include layout drawings, as necessary, to describe each process. References should be made to source codes used in the application.

Interfor is submitting this application to install a continuous dual path direct fired dry kiln at the Perry Mill. See application narrative for more information.

16. Additional information provided in attachments as listed below:

Attachment A - Area Map, Process Flow Diagram

Attachment B - Emission Calculations

Attachment C - SIP Application Forms

Attachment D - BACT Supporting Calculations

Attachment E - RACT/BACT/LAER Clearing House Database Reports

Attachment F - Toxics Modeling Documentation

Attachment G Electronic Toxic Modeling Files

Attachment H Letters for Federal Land Managers of Class 1 Areas

17. Additional Information: Unless previously submitted, include the following two items:

Plot plan/map of facility location or date of previous submittal: Appendix A

Flow Diagram or date of previous submittal: Appendix A

18. Other Environmental Permitting Needs:

Will this facility/modification trigger the need for environmental permits/approvals (other than air) such as Hazardous Waste Generation, Solid Waste Handling, Water withdrawal, water discharge, SWPPP, mining, landfill, etc.?

No Yes, please list below:

Interfor is evaluating other needed permits for this project.

Georgia SIP Application Form 1.00, rev. January 2016 Page 5 of 5

19. List requested permit limits including synthetic minor (SM) limits.

Georgia SIP Application Form 2.00, rev. June 2005 Page 1 of 1

Facility Name: Interfor - Perry Mill Date of Application: December 2018

FORM 2.00 – EMISSION UNIT LIST

Emission

Unit ID Name Manufacturer and Model Number Description

DK-6 Drying Kiln No. 6 Custom Continuous Dual-Path Direct Fired Drying Kiln No. 6

FS-01 Fuel Silo Custom Fuel Silo for DK-6

Georgia SIP Application Form 2.01, rev. June 2005 Page 1 of 2

Facility Name: Interfor – Perry Mill Date of Application: December 2018

FORM 2.01 – BOILERS AND FUEL BURNING EQUIPMENT

Emission Unit ID Type of Burner Type of Draft1

Design Capacity of Unit

(MMBtu/hr Input)

Percent Excess

Air

Dates Date & Description of Last Modification

Construction Installation

DK-6 Green Sawdust Gassifier Other 40.0 TBD 2019 2019 N/A

1 This column does not have to be completed for natural gas only fired equipment.

Georgia SIP Application Form 2.01, rev. June 2005 Page 2 of 2

Facility Name: Interfor – Perry Mill Date of Application: December 2018

FUEL DATA

Emission Unit ID

Fuel Type

Potential Annual Consumption Hourly

Consumption Heat

Content Percent Sulfur

Percent Ash in Solid Fuel

Total Quantity Percent Use by Season

Max. Avg. Min. Avg. Max. Avg. Max. Avg. Amount Units

Ozone Season May 1 - Sept 30

Non-ozone Season

Oct 1 - Apr 30

DK-6 Green

Sawdust 38,933 Tpy 41.7% 58.3%

8,889 lb/hr

8,889 lb/hr

4,500 Btu/lb

4,500 Btu/lb

N/A N/A N/A N/A

Fuel Supplier Information

Fuel Type Name of Supplier Phone Number Supplier Location

Address City State Zip

N/A

Georgia SIP Application Form 2.06, rev. June 2005 Page 1 of 1

Facility Name: Interfor – Perry Mill Date of Application: December 2018

FORM 2.06 – MANUFACTURING AND OPERATIONAL DATA

Normal Operating Schedule: 24 hours/day 7 days/week 52 weeks/yr

Additional Data Attached? - No - Yes, please include the attachment in list on Form 1.00, Item 16. Seasonal and/or Peak Operating Periods:

N/A

Dates of Annually Occurring Shutdowns: N/A

PRODUCTION INPUT FACTORS

Emission Unit ID

Emission Unit Name Const. Date

Input Raw Material(s)

Annual Input Hourly Process Input Rate

Design Normal Maximum

DK-6 Drying Kiln No. 6 2019 Green Dimensional

Lumber 120 MMBF/yr

13.7 MBF/hr

13.7 MBF/hr

13.7 MBF/hr

PRODUCTS OF MANUFACTURING

Emission Unit ID

Description of Product Production Schedule Hourly Production Rate

(Give units: e.g. lb/hr, ton/hr) Tons/yr Hr/yr Design Normal Maximum Units

DK-6 Dried Dimensional Lumber 120 MMBF/yr 8,760 120 120 120 MMBF

/yr

Georgia SIP Application Form 3.00, rev. June 2005 Page 1 of 2

Facility Name: Interfor – Perry Mill Date of Application: December 2018

Form 3.00 – AIR POLLUTION CONTROL DEVICES - PART A: GENERAL EQUIPMENT INFORMATION

APCD Unit ID

Emission Unit ID

APCD Type (Baghouse, ESP,

Scrubber etc)

Date Installed

Make & Model Number (Attach Mfg. Specifications & Literature)

Unit Modified from Mfg Specifications?

Gas Temp. F Inlet Gas Flow Rate

(acfm) Inlet Outlet

SC-01 FS-01 Cyclone 2019 TBD N/A TBD TBD TBD

Georgia SIP Application Form 3.00, rev. June 2005 Page 2 of 2

Facility Name: Interfor – Perry Mill Date of Application: December 2018

Form 3.00 – AIR POLLUTION CONTROL DEVICES – PART B: EMISSION INFORMATION

APCD Unit ID

Pollutants Controlled

Percent Control Efficiency

Inlet Stream To APCD Exit Stream From APCD Pressure Drop Across Unit

(Inches of water) Design Actual lb/hr Method of

Determination lb/hr

Method of Determination

SC-01 Particulate Matter (PM)

See emission calculations TBD

Georgia SIP Application Form 4.00, rev. June 2011 Page 1 of 2

Facility Name: Interfor – Perry Mill Date of Application: December 2018

FORM 4.00 – EMISSION INFORMATION

Emission Unit ID

Air Pollution Control

Device ID

Stack ID

Pollutant Emitted

Emission Rates

Hourly Actual Emissions

(lb/hr)

Hourly Potential

Emissions (lb/hr)

Actual Annual

Emission (tpy)

Potential Annual

Emission (tpy)

Method of Determination

DK-6 N/A N/A Total PM <1.92 1.92 <8.40 8.40 Factor obtained EPD Recommended Emission Factors for Lumber Kiln Permitting in Georgia

DK-6 N/A N/A Total PM10 <1.42 1.42 <6.24 6.24

DK-6 N/A N/A Total PM2.5 <1.36 1.36 <5.94 5.94

DK-6 N/A N/A SO2 <1.00 1.00 <4.38 4.38 Factor obtained from AP-42 Table 1.6-2.

DK-6 N/A N/A NOX <3.84 3.84 <16.80 16.80

Factor obtained from EPD Recommended Emission Factors for Lumber Kiln Permitting in Georgia

DK-6 N/A N/A VOC <54.79 54.79 <240.00 240.00

Factor obtained EPD Recommended Emission Factors for Lumber Kiln Permitting in Georgia

DK-6 N/A N/A CO <10.00 10.00 <43.80 43.80

Factor obtained from EPD Recommended Emission Factors for Lumber Kiln Permitting in Georgia

DK-6 N/A N/A Lead <6.16E-04 6.16E-04 <2.70E-03 2.70E-03

Factor obtained from Interfor Preston PSD Permit Application (No. 40720)

DK-6 N/A N/A CO2e <8,365 8,365 <36,637 36,637 40 CFR Part 98, Subpart C, Tables A-1, C-1 and C-2.

Georgia SIP Application Form 4.00, rev. June 2011 Page 2 of 2

DK-6 N/A N/A Acetaldehyde <0.62 0.62 <2.70 2.70

Factor obtained EPD Recommended Emission Factors for Lumber Kiln Permitting in Georgia

DK-6 N/A N/A Formaldehyde <0.53 0.53 <2.32 2.32

Factor obtained EPD Recommended Emission Factors for Lumber Kiln Permitting in Georgia

DK-6 N/A N/A Methanol <2.21 2.21 <9.66 9.66

Factor obtained EPD Recommended Emission Factors for Lumber Kiln Permitting in Georgia

FS-01 SC-01 N/A Filterable PM <0.71 0.71 <3.11 3.11

Emission Factors per West Fraser Augusta application (No. 21615)

FS-01 SC-01 N/A Filterable PM10 <3.78E-02 3.78E-02 <1.65E-01 1.65E-01

Emission Factors per West Fraser Augusta application (No. 21615)

FS-01 SC-01 N/A Filterable PM2.5 <3.78E-02 3.78E-02 <1.65E-01 1.65E-01

Emission Factors per West Fraser Augusta application (No. 21615)

