16
Dead-Time Compensation ( 纯滞后补偿 ) Lei Xie Institute of Industrial Control, Zhejiang University, Hangzhou, P. R. China

7 2 dead time compensation

  • Upload
    yambal

  • View
    78

  • Download
    4

Embed Size (px)

Citation preview

Page 1: 7 2 dead time compensation

Dead-Time Compensation ( 纯滞后补偿 )

Lei Xie

Institute of Industrial Control, Zhejiang University, Hangzhou, P. R.

China

Page 2: 7 2 dead time compensation

Contents Introduction Smith Predictor for Dead-Time

Compensation Improved Smith Predictor Simulation Examples Summary

Page 3: 7 2 dead time compensation

Problem Discussion(1) For the controlled processes, configure your Simulink model & compare their results.

(2) Can you provide some compensation approaches for processes with variable & notable dead-time ?

Process Models:

;14

0.2)( 2s

p es

sG −

+= .

14

0.2)( 8s

p es

sG −

+=

Page 4: 7 2 dead time compensation

Conventional PID Control Systems

Process Models:

;14

0.2)( 2s

p es

sG −

+= .

14

0.2)( 8s

p es

sG −

+=

Question: Use Ziegler-Nichols or Lambda tuning method to obtain PID parameters and compare their values.

Please see the SimuLink model …SISODelayPlant / PIDLoop.mdl

Page 5: 7 2 dead time compensation

0 20 40 60 80 100 120 140 160 180 20058

60

62

64

66

68

70

72

74

76

78Output of Transmitter

Time, min

%

setpointZiegler-Nichols TuningLambda Tuning

Simulation Example #1

For PID Controller,

Z-N tuning: Kc = 1.2, Ti = 4 min, Td = 1 min

Lambda tuning:

Kc = 0.83, Ti = 4 min , Td = 1 min

;14

0.2)( 2s

p es

sG −

+=

Page 6: 7 2 dead time compensation

0 20 40 60 80 100 120 140 160 180 20058

60

62

64

66

68

70

72

74

76

78

80

Time, min

%

Output of Transmitter

set pointZ-N tuningLambda tuning, Td = 1 minLambda tuning, Td = 4 min

Simulation Example #2

For PID Controller,

Z-N tuning: Kc = 0.3, Ti = 16 min, Td = 4 min

Lambda tuning:

Kc = 0.2, Ti = 4 min , Td = 1 min

82.0( ) ;

4 1s

pG s es

−=+

Page 7: 7 2 dead time compensation

Smith’s Idea (1957)

Kpgp (s)+ _

+

Gc(s) +

D (s)

R (s) Y (s)se τ−

Process

Kpgp (s)+ _

+

Gc(s) +

D (s)

R (s) Y (s)se τ−

Process

Page 8: 7 2 dead time compensation

Basic Smith Predictor

Kpgp (s)+ _

+

Gc(s)+

D (s)

R (s) Y (s)se τ−

ProcessU(s)

Km gm (s) sme τ−

+

_

Smith Predictor

Y 2(s)Y 1(s) +

+

Page 9: 7 2 dead time compensation

Smith Predictor #2

+ _

+

Gc(s)+

D (s)

R (s) Y (s)

+_

U (s)s

pppesgK τ−)(

)(sgK mm

+

+

smm

mesgK τ−)(

Please see the SimuLink model …SISODelayPlant / PID_Smith.mdl

Page 10: 7 2 dead time compensation

0 20 40 60 80 100 120 140 160 180 20058

60

62

64

66

68

70

72

74

76

78

80

Time, min

%

Output of Transmitter

set pointPID with Smith compensatorSimple PID

Results of Basic Smith Predictor with an Accurate Model

Simple PID:

Kc = 0.2, Ti = 4 min , Td = 1 min

PID + Smith:Kc = 2, Ti = 4 min , Td = 1 min

8

( ) ( )

2.0;

4 1

m p

s

G s G s

es

=

=+

Page 11: 7 2 dead time compensation

0 20 40 60 80 100 120 140 160 180 20055

60

65

70

75

80

85

Time, min

%

Output of Transmitter

set pointPID + SmithSimple PID

Results of Basic Smith Predictor with an Inaccurate Model

Simple PID:

Kc = 0.2, Ti = 4 min , Td = 1 min

PID + Smith:Kc = 2, Ti = 4 min , Td = 1 min

8

6

2.0( ) ;

4 12.0

( )4 1

sm

sp

G s es

G s es

=+

=+

Page 12: 7 2 dead time compensation

Improved Smith Predictor

+ _

+

Gc(s)+

D (s)

R (s) Y (s)

+_

U (s) spp

pesgK τ−)(

)(sgK mm

+

+

smm

mesgK τ−)(

Gf(s)

1

1)(

+=

sTsG

ffPrediction Error Filter:

Page 13: 7 2 dead time compensation

0 20 40 60 80 100 120 140 160 180 20058

60

62

64

66

68

70

72

74

76

78

80

Time, min

%

Output of Transmitter

set pointPID + Smith with Gm =GpPID + Smith with Gm <> GpSimple PID

Results of Improved Smith Predictor with an Inaccurate Model

PID + Smith:Kc = 2, Ti = 4 min , Td = 1 min

8

6

2.0( ) ;

4 12.0

( ) ;4 1

1( )

4 1

sm

sp

f

G s es

G s es

G ss

=+

=+

=+

Page 14: 7 2 dead time compensation

Summary The principle of Smith predictor for dead-

time compensation Improved Smith predictor for a controlled

process with an inaccurate model Comparison of the Simple PID and the PID

with a Smith predictor

Page 15: 7 2 dead time compensation

Next Topic: Coupling of Multivariable Systems and Decoupling

Concept of Relative Gains Calculation of Relative Gain Matrix Rule of CVs and MVs Pairing Linear Decoupler from Block Diagrams Nonlinear Decoupler from Basic Principles Application Examples

Page 16: 7 2 dead time compensation

Problem Discussion for Next Topic

For the two-input-two-input controlled system, design your control schemes.

Suppose that

;,21

221121 FF

FCFCCFFF

++=+=

;12

,14

1,

1

5.0 5

+=

+=

+=

s

e

C

A

sC

C

sF

F smm

%.40%,60,25,75 210

20

1 ==== CCFF

Initial states: