43
Chapter 2 Macromechanical Analysis of a Lamina 3D Stiffness and Compliance Matrices Dr. Autar Kaw Department of Mechanical Engineering University of South Florida, Tampa, FL 33620 Courtesy of the Textbook Mechanics of Composite Materials by Kaw

3D Stiffness and Compliance Matrices

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 3D Stiffness and Compliance Matrices

Chapter 2 Macromechanical Analysis of a Lamina3D Stiffness and Compliance Matrices

Dr. Autar KawDepartment of Mechanical Engineering

University of South Florida, Tampa, FL 33620

Courtesy of the TextbookMechanics of Composite Materials by Kaw

Page 2: 3D Stiffness and Compliance Matrices

FIGURE 2.1Typical laminate made of three laminas

Page 3: 3D Stiffness and Compliance Matrices

τ

τ

τ

σ

σ

σ

SSSSSS

SSSSSS

SSSSSS

SSSSSS

SSSSSS

SSSSSS

=

γ

γ

γ

ε

ε

ε

12

31

23

3

2

1

666564636261

565554535251

464544434241

363534333231

262524232221

161514131211

12

31

23

3

2

1

Page 4: 3D Stiffness and Compliance Matrices

Stiffness matrix [C] has 36 constants

γ

γ

γ

ε

ε

ε

CCCCCC

CCCCCC

CCCCCC

CCCCCC

CCCCCC

CCCCCC

=

τ

τ

τ

σ

σ

σ

12

31

23

3

2

1

666564636261

565554535251

464544434241

363534333231

262524232221

161514131211

12

31

23

3

2

1

Page 5: 3D Stiffness and Compliance Matrices

τ

τ

τ

σ

σ

σ

SS

SS

SS

SSS

SSS

SSS

=

γ

γ

γ

ε

ε

ε

12

31

23

3

2

1

1211

1211

1211

111212

121112

121211

12

31

23

3

2

1

)(200000

0)(20000

00)(2000

000

000

000

Page 6: 3D Stiffness and Compliance Matrices

τ

τ

τ

σ

σ

σ

CC

CC

CC

CCC

CCC

CCC

=

γ

γ

γ

ε

ε

ε

12

31

23

3

2

1

1211

1211

1211

111212

121112

121211

12

31

23

3

2

1

)(200000

0)(20000

00)(2000

000

000

000

Page 7: 3D Stiffness and Compliance Matrices

−−

−−

−−

τ

τ

τ

σ

σ

σ

G

G

G

EEE

EEE

EEE

=

γ

γ

γ

ε

ε

ε

12

31

23

3

2

1

12

31

23

3

2

1

100000

010000

001000

0001

0001

0001

νν

νν

νν

Page 8: 3D Stiffness and Compliance Matrices

,

G00000

0G0000

00G000

000)+)(12-(1

)-E(1)+)(12-(1

E)+)(12-(1

E

000)+)(12-(1

E)+)(12-(1

)-E(1)+)(12-(1

E

000)+)(12-(1

E)+)(12-(1

E)+)(12-(1

)-E(1

=

xy

zx

yz

z

y

x

xy

zx

yz

z

y

x

γ

γ

γ

ε

ε

ε

ννν

ννν

ννν

ννν

ννν

ννν

ννν

ννν

ννν

τ

τ

τ

σ

σ

σ

Page 9: 3D Stiffness and Compliance Matrices

τ

τ

τ

σ

σ

σ

SSSSSS

SSSSSS

SSSSSS

SSSSSS

SSSSSS

SSSSSS

=

γ

γ

γ

ε

ε

ε

12

31

23

3

2

1

666564636261

565554535251

464544434241

363534333231

262524232221

161514131211

12

31

23

3

2

1

Page 10: 3D Stiffness and Compliance Matrices

Stiffness matrix [C] has 36 constants

γ

γ

γ

ε

ε

ε

CCCCCC

CCCCCC

CCCCCC

CCCCCC

CCCCCC

CCCCCC

=

τ

τ

τ

σ

σ

σ

12

31

23

3

2

1

666564636261

565554535251

464544434241

363534333231

262524232221

161514131211

12

31

23

3

2

1

Page 11: 3D Stiffness and Compliance Matrices
Page 12: 3D Stiffness and Compliance Matrices
Page 13: 3D Stiffness and Compliance Matrices

FIGURE 2.11Transformation of coordinate axes for 1-2plane of symmetry for a monoclinic material