FWP1 N/A N/A Total PM <0.10 0.10 <0.025 0.025 NSPS Subpart IIII

FWP1 N/A N/A Total PM10 <0.10 0.10 <0.025 0.025 NSPS Subpart IIII

FWP1 N/A N/A Total PM2.5 <0.10 0.10 <0.025 0.025 NSPS Subpart IIII

FWP1 N/A N/A SO2 <3.32E-03 3.32E-03 <8.30E-04 8.30E-04 NSPS Subpart IIII

FWP1 N/A N/A NOX < 2.01 2.01 <0.5 0.5 NSPS Subpart IIII

FWP1 N/A N/A VOC <2.01 2.01 <0.5 0.5 NSPS Subpart IIII

FWP1 N/A N/A CO <2.04 2.04 <0.51 <0.51 AP-42 Section 3.3

FWP1 N/A N/A CO2e <351.94 351.94 <87.99 87.99

40 CFR Part 98, Subpart C, Tables A-1, C-1 and C-2.AP-42 Section 3.3

Georgia SIP Application Form 7.00, rev. June 2005 Page 1 of 2

Facility Name: Interfor – Perry Mill Date of Application: December 2018

FORM 7.00 – AIR MODELING INFORMATION: Stack Data

Stack ID

Emission Unit ID(s)

Stack Information Dimensions of largest Structure Near Stack

Exit Gas Conditions at Maximum Emission Rate

Height Above

Grade (ft)

Inside Diameter

(ft)

Exhaust Direction

Height (ft)

Longest Side (ft)

Velocity (ft/sec)

Temperature (F)

Flow Rate (acfm)

Average Maximum

SDK6A DK-6 36 2.67 Vertical N/A N/A 59.67 120 20,000 20,000

SDK6B DK-6 36 2.67 Vertical N/A N/A 59.67 120 20,000 20,000

SDK6C DK-6 7.75 23.08 Horizontal N/A N/A -- 120 -- --

SDK6D DK-6 7.75 23.08 Horizontal N/A N/A -- 120 -- --

NOTE: If emissions are not vented through a stack, describe point of discharge below and, if necessary, include an attachment. List the attachment in Form 1.00 General Information, Item 16.

Georgia SIP Application Form 7.00, rev. June 2005 Page 2 of 2

Facility Name: Interfor – Perry Mill Date of Application: December 2018

FORM 7.00 AIR MODELING INFORMATION: Chemicals Data

Chemical Potential

Emission Rate (lb/hr)

Toxicity Reference MSDS

Attached

See application with additional information about modeling

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants D

APPENDIX D: BACT SUPPORTING CALCULATIONS

Appendix D - BACT CalculationsInterfor - Perry Mill

Table D-1. Emission Units Subject to BACT

Unit

DK-6 120.0 MMBF/yr

Table D-2. Potential Control Scenario Summary

Emission Unit Pollutant Capture Efficiency 2

DK-6 VOC 4.00 lb/MBF 80.0% 0.064 lb/MBF

1. VOC is an EPA recommended emission factor

Table D-3. Cost Summary

Control Baseline Pollutant Operating

Efficiency 1 Emissions Removed CostEmission Unit Pollutant (%) (tpy) (%) (tpy) ($/ton removed)

DK-6 VOC 98% 240.00 80.0% 188.16 12,909$

1. RTO control efficiency per OAQPS Manual, Section 3.2, Chapter 2.

2. Based on engineering estimate.

Capture Efficiency 2

Technology

RTO

Max. Production Capacity

Control Basis

RTO

2. Per GA Toxic Modeling Guidance (Revised May 2017), for continuous kilns with powered vents, the total air toxic emissions should be split assuming 80 percent exit through powered vents and 20 percent exit through

doors. It is assumed that the portion of emissions through powered vents could be captured.

Total Controlled Emissions

Through the Stacks

Current Potential

Emissions 1

Trinity Consultants Page 1 of 3Perry Kiln BACT Cost Calculations (2018 12 19)

Cost Summary

Appendix D - BACT Calculations

Interfor - Perry Mill

Table D-4. Cost Analysis Supporting Information for RTO

Parameter

Kiln 6

(DK-6) Units Note(s)

Maximum Production Capacity 120 MMBF/yrUncontrolled Stack Inlet Emissions (VOC) 192.00 tpy 1Removal Efficiency 98 % 2VOC Removed 188.16 tpy 3

Control Equip. Outlet Temperature 1,450 ° F 4Airflow 40,000 acfm 5Airflow Capture Efficiency 50 % 7Exhaust Temperature 120 ° F 5Air Moisture Content 13.6 % 6Exhaust Gas Flow Rate 35,667 scfm 8Specific Heat of Dry Air 6.85 Btu/lb-mole·°F 9Specific Heat of Water 17.99 Btu/lb-mole·°F 9

Pressure Drop 19 inches of H2O 10

Fan Motor Efficiency 70 % 11Fan Electricity Usage 63.5 kW-hr 12

Energy Required From Fuel 61.90 MMBtu/hr 13

Natural Gas Heat Capacity 1,020 MMBtu/MMscf 14

Operating Labor Cost 12.0 $/hr 15Maintenance Labor Cost 13.2 $/hr 15Electricity Cost 0.06 $/kW-hr 16Natural Gas Cost 3.3 $/1,000 scf 17

RTO Equipment Life 10 years 18Interest Rate 7.0 % 18

2002 $ 179.9 n/a 192018 $ (June) 252.0 n/a 19

1. Potential inlet emissions based on maximum capacity and emissions. VOC as terpene + methanol + formaldehyde.

2. Per OAQPS Manual, Section 3.2, Chapter 2.

3. VOC Removed (tpy) = Removal Efficiency (%) × Uncontrolled Stack Inlet Emissions (tpy).

4. Based on average operating temperature (1,400 ° F - 1,500 ° F) in EPA Fact Sheet: http://www.epa.gov/ttn/catc/dir1/fregen.pdf

5. Preliminary estimate from Interfor

6. Values based stack test performed on Bibler Brothers Lumber Company continuous lumber kiln in Russellville, AR on March 12, 2009.

9. Standard value.

10. Based on example problem in OAQPS Manual, Section 3.2, Chapter 2, page 2-43.

11. Per OAQPS Manual, Section 3.2, Chapter 2, page 2-41, efficiency ranges from 40 to 70%. 70% is conservatively chosen.

12. Total Fan Electricity Usage based on Equation 2.42 of OAQPS Manual, Section 3.2, Chapter 2, page 2-41.

14. Average natural gas heating value per AP-42 Section 1.4 Natural Gas Combustion (July 1998).

15. Labor costs per OAQPS Manual, Section 3.1, Chapter 1, pages 1-29 and 1-37.

16. Based on OAQPS, Section 2, Chapter 3, page 3-32.

17. Based on OAQPS, Section 3.2, Chapter, 2, page 2-46

18. Based on example problem in OAQPS Manual, Section 3.2, Chapter 2, page 2-45.

19. Values based on U.S. Historical Consumer Price Index: https://www.bls.gov/regions/midwest/data/consumerpriceindexhistorical_us_table.pdf

13. Estimated as Exhaust Gas Flow Rate, scfm *60, min/hr * Density (Air), 0.0026 lb-mole/scf * Specific Heat (Btu/lb-mole·°F) * (Outlet Temp - Exhaust Temp, °F) / 106, based

on the sensible heat integral, Q = m Cp (T1 - T2), where Q is the heat required, m is the mass flow rate of the air, Cp is the specific heat of air, T1 is the outlet temperature of the

RTO, and T2 is the exhaust temperature from the equipment. Also incorporates energy required to heat water vapor.

8. Calculated based on fuel F-factor of 11,936 Btu/CF, and accounting for 18.86 percent oxygen based on information from Bibler Brothers Lumber Company March 12, 2009

stack test result and multiplied by the capture efficiency of 50%.

7. Engineering estimate based on North Carolina Department of Environment and Natural Resources Air Permit Review for Weyerhauser’s Plymouth facility 's continuous kiln

construction application, which estimated a 50% capture efficiency for emissions from a continuous lumber kiln.

Trinity Consultants Page 2 of 3Perry Kiln BACT Cost Calculations (2018 12 19)

RTO Info

Appendix D - BACT Calculations

Interfor - Perry Mill

Table D-5. Capital Cost Analysis for RTO for VOC Control

Kiln 6

(DK-6)

OAQPS

Notation1

Purchased Equipment Costs

Total Equipment Cost21,748,559 A

Instrumentation 174,856 0.10 × ASales Tax 52,457 0.03 × AFreight 87,428 0.05 × A

Total Purchased Equipment Costs 2,063,299 B = 1.18 × A

Direct Installation CostsFoundations and Supports 165,064 0.08 × BHandling and Erection 288,862 0.14 × BElectrical 82,532 0.04 × BPiping 41,266 0.02 × BInsulation 20,633 0.01 × BPainting 20,633 0.01 × BSite Preparation & Buildings - -Additional duct work - -

Total Direct Installation Costs 618,990 C = 0.30 × B

Indirect Installation CostsEngineering 206,330 0.10 × BConstruction and Field Expense 103,165 0.05 × BContractor Fees 206,330 0.10 × BStart-up 41,266 0.02 × BPerformance Test 20,633 0.01 × BProcess Contingencies 61,899 0.03 × B

Total Indirect Installation Costs 639,623 D = 0.31 × B

Total Capital Investment ($) 3,321,912 TCI = B + C + D

1. U.S. EPA OAQPS, EPA Air Pollution Control Cost Manual (6th Edition) , January 2002, Section 3.2 (VOC Destruction Controls), Chapter 2 (Incinerators).

Minimum regenerative thermal oxidizer cost 35 2002 dollars/scfm

Conversion from 2002 to May 2018 dollars 1.40 June 2018 dollars per 2002 dollar

Minimum regenerative incinerator cost 49.03 May 2018 dollars/scfm

Table D-6. Operating Cost Analysis for RTO for VOC control

Kiln 6

(DK-6)

OAQPS

Notation1

Direct Annual CostsOperating Labor (0.5 hr, per 8-hr shift) 6,570 ESupervisory Labor 986 F = 0.15 × EMaintenance Labor (0.5 hr, per 8-hr shift) 7,227 GMaintenance Materials 7,227 H = GElectricity 33,383 I Natural Gas 1,754,439 J

Total Direct Annual Costs 1,809,831

DAC = E + F + G

+ H + I + J

Indirect Annual Costs

Overhead 13,206

K = 0.60 × (E +

F + G + H)

Administrative Charges 66,438 L = 0.02 × TCIProperty Tax 33,219 M = 0.01 × TCIInsurance 33,219 N = 0.01 × TCI

Capital Recovery2472,965 O

Total Indirect Annual Costs 619,048

IDAC = K + L +

M + N + O

Total Annual Cost ($) 2,428,879

TAC = DAC +

IDAC

Pollutant Removed (tpy) 188.16

Cost per ton of Pollutant Removed ($) 12,909

$/ton = TAC /

Pollutant

Removed

1. U.S. EPA OAQPS, EPA Air Pollution Control Cost Manual (6th Edition) , January 2002, Section 3.2 (VOC Destruction Controls), Chapter 2 (Incinerators).

Operating Cost

Capital Cost

2. Capital Recovery factor calculated based on Equation 2.8a (Section 1, Chapter 2, page 2-21) and Table 1.13 (Section 2, Chapter 1, page 1-52) of U.S. EPA OAQPS, EPA Air

Pollution Control Cost Manual (6th Edition), January 2002.

2. Capital Costs are based the EPA CATC Regenerative Incinerator Fact Sheet (EPA-452/F-03-021) average $/scfm capital cost, scaled from 2002 $ to 2018 $.

Trinity Consultants Page 3 of 3Perry Kiln BACT Cost Calculations (2018 12 19)

RTO Cost

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants E

APPENDIX E: RACT/BACT/LAER CLEARING HOUSE DATABASE REPORT

RBLCSearchResultsforWoodLumberKilns‐VOCControl

CompanyName FacilityName State

BatchorContinuous

Kiln?Permit

IssuanceDate ProcessNamePrimaryFuel Throughput

ThroughputUnits ControlMethodDescription

EmissionLimit1

EmissionLimit1Unit

EmissionLimit1

AveragingPeriod

EmissionLimit2

EmissionLimit2Unit

EmissionLimit2

AveragingPeriod

EmissionLimit

(lb/MBF)

NEWSOUTHLUMBERCOMPANY‐DARLINGTONINC.

NEWSOUTHLUMBERCOMPANY‐DARLINGTONINC.

SC Batch 1/26/2016TWOKILNS‐KLN5

ANDKLN6GREEN

SAWDUST85

MILLIONBD‐FT/YR

PROPEROPERATIONANDMAINTENANCE 0 0 ‐ ‐ ‐ ‐ 0.00

GEORGIAPACIFICWOODPRODUCTSLLC

GEORGIAPACIFIC‐MCCORMICKSAWMILL

SC Continuous 10/27/2016Directfired

continuouslumberkiln

WoodFired

26 MMBTU/HR ‐ 0 0 ‐ ‐ ‐ ‐ 0.00

NORTHFLORIDALUMBERNORTHFLORIDALUMBER/BRISTOLSAWMILL

FL Batch 8/4/2009 Woodlumberkilnsteamheated

92,000,000board‐flumber/yr

Bestoperatingpractices:1)minimizeover‐dryinglumber;2)maintainconsistentmoisturecontentforprocessedlumber

charge;and3)dryattheminimumtemperature.116.93 T/YR ‐ ‐ ‐ ‐ 1.26

TININCTEMPLEINLANDPINELANDMANUFACTURINGCOMPLEX

TX Batch 8/12/2011Drystudmillkilns

1and2wood 156,000

boardfeetpercharge

goodoperatingpracticeandmaintenance 2.49LB

VOC/1000BOARDFEE

‐ ‐ ‐ ‐ 2.49

DELTICTIMBERCORPORATION

OLA AR Batch 2/11/2015DryingKilnNo.4

(SN‐12)None 105 MMBF/yr ‐ 33.2 LB/H

AVERAGEOFTHREE1‐HRTESTRUNS

‐ ‐ ‐ 2.77

DELTICTIMBERCORPORATION

OLA AR Batch 2/11/2015DryKilnNo.3(SN‐

06)None 105 MMBF/yr ‐ 33.3 LB/H

AVERAGEOFTHREE1‐HRTESTRUNS

‐ ‐ ‐ 2.78

DELTICTIMBERCORPORATION

OLA AR Batch 2/11/2015DryingKilnNo.5

(SN‐21)woodresidue

60 MMBF/yr ‐ 23.5 LB/H

AVERAGEOFTHREE1‐HRTESTRUNS

‐ ‐ ‐ 3.43

ANTHONYTIMBERLANDS,INC.

ANTHONYTIMBERLANDS,INC.

AR Batch 9/16/2009KILN#3INDIRECT‐

FIREDNONE 200 MMBF/YR ‐ 3.5 LB/MBF ‐ 350.00 T/YR ‐ 3.50

ANTHONYTIMBERLANDS,INC.

ANTHONYTIMBERLANDS,INC.

AR Batch 9/16/2009KILN#4INDIRECT‐

FIREDNONE 200 MMBF/YR ‐ 3.5 LB/MBF ‐ 350.00 T/YR ‐ 3.50

ANTHONYTIMBERLANDS,INC.

ANTHONYTIMBERLANDS,INC.

AR Batch 9/16/2009KILN#5INDIRECT‐

FIREDNONE 200 MMBF/YR ‐ 3.5 LB/MBF ‐ 350.00 T/YR ‐ 3.50

WESTFRASER,INC.WESTFRASER,INC.(LEOLALUMBERMILL)

AR Continuous 8/5/2013LUMBERKILN,CONTINUOUS,INDIRECT

0 275 MMBF/YR ‐ 3.5 LB/MBF ‐ 481.30 T/YR ‐ 3.50

GILMANBUILDINGPRODUCTS

PERRYMILL FL Batch 4/1/2014Direct‐fired

lumberdryingkilnWastewood

90millionboard

ft/yr

Ataminimum,thepermitteeshalloperatethekilninaccordancewiththefollowingbestoperatingpractices(BMP).

a.Minimizeover‐dryingthelumber;b.Maintainconsistentmoisturecontentfortheprocessing

lumbercharge;andc.Dryattheminimumtemperature.

ThepermitteeshalldevelopandoperateinaccordancewithawrittenplantoimplementtheaboveBMPandanyothers

requiredbythekilnmanufacturer.Ninetydaysbeforetheinitialstartupofthekiln,thepermittedshallsubmittotheComplianceAuthoritytheBMPplan.TheTitleVairoperationpermitshall

includethesubmittedBMPplan.

3.5LB/THOUSANDBOARD

FT‐ ‐ ‐ ‐ 3.50

REXLUMBER,LLC GRACEVILLELUMBERMILL FL Continuous 7/14/2016Direct‐fired

continuouslumberdryingKilnNo.5

Sawdust 110,000Thousandbf/yr

LumbermoistureusedasproxyforVOCemissions‐‐productthatisoverdriedlikelymeansmoreVOCdrivenoffandemitted

3.5LB/THOUSA

NDBF‐ ‐ ‐ ‐ 3.50

KLAUSNERHOLDINGUSA,INC

KLAUSNERHOLDINGUSA,INC

SC Batch 1/3/2013LUMBERDRYINGKILNSEU007

‐ 700MILLION

BOARDFOOTPERYEAR

‐ 3.5 LB/MBF ‐ ‐ ‐ ‐ 3.50

WESTFRASER,INC. LUMBERMILL TX Continuous 12/15/2011Continuouslumber

kilns(2)wood 275 MMBF/YR

propertemperatureandprocessmanagement;dryingtoappropriatemoisturecontent

3.5 LB/MBF ‐ ‐ ‐ ‐ 3.50

DELTICTIMBERCORPORATION

DELTICTIMBERCORPORATIONWALDO

AR Batch 10/18/2013 KILNNO.4 0 13 MBF/HR ‐ 46.2 LB/H ‐ ‐ ‐ ‐ 3.50

DELTICTIMBERCORPORATION

DELTICTIMBERCORPORATIONWALDO

AR Batch 10/18/2013 KILNNO.3 ‐ 8 MBF/HR PROPERKILNOPERATION 27 LB/H ‐ ‐ ‐ ‐ 3.51

DELTICTIMBERCORPORATION

DELTICTIMBERCORPORATIONWALDO

AR Batch 10/18/2013 KILNNO.5 ‐ 8 MBF/HR ‐ 27 LB/H ‐ ‐ ‐ ‐ 3.51

NEWSOUTHLUMBERCOMPANY,INC.