Page 14: 3D Stiffness and Compliance Matrices

FIGURE 2.12Deformation of a cubic elementmade of monoclinic material

Page 15: 3D Stiffness and Compliance Matrices

FIGURE 2.13A unidirectional lamina as amonoclinic material with fibersarranged in a rectangular array

Page 16: 3D Stiffness and Compliance Matrices

τ

τ

τ

σ

σ

σ

SSSS

SS

SS

SSSS

SSSS

SSSS

=

γ

γ

γ

ε

ε

ε

12

31

23

3

2

1

66362616

5545

4544

36332313

26232212

16131211

12

31

23

3

2

1

00

0000

0000

00

00

00

Page 17: 3D Stiffness and Compliance Matrices

γ

γ

γ

ε

ε

ε

CCCC

CC

CC

CCCC

CCCC

CCCC

=

τ

τ

τ

σ

σ

σ

12

31

23

3

2

1

66362616

5545

4544

36332313

26232212

16131211

12

31

23

3

2

1

00

0000

0000

00

00

00

Page 18: 3D Stiffness and Compliance Matrices
Page 19: 3D Stiffness and Compliance Matrices
Page 20: 3D Stiffness and Compliance Matrices

FIGURE 2.14Deformation of a cubic element madeof orthotropic material

Page 21: 3D Stiffness and Compliance Matrices

τ

τ

τ

σ

σ

σ

S

S

S

SSS

SSS

SSS

=

γ

γ

γ

ε

ε

ε

12

31

23

3

2

1

66

55

44

332313

232212

131211

12

31

23

3

2

1

00000

00000

00000

000

000

000

Page 22: 3D Stiffness and Compliance Matrices

γ

γ

γ

ε

ε

ε

C

C

C

CCC

CCC

CCC

=

τ

τ

τ

σ

σ

σ

12

31

23

3

2

1

66

55

44

332313

232212

131211

12

31

23

3

2

1

00000

00000

00000

000

000

000

Page 23: 3D Stiffness and Compliance Matrices

τ

τ

τ

σ

σ

σ

G

G

G

EEE

EEE

EEE

=

γ

γ

γ

ε

ε

ε

−−

−−

−−

12

31

23

3

2

1

12

31

23

33

32

3

31

2

23

22

21

1

13

1

12

1

12

31

23

3

2

1

100000

010000

001000

0001

0001

0001

νν

νν

νν

Page 24: 3D Stiffness and Compliance Matrices

γ

γ

γ

ε

ε

ε

G

G

G

EEEEEE

EEEEEE

EEEEEE

=

τ

τ

τ

σ

σ

σ

∆−

∆+

∆+

∆+

∆−

∆+

∆+

∆+

∆−

12

31

23

3

2

1

12

31

23

21

2112

31

311232

32

322131

31

311232

31

3113

32

312321

32

322131

32

312321

32

3223

12

31

23

3

2

1

00000

00000

00000

0001

0001

0001

νννννννν

νννννννν

νννννννν

Page 25: 3D Stiffness and Compliance Matrices

FIGURE 2.15A unidirectional lamina as atransversely isotropic material withfibers arranged in a rectangular array

Page 26: 3D Stiffness and Compliance Matrices

τ

τ

τ

σ

σ

σ

S

S

SS

SSS

SSS

SSS

=

γ

γ

γ

ε

ε

ε

12

31

23

3

2

1

55

55

)2322

222312

232212

121211

12

31

23

3

2

1

00000

00000

00(2000

000

000

000

Page 27: 3D Stiffness and Compliance Matrices

γ

γ

γ

ε

ε

ε

C

C

CC

CCC

CCC

CCC

=

τ

τ

τ

σ

σ

σ

12

31

23

3

2

1

55

55

2322

222312

232212

121211

12

31

23

3

2

1

00000

00000

002

000

000

000

000

Page 28: 3D Stiffness and Compliance Matrices
Page 29: 3D Stiffness and Compliance Matrices
Page 30: 3D Stiffness and Compliance Matrices