CAMDENPLANT SC Continuous 6/18/2014

DKN6‐DIRECTFIRED

CONTINUOUSLUMBERDRYING

KILN

WOOD 80MMBD‐FT/YR

‐ 150.4 T/YR ‐ ‐ ‐ ‐ 3.54

RBLCSearchResultsforWoodLumberKilns‐VOCControl

CompanyName FacilityName State

BatchorContinuous

Kiln?Permit

IssuanceDate ProcessNamePrimaryFuel Throughput

ThroughputUnits ControlMethodDescription

EmissionLimit1

EmissionLimit1Unit

EmissionLimit1

AveragingPeriod

EmissionLimit2

EmissionLimit2Unit

EmissionLimit2

AveragingPeriod

EmissionLimit

(lb/MBF)

DELTICTIMBERCORPORATION

DELTICTIMBERCORPORATION‐OLA

AR Continuous 10/13/2015STEAMHEATEDCONTINUOUSKILNNO.3

0 79,000 MBF/YRPROPERDRYINGSCHEDULEANDATEMPERATUREBASEDONMOISTURECONTENTOFTHELUMBERTOBEDRIEDANDTHE

MANUFACTURER'SSPECIFICATIONS33.3 LB/H

AVERAGEDOVERDRYINGCYCLETIME

‐ ‐ ‐ 3.69

DELTICTIMBERCORPORATION

DELTICTIMBERCORPORATION‐OLA

AR Continuous 10/13/2015STEAMHEATEDCONTINUOUSKILNNO.4

‐ 79,000 MBF/YRPROPERDRYINGSCHEDULEANDATEMPERATUREBASEDONMOISTURECONTENTOFTHELUMBERTOBEDRIEDANDTHE

MANUFACTURER'SSPECIFICATIONS33.3 LB/H

AVERAGEDOVERDRYINGCYCLETIME

‐ ‐ ‐ 3.69

WESTFRASER,INC.WESTFRASER‐OPELIKALUMBERMILL

AL Continuous 11/1/2013

Two(2)87.5MMBF/YR

Continuouskilnswitha35

MMBtu/hrdirect‐firedwoodburner

WoodShavings

175 MMBF/YR ‐ 3.76 LB/MBF ‐ 175.00K/12

MONTHS‐ 3.76

WESTFRASER,INC.WESTFRASER,INC.‐MAPLESVILEMILL

AL Continuous 4/15/2013

Two(2)100MMBF/Y

Continuousdirectfiredkiln

WoodResiduals

200 MMBF/YR ‐ 3.76 LB/MBF ‐ ‐ ‐ ‐ 3.76

RESOLUTEFPU.S.,INC.RESOLUTEFORESTPRODUCTS‐ALABAMASAWMILL

AL Continuous 6/24/2015

ContinuousDirect‐FiredLumberDryKilnswith35

mmbtu/hrWoodFiredBurner

Wood 108mmbf/yr‐

each‐ 3.76 LB/MBF

ROLLING12MONTHS

‐ ‐ ‐ 3.76

WESTFRASER,INCWHITEHOUSELUMBERMILL

FL Continuous 41891Direct‐Fired

ContinuousKilnsWoodwaste

40 MMBTU/H

ProperMaintenanceandOperatingProcedures:Minimizeover‐dryingthelumber.

Maintainconsistentmoisturecontentfortheprocessinglumbercharge.

Drythelumberattheminimumtemperature.DevelopawrittenOperationandMaintenance(O&M)planidentifyingtheabovepracticesandtheoperationandmaintenancerequirementsfromthekilnmanufacturer.

Recordandmonitorthetotalmonthlyamountand12‐monthannualtotalofwooddriedineachkiln(board‐feet).

Recordthecalculatedmonthlyand12‐monthannualtotalemissionsofVOCtodemonstratecompliancewiththeprocess

andemissionslimits.

3.76LB/THOUSANDBOARD

FT‐ ‐ ‐ ‐ 3.76

WESTFRASERTIMBERCO.LTD

WESTFRASER‐NEWBERRYLUMBERMILL

SC Continuous 4/30/2013

TWO‐35MMBTU/HDUALPATH,DIRECT

FIRED,CONTINUOUS

LUMBERKILNS,15THOUSANDBF/H,

EACH

SAWDUST 0 ‐ PROPEROPERATIONANDGOODOPERATINGPRACTICES 3.76 LB/MBF ‐ 376.00 T/YR ‐ 3.76

NEWSOUTHLUMBERCOMPANY,INC.

NEWSOUTHLUMBERCOMPANY,INC.DARLINGTONPLANT

SC Batch 6/18/2013 DKN5WOODWASTE

75 MMBF/YR PROPERMAINTENANCEANDOPERATION 141 T/YR ‐ ‐ ‐ ‐ 3.76

KAPSTONECHARLESTONKRAFTLLC

KAPSTONECHARLESTONKRAFTLLC‐SUMMERVILLE

SC Batch 1/20/2015 LUMBERKILNS 0 195 MMBF/YR PROPERMAINTENANCEANDOPERATION 225.6 T/YR ‐ 3.76 LB/MBF ‐ 3.76

SIMPSONLUMBERCOMPANY,LLC

SIMPSONLUMBERCOMPANY,LLC

SC Batch 6/20/2014 LUMBERKILNS 0 166 MMBF/YR PROPEROPERATIONANDMAINTENANCE 156 T/YR ‐ 3.76 LB/MBF ‐ 3.76

TWORIVERSLUMBERCO.,LLC

TWORIVERSLUMBERCO.,LLC

AL Continuous 1/3/2017

15.4MBF/HRCDK(DPK‐1)W/38.8MMBTU/HRNATURALGAS

BURNER

NATURALGAS

15 MBF/H ‐ 3.8 LB/MBFMEASUREDASCARBON

‐ ‐ ‐ 3.80

TWORIVERSLUMBERCO.,LLC

TWORIVERSLUMBERCO.,LLC

AL Continuous 1/3/2017

15.4MBF/HRCDK(DPK‐2)W/38.8MMBTU/HRNATURALGAS

BURNER

NATURALGAS

15 MBF/H ‐ 3.8 LB/MBFMEASUREDASCARBON

‐ ‐ ‐ 3.80

BIBLERBROTHERSLUMBERCOMPANY

BIBLERBROTHERSLUMBERCOMPANY

AR Continuous 39685SN‐07GANDSN‐13GCONTINOUSOPERATINGKILNS

WOODRESIDUE

25 MMBTU/H ‐ 3.8 LB/MBFVOC ‐ 46.50LB

VOC/H/KILN

‐ 3.8

RBLCSearchResultsforWoodLumberKilns‐VOCControl

CompanyName FacilityName State

BatchorContinuous

Kiln?Permit

IssuanceDate ProcessNamePrimaryFuel Throughput

ThroughputUnits ControlMethodDescription

EmissionLimit1

EmissionLimit1Unit

EmissionLimit1

AveragingPeriod

EmissionLimit2

EmissionLimit2Unit

EmissionLimit2

AveragingPeriod

EmissionLimit

(lb/MBF)

GEORGIA‐PACIFICWOODPRODUCTSSOUTHLLC(GURDONPL

GEORGIA‐PACIFICWOODPRODUCTSSOUTHLLC(GURDONPLYWOODAND

AR Batch 2/6/2015SN‐09#4LUMBER

KILNNATURALGAS

130MILLION

BOARDFEET‐ 3.8

LB/1000BOARDFEET

‐ 373.70 T/YR ‐ 3.80

UNIONCOUNTYLUMBERCOMPANY

ELDORADOSAWMILL AR Batch 8/3/2015LUMBERDRYING

KILNSN‐01NATURAL

GAS45 MMBTU/H PROPERMAINTENANCEANDOPERATION 3.8 LB/MBF ‐ ‐ ‐ ‐ 3.80

UNIONCOUNTYLUMBERCOMPANY

ELDORADOSAWMILL AR Batch 8/3/2015LUMBERDRYING

KILNSN‐02NATURALGAS

45 MMBTU/H ‐ 3.8 LB/MBF ‐ ‐ ‐ ‐ 3.80

UNIONCOUNTYLUMBERCOMPANY

ELDORADOSAWMILL AR Batch 8/3/2015LUMBERDRYING

KILNSN‐03NATURALGAS

45 MMBTU/H ‐ 3.8 LB/MBF ‐ ‐ ‐ ‐ 3.80

ANTHONYFORESTPRODUCTSCOMPANY,LLC

ANTHONYFORESTPRODUCTSCOMPANY,LLC

AR Continuous 10/2/2017 DualPathKiln#3 sawdust 32 MMBtu/hr ‐ 3.8 LB/MBF ‐ ‐ ‐ ‐ 3.80

CADDORIVERLLC CADDORIVERLLC AR Continuous 1/29/2018 DualPathKiln#3 Wood 185,000 MBF ‐ 3.8 LB/MBF ‐ 53.20 LB/HR ‐ 3.80

SIMPSONLUMBERCOMPANY,LLC

SIMPSONLUMBERCOMPANY,LLC

SC Batch 8/29/2012DIRECT‐FIREDLUMBERDRYING

KILNNO.4

DRYWOODWASTE

34 MMBTU/H WORKPRACTICESTANDARDS 104 T/YR ‐ 3.80 LB/MBF ‐ 3.80

SIMPSONLUMBERCO.SIMPSONLUMBERCO,LLCMELDRIMOPERATIONS

GA Batch 4/25/2012 KILN3WASTEWOOD

65,000,000 BF/YR PROPERMAINTENANCEANDOPERATION 3.83 LB/MBF DAILY ‐ ‐ ‐ 3.83

SIMPSONLUMBERCO.SIMPSONLUMBERCO,LLCMELDRIMOPERATIONS

GA Batch 4/25/2012 KILN4WASTEWOOD

73,000,000 BF/YR PROPERMAINTENANCEANDOPERATION 3.93 LB/MBF DAILY ‐ ‐ ‐ 3.93

SCOTCHGULFLUMBER,LLC FULTONSAWMILL AL Continuous 6/8/2017

11.4MBF/HRCONTINUOUSDIRECT‐FIREDLUMBERDRYKILN,40

MMBTU/HRNATURALGAS

BURNER,&amp;4MMBTU/HRNATURALGASCONDENSATEEVAPORATOR

NATURALGAS

11 MBF/HBACTDETERMINEDASPROPERKILNOPERATIONAND

MAINTENANCEPRACTICES4 LB/MBF MBF ‐ ‐ ‐ 4.00

CADDORIVERLLC CADDORIVERLLC AR Continuous 2/8/2017CONTINUOUS

LUMBERDRYINGKILNS

WOOD 116,000,000 BOARDFEET ‐ 53.2 LB/H ‐ 220.40 T/YR12MONTHROLLINGTOTAL

4.02

NEWSOUTHCOMPANIES,INC.

NEWSOUTHCOMPANIES,INC.‐CONWAYPLANT

SC Batch 9/24/2012 LUMBERKILNS 0 381MMBD‐FT/YR

PROPERMAINTENANCEANDOPERATION 799.18 T/YR ‐ 4.20 LB/MBFASTOTAL

VOC4.20

NEWSOUTHCOMPANIES,INC.

NEWSOUTHCOMPANIES,INC.‐CONWAYPLANT

SC Batch 10/15/2014 LUMBERKILNS 0 296 MMBF/YR PROPERMAINTENANCEANDOPERATION 602 T/YR

(442T/YRKILNS1‐5,160T/YRKILN6)

4.20 LB/MBF ‐ 4.20

WESTROCKCOATEDBOARD,LLC

COTTONTONSAWMILL AL Continuous 8/5/2015

ContinuousDirect‐firedLumberDryKilnwith34

MMBtu/hrWood‐firedburner

Biomass 16 MBF/hr Goodcombustionpracticesandpropermaintenance 4.21 LB/MBFVOCAS

TERPENES,M25A

‐ ‐ ‐ 4.21

DELTICTIMBERCORPORATION

DELTICTIMBERCORPORATION‐OLA

AR Continuous 10/13/2015DIRECT‐FIREDCONTINUOUSKILNNO.5

‐ 79,000 MBF/YRPROPERDRYINGSCHEDULEANDATEMPERATUREBASEDONMOISTURECONTENTOFTHELUMBERTOBEDRIEDANDTHE

MANUFACTURER'SSPECIFICATIONS38.2 LB/H

AVERAGEDOVERDRYINGCYCLETIME

‐ ‐ ‐ 4.24

TININC.DBATEMPLE‐INLAND

SOUTHWESTLOUISIANALUMBEROPERATIONS

LA Batch 1/31/2014EP‐3K‐Wood‐

FiredDryKilnNo.1

Wood 60,000 MBF/YR Properkilndesign&operation;annualproductionlimit 29.27 LB/HHOURLYMAXIMUM

2.96 LB/MBFWHENDRYINGLUMBER

4.27

TININC.DBATEMPLE‐INLAND

SOUTHWESTLOUISIANALUMBEROPERATIONS

LA Batch 1/31/2014EP‐4KWood‐FiredDryKilnNo.2

Wood 60,000 MBF/YR Properkilndesign&operation;annualproductionlimit 29.27 LB/HHOURLYMAXIMUM

2.96 LB/MBFWHENDRYINGLUMBER

4.27

TININC.DBATEMPLE‐INLAND

SOUTHWESTLOUISIANALUMBEROPERATIONS

LA Batch 1/31/2014EP‐5KWood‐FiredDryKilnNo.3

Wood 60,000 MBF/YR Properkilndesign&operation;annualproductionlimit 29.27 LB/HHOURLYMAXIMUM

2.96 LB/MBFWHENDRYINGLUMBER

4.27

TININC.DBATEMPLE‐INLAND

SOUTHWESTLOUISIANALUMBEROPERATIONS

LA Batch 1/31/2014EP‐6KWood‐FiredDryKilnNo.4

Wood 60,000 MBF/YR Properkilndesign&operation;annualproductionlimit 29.27 LB/HHOURLYMAXIMUM

2.96 LB/MBFWHENDRYINGLUMBER

4.27342

ELLIOTTSAWMILLINGCOMPANY

ELLIOTTSAWMILLINGCOMPANY

SC Batch 4/14/2009DIRECTFIREDLUMBERDRYING

KILNNO.5

SAWDUST

35 MMBTU/H WORKPRACTICESTANDARDS 119 T/YR ‐ 4.50 LB/MBF ‐ 4.50

RBLCSearchResultsforWoodLumberKilns‐VOCControl

CompanyName FacilityName State

BatchorContinuous

Kiln?Permit

IssuanceDate ProcessNamePrimaryFuel Throughput

ThroughputUnits ControlMethodDescription

EmissionLimit1

EmissionLimit1Unit

EmissionLimit1

AveragingPeriod

EmissionLimit2

EmissionLimit2Unit

EmissionLimit2

AveragingPeriod

EmissionLimit

(lb/MBF)

THEWESTERVELTCOMPANY

THEWESTERVELTCOMPANY

AL Continuous 8/21/2013

Three(3)93MMBF/Y

Continous,Dualpath,indirectfired

kilns

Steam(Indirectheat)

0 ‐ ‐ 4.57 LB/MMBF ‐ ‐ ‐ ‐ 4.57

WEYERHAEUSERNRCOMPANY

MILLPORTWOODPRODUCTSFACILITY

AL Continuous 12/30/2014Continuousdirect‐lumberdrykiln

Greensawdust

140,000 mbf/yrPropermaintenance&operatingpracticerequirements.

Testmethodinformation:Method18/25.4.7 LB

MBFASWPP1*

‐ ‐ ‐ 4.70

WEYERHAEUSERNRCOMPANY

MILLPORTWOODPRODUCTSFACILITY

AL Continuous 8/30/2016

THREECONTINUOUSDIRECT‐FIREDLUMBERDRYKILNS,CDK‐

4/X023A,CDK‐5/X023B,CDK‐

6/X023C

WOOD‐SAWDUST

385 MMBF/YR OPERATINGANDMAINTENANCEPRACTICES 4.7LB/MBFASWPP1

‐ ‐ ‐ ‐ 4.70

GEORGIA‐PACIFICWOODPRODUCTSLLC

BELKCHIP‐N‐SAWFACILITY AL Continuous 5/26/2016

115,000MBF/YRCDKD(ES‐006)

WITH35MMBTU/HR

WOOD‐FIREDAND7MMBTU/HRNG‐FIREDBURNERS

WOOD‐SAWDUST

115 MMBF/YROPERATINGANDMAINTANCEPRACTICES

MEASURELUMBERMOISTURECONTENT5.49

LB/MBFASWPPIVOC

‐ ‐ ‐ ‐ 5.49

GEORGIA‐PACIFICWOODPRODUCTSLLC

BELKCHIP‐N‐SAWFACILITY AL Continuous 5/26/2016

115,000MBF/YRCDKE(ES‐009)