τ

τ

τ

σ

σ

σ

SS

SS

SS

SSS

SSS

SSS

=

γ

γ

γ

ε

ε

ε

12

31

23

3

2

1

1211

1211

1211

111212

121112

121211

12

31

23

3

2

1

)(200000

0)(20000

00)(2000

000

000

000

Page 31: 3D Stiffness and Compliance Matrices

τ

τ

τ

σ

σ

σ

CC

CC

CC

CCC

CCC

CCC

=

γ

γ

γ

ε

ε

ε

12

31

23

3

2

1

1211

1211

1211

111212

121112

121211

12

31

23

3

2

1

)(200000

0)(20000

00)(2000

000

000

000

Page 32: 3D Stiffness and Compliance Matrices

−−

−−

−−

τ

τ

τ

σ

σ

σ

G

G

G

EEE

EEE

EEE

=

γ

γ

γ

ε

ε

ε

12

31

23

3

2

1

12

31

23

3

2

1

100000

010000

001000

0001

0001

0001

νν

νν

νν

Page 33: 3D Stiffness and Compliance Matrices

,

G00000

0G0000

00G000

000)+)(12-(1

)-E(1)+)(12-(1

E)+)(12-(1

E

000)+)(12-(1

E)+)(12-(1

)-E(1)+)(12-(1

E

000)+)(12-(1

E)+)(12-(1

E)+)(12-(1

)-E(1

=

xy

zx

yz

z

y

x

xy

zx

yz

z

y

x

γ

γ

γ

ε

ε

ε

ννν

ννν

ννν

ννν

ννν

ννν

ννν

ννν

ννν

τ

τ

τ

σ

σ

σ

Page 34: 3D Stiffness and Compliance Matrices

Material Type Independent Elastic Constants

Anisotropic 21

Monoclinic 13

Orthotropic 9

Transversely Isotropic 5

Isotropic 2

Page 35: 3D Stiffness and Compliance Matrices

Upper and lower surfaces are free from external loads

0,0, =ττσ 23313 = 0 =

, 0 = 31233 0,0, == ττσ FIGURE 2.17Plane stress conditions for a thin plate

Page 36: 3D Stiffness and Compliance Matrices

τ

τ

τ

σ

σ

σ

S

S

S

SSS

SSS

SSS

=

γ

γ

γ

ε

ε

ε

12

31

23

3

2

1

66

55

44

332313

232212

131211

12

31

23

3

2

1

00000

00000

00000

000

000

000

,

τ

σ

σ

S

SS

SS

=

γ

ε

ε

12

2

1

66

2212

1211

12

2

1

00

0

0,σS+σS = ε 2231133

Compliance Matrix

Page 37: 3D Stiffness and Compliance Matrices

γ

ε

ε

Q

QQ

QQ

=

τ

σ

σ

12

2

1

66

2212

1211

12

2

1

00

0

0

,S SS

S = Q 2122211

2211 −

,S SS

S = Q 2122211

1212 −

,S SS

S = Q 2122211

1122 −

S = Q

6666

1

Page 38: 3D Stiffness and Compliance Matrices
Page 39: 3D Stiffness and Compliance Matrices

wvu

γ

γ

γ

ε

ε

ε

τ

τ

τ

σ

σ

σ

12

31

23

3

2

1

12

31

23

3

2

1

Page 40: 3D Stiffness and Compliance Matrices

0

0

0

=+∂

∂+

∂∂

+∂∂

=+∂

∂+

∂+

=+∂∂

+∂

∂+

∂∂

Zyτ

Yzτ

Xzτ

yzzxz

yzxyy

zxxyx

EQUILIBRIUM

Page 41: 3D Stiffness and Compliance Matrices

STRESS-STRAIN

τ

τ

τ

σ

σ

σ

SSSSSS

SSSSSS

SSSSSS

SSSSSS

SSSSSS

SSSSSS

=

γ

γ

γ

ε

ε

ε

12

31

23

3

2

1

666564636261

565554535251

464544434241

363534333231

262524232221

161514131211

12

31

23

3

2

1

Page 42: 3D Stiffness and Compliance Matrices

COMPATIBILITY

∂−

∂∂

+∂

∂∂

=∂∂∈∂

∂∂∂

=∂∈∂

+∂∈∂

∂+

∂∂

−∂

∂∂

=∂∂

∈∂

∂∂

∂=

∂∈∂

+∂

∈∂

∂+

∂∂

+∂

∂−

∂∂

=∂∂∈∂

∂∂

∂=

∈∂+

∂∈∂

zyxzyx

zxzx

zyxyzx

zyyz

zyxxzy

yxxy

xyxzyzz

xzxz

xyxzyzy

yzzy

xyxzyzx

xyyx

γγγ

γ

γγγ

γ

γγγ

γ

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

Page 43: 3D Stiffness and Compliance Matrices