WITH35MMBTU/HR

WOOD‐FIREDAND7MMBTU/HRNG‐FIREDBURNERS

WOOD‐SAWDUST

115 MMBF/YROPERATINGANDMAINTENANCEPRACTICES

LUMBERMOISTURECONTENTMEASUREMENT5.49

LB/MBFASWPP1VOC

‐ ‐ ‐ ‐ 5.49

GEORGIAPACIFICWOODPRODUCTS,LLC

TALLADEGASAWMILL AL Batch 12/18/2017 DryKiln1naturalgas

343,530 MCF/hr ‐ 5.49LB/MBFASWPP1VOC

‐ ‐ ‐ ‐ 5.49

GEORGIAPACIFICWOODPRODUCTS,LLC

TALLADEGASAWMILL AL Batch 43087 DryKiln2NaturalGas

343,530 MCF/hr ‐ 5.49LB/MBFASWPP1VOC

‐ ‐ ‐ ‐ 5.49

GEORGIAPACIFICWOODPRODUCTS,LLC

TALLADEGASAWMILL AL Batch 12/18/2017 DryKiln3NaturalGas

257,648 MCF/hr ‐ 5.49LB/MBFASWPP1VOC

‐ ‐ ‐ ‐ 5.49

WEYERHAEUSERNRCOMPANY

DODSONDIVISION LA Batch 12/30/2013DryKiln3(035,

EQT17)0 16 MBD‐FT/H

Goodoperatingpractices,includingproperdesign,operation,andmaintenance

90.74 LB/HHOURLYMAXIMUM

481.37 T/YRANNUALMAXIMUM*

5.67

WEYERHAEUSERNRCOMPANY

DODSONDIVISION LA Batch 12/30/2013DryKiln4(051,

EQT32)‐ 16 MBD‐FT/H

Goodoperatingpractices,includingproperdesign,operation,andmaintenance

90.74 LB/H

HOURLYMAX(SEENOTEKILNNOTBUILT)

481.37 T/YR

ANNUALMAX*(SEENOTEKILN

NOTBUILT)

5.67

WEYERHAEUSERNRCOMPANY

DODSONDIVISION LA Batch 12/30/2013DryKiln1(033,

EQT15)‐ 14 MBD‐FT/H

Goodoperatingpractices,includingproperdesign,operation,andmaintenance

79.4 LB/HHOURLYMAXIMUM

481.37 T/YRANNUALMAXIMUM*

5.67

WEYERHAEUSERNRCOMPANY

DODSONDIVISION LA Batch 12/30/2013DryKiln2(034,

EQT16)‐ 14 MBD‐FT/H

Goodoperatingpractices,includingproperdesign,operation,andmaintenance

79.4 LB/HHOURLYMAXIMUM

481.37 T/YRANNUALMAXIMUM*

5.67

WESTFRASERTIMBERCOMPANY,LTD

JOYCEMILL LA Batch 40771 Lumberkilns 0 300millionboard

feet/yrproperlydesignandoperation 930 T/YR ‐ ‐ ‐ ‐ 6.2

RBLCSearchResultsforWoodLumberKilns‐VOCControl

CompanyName FacilityName State

BatchorContinuous

Kiln?Permit

IssuanceDate ProcessNamePrimaryFuel Throughput

ThroughputUnits ControlMethodDescription

EmissionLimit1

EmissionLimit1Unit

EmissionLimit1

AveragingPeriod

EmissionLimit2

EmissionLimit2Unit

EmissionLimit2

AveragingPeriod

EmissionLimit

(lb/MBF)

BOWATER(ALABAMA)INC.FORESTPRODUCTDIVISION

ALBERTVILLESAWMILL AL Batch 4/9/2008

TWO182.14MBF,STEAM‐HEADEDLUMBERDRYKILNS(NORTH&amp;SOUTH‐K100/K101)

‐ 182 MBFOPERATEW/WETBULBSETPOINTDRYINGSCHEDULEOF

LESSTHANOREQUALTO185F;DAILYANDMONTHLYKILNI/MPROCEDURES

7 LB/MBF

KILNCHARGECYCLONE(PINENE)

‐ ‐ ‐ 7.00

MARTCOLIMITEDPARTNERSHIP

CHOPINMILL LA Batch 3/18/2014

LumberDryKilnsNos.1&amp;2(EQT37&amp;

38)

‐ 25,000 MBD‐FT/YRGoodoperatingpracticestolimitVOCemissionsto4.29lb/Mbd‐

ft(12‐monthrollingaverage).24.51 LB/H

HOURLYMAXIMUM

53.68 T/YRANNUALMAXIMUM*

8.59

NEWSOUTHLUMBERCOMPANY,INC.

NEWSOUTHLUMBERCOMPANY,INC.DARLINGTONPLANT

SC Batch 6/18/2013 DKN1STEAMHEATED

60 MMBF/YR PROPEROPERATIONANDMAINTENANCE 343.98 T/YR ‐ ‐ ‐ ‐ 11.47

NEWSOUTHLUMBERCOMPANY,INC.

NEWSOUTHLUMBERCOMPANY,INC.DARLINGTONPLANT

SC Batch 6/18/2013 DKN4STEAMHEATED

60 MMBF/YR MAINTENACEANDOPERATINGPRACTICES 343.98 T/YR ‐ ‐ ‐ ‐ 11.47

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants F

APPENDIX F: TOXIC MODELING DOCUMENTATION

SB03SB02SB01

SDK5SDK4

SDK3SDK2

SDK1

SDK6D

SDK6CSDK6B SDK6A

243,000 243,100 243,200 243,300 243,400

3,593

,400

3,593

,500

3,593

,600

3,593

,700

3,593

,800

3,593

,900

3,594

,000

Interfor - Perry MillEmission Point Map

UTM Easting (m)

UTM

North

ing (m

)

All coordinates in UTM NAD83, Zone 17

Appendix F - Toxics Modeling Documentation

Interfor - Perry, Georgia

Table F-1. Modeled Stack Information

Emission

Unit ID

Emission

Unit

Description

Stack

ID

Obstructed or

Unobstructed? Orientation

Easting Zone

17S

Northing

Zone 17SElevation

Exhaust

Flowrate

(m) (m) (m) (m) (ft) (m) (ft) (F) (K) (acfm) (m/s) (ft/sec)

DK-1 Kiln 1 SDK1 Obstructed Vertical 243,183 3,593,672 97.34 6.741 22.1 48.604 -- 240 388.71 -- 0.001 --

DK-2 Kiln 2 SDK2 Unobstructed Horizontal 243,176 3,593,688 97.44 9.144 30 77.462 -- 240 388.71 -- 0.001 --

DK-3 Kiln 3 SDK3 Unobstructed Horizontal 243,173 3,593,695 97.45 9.144 30 77.462 -- 240 388.71 -- 0.001 --

DK-4 Kiln 4 SDK4 Obstructed Vertical 243,165 3,593,711 97.48 7.960 26.1 48.604 -- 240 388.71 -- 0.001 --

DK-5 Kiln 5 SDK5 Obstructed Vertical 243,160 3,593,728 97.55 6.741 22.1 48.604 -- 240 388.71 -- 0.001 --

SDK6A Unobstructed Vertical 243,142 3,593,522 94.63 10.973 36 0.813 2.67 120 322.04 20,000 18.186 59.67

SDK6B Unobstructed Vertical 243,114 3,593,511 94.24 10.973 36 0.813 2.67 120 322.04 20,000 18.186 59.67

SDK6C Unobstructed Horizontal 243,154 3,593,527 94.83 2.362 7.75 7.036 23.08 120 322.04 -- 0.001 --

SDK6D Unobstructed Horizontal 243,103 3,593,506 93.99 2.362 7.75 7.036 23.08 120 322.04 -- 0.001 --

B-1 Boiler 1 SB01 Unobstructed Vertical 243,197 3,593,619 96.66 10.058 33 0.762 2.5 276 408.71 12,181 12.603 41.35

B-2 Boiler 2 SB02 Unobstructed Vertical 243,199 3,593,613 96.60 10.058 33 0.762 2.5 276 408.71 12,181 12.603 41.35

B-3 Boiler 3 SB03 Unobstructed Vertical 243,203 3,593,607 96.54 10.058 33 0.762 2.5 276 408.71 12,181 12.603 41.35

1. For kilns with obstructed, vertical stacks, stack height adjusted downward by 3 stack diameters per Georgia EPD Toxics Guidance (Revised May 2017)

Table F-2. Adjusted Stack Diameter Calculation for Existing Kilns

Emission

Unit ID

Emission

Unit

Description

Stack

ID

Obstructed or

Unobstructed? Orientation

Adjusted

Exhaust

Flowrate

Adjusted

Stack

Diameter3

Modeled

Exhaust

Velocity

(m) (ft) (acfm) (ft/sec) (m/s) (m) (m/s)

DK-11Kiln 1 SDK1 Obstructed Vertical 0.344 1.13 3,937 66 20 48.604 0.001

DK-22Kiln 2 SDK2 Unobstructed Horizontal 0.688 2.26 10,000 42 12.7 77.462 0.001

DK-32Kiln 3 SDK3 Unobstructed Horizontal 0.688 2.26 10,000 42 12.7 77.462 0.001

DK-41Kiln 4 SDK4 Obstructed Vertical 0.344 1.13 3,937 66 20 48.604 0.001

DK-51Kiln 5 SDK5 Obstructed Vertical 0.344 1.13 3,937 66 20 48.604 0.001

1. For DK-1, DK-4, and DK-5, adjusted stack velocity set to maximum of 20 m/s per email from Jeng-Hon Su (EPD) to Chris Pool (Trinity) on 11/6/2018.

Adjusted Exhaust Flowrate (acfm) = Adjusted Stack Velocity (ft/s) * 60 (s/min) * [π/4 * {Stack Diameter (ft)}2]

2. For DK-2 and DK-3, adjusted exhaust flowrate assumed to be 10,000 acfm.

Adjusted Stack Velocity (ft/s) = Adjusted Exhaust Flowrate (acfm) / 60 (s/min) / [π/4 * {Stack Diameter (ft)}2]

3. Adjusted diameter based on Georgia EPD Toxics Guidance (Revised May 2017). Adjusted diameter (m) = 31.6 × stack diameter (m) × [adjusted stack exit velocity (m/s) ]^0.5

DK-6Continuous

Kiln 6

Stack Diameter

Exhaust VelocityStack Height1 Stack DiameterExit Gas

Temperature

Adjusted Stack Velocity

Trinity Consultants Page 1 of 3 TIA Evaluation

Appendix F - Toxics Modeling Documentation

Interfor - Perry, Georgia

Table F-3. Modeling Emission Rate

Acetaldehyde Formaldehyde Methanol Acetaldehyde Formaldehyde Methanol

Emission

Unit ID

Emission

Unit

Description

Stack

ID 75-07-0 50-00-0 67-56-1 75-07-0 50-00-0 67-56-1

DK-1 Kiln 1 SDK1 3.47E-02 9.56E-02 1.51 4.37E-03 1.21E-02 0.19

DK-2 Kiln 2 SDK2 8.27E-03 2.28E-02 0.36 1.04E-03 2.88E-03 4.55E-02

DK-3 Kiln 3 SDK3 4.77E-03 1.32E-02 0.21 6.01E-04 1.66E-03 2.63E-02

DK-4 Kiln 4 SDK4 2.88E-02 7.96E-02 1.26 3.63E-03 1.00E-02 0.16

DK-5 Kiln 5 SDK5 2.88E-02 7.96E-02 1.26 3.63E-03 1.00E-02 0.16

SDK6A 0.25 0.21 0.88 3.11E-02 2.66E-02 0.11

SDK6B 0.25 0.21 0.88 3.11E-02 2.66E-02 0.11

SDK6C 6.16E-02 5.29E-02 0.22 7.77E-03 6.66E-03 2.78E-02

SDK6D 6.16E-02 5.29E-02 0.22 7.77E-03 6.66E-03 2.78E-02

B-1 Boiler 1 SB01 2.32E-02 0.12 -- 2.93E-03 1.55E-02 --

B-2 Boiler 2 SB02 2.32E-02 0.12 -- 2.93E-03 1.55E-02 --

B-3 Boiler 3 SB03 2.32E-02 0.12 -- 2.93E-03 1.55E-02 --

1. Per GA Toxic Modeling Guidance (Revised May 2017), for continuous kilns with powered vents, the total air toxic emissions should be split assuming 80 percent

exit through powered vents (SDK6A and SDK6B) and 20 percent exit through doors (SDK6C and SDK6D).

DK-6Continuous

Kiln 61

lb/hr g/s

Trinity Consultants Page 2 of 3 TIA Evaluation

Appendix F - Toxics Modeling Documentation

Interfor - Perry, Georgia

Table F-4. Modeling Results

Year

Maximum 1-

Hour Impact1

Maximum 15-

Min Impact2

15-min AAC3

Is MGLC >15-

min AAC?

Maximum 24-

hr Impact1

24-hr AAC3

Is MGLC >

24-hr AAC?

Maximum

Annual

Impact1

Annual

AAC3

Is MGLC >

Annual

AAC?

Pollutant CAS No. (µg/m3) (µg/m

3) (µg/m

3) (Y/N) (µg/m

3) (µg/m

3) (Y/N) (µg/m

3) (µg/m

3) (Y/N)

1984 57.18 -- -- -- -- -- -- 0.56 -- --

1985 57.44 -- -- -- -- -- -- 0.51 -- --

1986 57.56 -- -- -- -- -- -- 0.57 -- --

1987 57.30 -- -- -- -- -- -- 0.61 -- --

1988 49.28 -- -- -- -- -- -- 0.64 -- --

Max 57.56 75.97 4,500 N N/A N/A N/A 0.64 4.55 N

1984 49.05 -- -- -- -- -- -- 0.83 -- --

1985 49.27 -- -- -- -- -- -- 0.87 -- --

1986 49.37 -- -- -- -- -- -- 0.71 -- --

1987 49.15 -- -- -- -- -- -- 0.76 -- --

1988 42.27 -- -- -- -- -- -- 0.70 -- --

Max 49.37 65.17 245 N N/A N/A N/A 0.87 1.10 N

1984 294 -- -- -- 83.36 -- -- -- -- --

1985 291 -- -- -- 103 -- -- -- -- --

1986 298 -- -- -- 86.68 -- -- -- -- --

1987 310 -- -- -- 97.73 -- -- -- -- --

1988 293 -- -- -- 86.92 -- -- -- -- --

Max 310 410 32,800 N 103 619 N N/A N/A N/A

1. First-high modeled impact.

2. Modeled 1-hour concentration multiplied by 1.32 to convert to 15-minute impact per GA Air Toxics Guidance (May 2017).

3. Appendix A of the GA Air Toxics Guidance (May 2017). Formaldehyde Annual AAC provided by Mr. Jeng-Hon Su (EPD) to Mr. Chris Pool (Trinity) via email on October 18, 2018.

50-00-0Formaldehyde

Acetaldehyde 75-07-0

Methanol 67-56-1

Trinity Consultants Page 3 of 3 TIA Evaluation

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants G

APPENDIX G: ELECTRONIC TOXIC MODELING FILES

Interfor U.S. Inc. – Perry Mill | Continuous Kiln Construction Permit Application Trinity Consultants H

APPENDIX H: LETTERS TO FEDERAL LAND MANAGERS

September19,2018Mr.BillJacksonAirProgramStaffUSDAForestService(FS)NationalForestsinNorthCarolinaP.O.Box2750Ashville,[email protected]: InterforU.S.,Inc.–Perry,GA

NotificationofPSDProjectinReferencetoFSClassIAreasDearMr.Jackson,TrinityConsultants(Trinity)issubmittingthislettertoyourattentiononbehalfofourclientInterforU.S.,Inc.(Interfor)foraproposedmodificationattheirfacilitylocatedinPerry,Georgia(HoustonCounty).InterforintendstoinstallanewcontinuousdualpathdirectfiredlumberdryingkilnatthePerryMill.TheproposedprojectwillrequireaPreventionofSignificantDeterioration(PSD)permitasamajormodificationtoanexistingmajorsource.1Expectedemissionsfromtheproposedprojectincludeoxidesofnitrogen(NOX),volatileorganiccompounds(VOC),greenhousegases(GHG)intheformofcarbondioxideequivalents(CO2e)2,particulatematterwithanaerodynamicdiameterlessthan10microns(PM10),particulatematterwithanaerodynamicdiameterlessthan2.5microns(PM2.5),particulatematter(PM),sulfurdioxide(SO2),carbonmonoxide(CO),hazardousairpollutants(HAP),andallothercombustionemissionsassociatedwithnaturalgas.TheproposedprojectwillrequireaPreventionofSignificantDeterioration(PSD)permitaspotentialemissionincreasesfromtheproposedprojectareanticipatedtoexceedPSDsignificantemissionrate(SER)thresholdsforVOC.AspartofthePSDapplicationprocess,Interforhasqualitativelyevaluateditsimpactsonfederally‐protectedClassIareas.ThepurposeofthisletteristoprovidetheFederalLandManager(FLM)withpreliminaryinformationontheproposedprojectandtorequestconcurrencefromtheFLMonthefindingspresented.

Q/D SCREENING ANALYSIS

AQ/DscreeninganalysiswasperformedinamannerconsistentwiththeapproachdiscussedinthemostrecentFederalLandManagers’AirQualityRelatedValuesWorkGroup(FLAG)guidancedocument(FLAG2010),whichcomparestheratioofvisibilityaffectingpollutantemissionstothedistancefromtheClassIarea(i.e.,referenced

1 The Perry Mill is an existing PSD major source as potential facility-wide emissions of volatile organic compounds (VOC) are greater than the major source threshold of 250 tons per year (tpy).

2 CO2eiscarbondioxideequivalentscalculatedasthesumofthesixwell‐mixedGHGs(CO2,CH4,N2O,HFCs,PFCs,andSF6)withapplicableglobalwarmingpotentialsper40CFR98applied.

Mr.BillJackson‐Page2September19,2018

hereinastheFLAG2010Approach).3“Q”isthesumoftheannualNOX,PM10,SO2,andsulfuricacidmist(H2SO4)emissions,intonsperyear(tpy)4and“D”isthedistance,inkilometers(km),fromtheproposedfacilitytothecorrespondingClassIarea.Thetotalemissionsforthis“project”includestheemissionsfromthenewsources,andanyemissionsincreasesfromexistingsourcesattheMillimpactedbytheproject.Asummaryofthevisibility‐affectingpollutant(VAP)emissionsresultingfromtheproposedprojectareshowninTable1usingtheFLAG2010Approach.

Table1.SummaryofVisibility‐AffectingPollutantEmissionIncreases

AsshowninTable2,five(5)ClassIareasarelocatedwithin300kmoftheproposedprojectinHoustonCounty,Georgia.TheonlyClassIareaswithin300kmoftheproposedfacilitymanagedbytheForestService(FS)areBradwellBayWildernessandCohuttaWilderness,whicharebetween258and276kilometersaway.

3 Federal Land Managers’ Air Quality Related Values Work Group (FLAG) Phase I Report – Revised 2010, October 7, 2010. 4 It is specified within the Flag 2010 Report that “Q” be calculated as the sum of the worst-case 24-hour emissions converted to an annual basis.

NOXDirectParticulate1

SO2

SumofEmissions(tpy)

1.DirectparticulateincludesallfilterableandcondensablePM10.

2.FLAG2010Approach:Q=Maximum24hourbasis*8,760/2000.

PollutantFacility‐WideMaximum24‐hrEmissionsIncrease

(lb/hr)

4.51

1.35

1.00

FLAG2010ApproachAnnualEmissions2

(tpy)

19.76

5.90

4.38

30.04

Mr.BillJackson‐Page3September19,2018

Table2.SummaryofClassIAreaswithin300kmoftheProposedProject

Table2showstheresultsoftheQ/DscreeninganalysisfortheFLAG2010Approach.AsshowninTable2,theprojecthasaQ/Dwellbelowten.ThissuggeststhattheproposedprojectwillhavenoadverseimpactstoanyAQRVsatnear‐byClassIareas;therefore,InterforplansnoAQRVanalysesfortheproposedproject.BasedonTable2,InterforrequeststhattheFSprovidewrittenconcurrenceofthisfindingofnoimpact.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~InterforgreatlyappreciatesyourfeedbackonthisconclusionregardingnopresumptiveimpactstoAQRVsatClassIareasundermanagementoftheFS.Pleasefeelfreetocontactmeat404‐751‐0228withanyquestionsthatyouhave.Sincerely,TRINITYCONSULTANTS

JustinFickasManagingConsultantcc: Mr.EricCornwell(GeorgiaEPD)

Ms.MeredithBond(FishandWildlifeService)Mr.ChrisPool(TrinityConsultants)

Responsible

MinimumDistancefromSite

SumofAnnualizedVAPEmissions‐Q

Flag2010Approach

ClassIArea FLM (km) (tpy) Q/D

OkefenokeeFish&Wildlife FWS 204 0.15WolfIslandFish&Wildlife FWS 257 0.12SaintMarksFish&Wildlife FWS 258 0.12BradwellBayWilderness FS 258 0.12CohuttaWilderness FS 276 0.11

30.04

September19,2018Ms.MeredithBondUnitedStatesDepartmentoftheInteriorU.S.FishandWildlifeServiceNationalWildlifeRefugeSystemBranchofAirQuality7333W.JeffersonAve.,Suite375Lakewood,CO80235‐2017RE: InterforU.S.,Inc.–Perry,GA

NotificationofPSDProjectinReferencetoFWSClassIAreasDearMs.Bond,TrinityConsultants(Trinity)issubmittingthislettertoyourattentiononbehalfofourclientInterforU.S.,Inc.(Interfor)foraproposedmodificationattheirfacilitylocatedinPerry,Georgia(HoustonCounty).InterforintendstoinstallanewcontinuousdualpathdirectfiredlumberdryingkilnatthePerryMill.TheproposedprojectwillrequireaPreventionofSignificantDeterioration(PSD)permitasamajormodificationtoanexistingmajorsource.1Expectedemissionsfromtheproposedprojectincludeoxidesofnitrogen(NOX),volatileorganiccompounds(VOC),greenhousegases(GHG)intheformofcarbondioxideequivalents(CO2e)2,particulatematterwithanaerodynamicdiameterlessthan10microns(PM10),particulatematterwithanaerodynamicdiameterlessthan2.5microns(PM2.5),particulatematter(PM),sulfurdioxide(SO2),carbonmonoxide(CO),hazardousairpollutants(HAP),andallothercombustionemissionsassociatedwithnaturalgas.TheproposedprojectwillrequireaPreventionofSignificantDeterioration(PSD)permitaspotentialemissionincreasesfromtheproposedprojectareanticipatedtoexceedPSDsignificantemissionrate(SER)thresholdsforVOC.AspartofthePSDapplicationprocess,Interforhasqualitativelyevaluateditsimpactsonfederally‐protectedClassIareas.ThepurposeofthisletteristoprovidetheFederalLandManager(FLM)withpreliminaryinformationontheproposedprojectandtorequestconcurrencefromtheFLMonthefindingspresented.

Q/D SCREENING ANALYSIS

Q/DscreeninganalysiswasperformedinamannerconsistentwiththeapproachdiscussedinthemostrecentFederalLandManagers’AirQualityRelatedValuesWorkGroup(FLAG)guidancedocument(FLAG2010),whichcomparestheratioofvisibilityaffectingpollutantemissionstothedistancefromtheClassIarea(i.e.,referencedhereinastheFLAG2010Approach).3“Q”isthesumoftheannualNOX,PM10,SO2,andsulfuricacidmist(H2SO4)

1 The Perry Mill is an existing PSD major source as potential facility-wide emissions of volatile organic compounds (VOC) are greater than the major source threshold of 250 tons per year (tpy).

2 CO2eiscarbondioxideequivalentscalculatedasthesumofthesixwell‐mixedGHGs(CO2,CH4,N2O,HFCs,PFCs,andSF6)withapplicableglobalwarmingpotentialsper40CFR98applied.

3 Federal Land Managers’ Air Quality Related Values Work Group (FLAG) Phase I Report – Revised 2010, October 7, 2010.

Ms.MeredithBond‐Page2September19,2018

emissions,intonsperyear(tpy)4and“D”isthedistance,inkilometers(km),fromtheproposedfacilitytothecorrespondingClassIarea.Thetotalemissionsforthis“project”includestheemissionsfromthenewsources,andanyemissionsincreasesfromexistingsourcesattheMillimpactedbytheproject.Asummaryofthevisibility‐affectingpollutant(VAP)emissionsresultingfromtheproposedprojectareshowninTable1usingtheFLAG2010Approach.

Table1.SummaryofVisibility‐AffectingPollutantEmissionIncreases

AsshowninTable2,five(5)ClassIareasarelocatedwithin300kmoftheproposedprojectinHoustonCounty,Georgia.TheonlyClassIareaswithin300kmoftheproposedfacilitymanagedbytheFishandWildlifeService(FWS)areOkefekokee,WolfIsland,andSaintMarks,whicharebetween204and258kilometersaway.

Table2.SummaryofClassIAreaswithin300kmoftheProposedProject

4 It is specified within the Flag 2010 Report that “Q” be calculated as the sum of the worst-case 24-hour emissions converted to an annual basis.

NOXDirectParticulate1

SO2

SumofEmissions(tpy)

1.DirectparticulateincludesallfilterableandcondensablePM10.

2.FLAG2010Approach:Q=Maximum24hourbasis*8,760/2000.

PollutantFacility‐WideMaximum24‐hrEmissionsIncrease

(lb/hr)

4.51

1.35

1.00

FLAG2010ApproachAnnualEmissions2

(tpy)

19.76

5.90

4.38

30.04

Responsible

MinimumDistancefromSite

SumofAnnualizedVAPEmissions‐Q

Flag2010Approach

ClassIArea FLM (km) (tpy) Q/D

OkefenokeeFish&Wildlife FWS 204 0.15WolfIslandFish&Wildlife FWS 257 0.12SaintMarksFish&Wildlife FWS 258 0.12BradwellBayWilderness FS 258 0.12CohuttaWilderness FS 276 0.11

30.04

Ms.MeredithBond‐Page3September19,2018

Table2showstheresultsoftheQ/DscreeninganalysisfortheFLAG2010Approach.AsshowninTable2,theprojecthasaQ/Dwellbelowten.ThissuggeststhattheproposedprojectwillhavenoadverseimpactstoanyAQRVsatnear‐byClassIareas;therefore,InterforplansnoAQRVanalysesfortheproposedproject.BasedonTable2,InterforrequeststhattheFSprovidewrittenconcurrenceofthisfindingofnoimpact.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~InterforgreatlyappreciatesyourfeedbackonthisconclusionregardingnopresumptiveimpactstoAQRVsatClassIareasundermanagementoftheFWS.Pleasefeelfreetocontactmeat404‐751‐0228withanyquestionsthatyouhave.Sincerely,TRINITYCONSULTANTS

JustinFickasManagingConsultantcc: Mr.EricCornwell(GeorgiaEPD)

Mr.BillJackson(ForestService)Mr.ChrisPool(TrinityConsultants)