Upload
others
View
9
Download
0
Embed Size (px)
AST356/326CoherentDetection&
ThermalNoise
Oct16,2017
Announcements• Lab#1optionalextension,checkyouremail.• You’restuckwithmeforthenext3weeks,officehoursstillFri@3-4pm,nowinAB126.
• Lab#2beginstoday,dueNov15th.– Godownload,print,andreadthelabmanualifyouhaven’tyet!
– Don’tleavethingstothelastminute,trytopaceyourself.Notgoingtobeextendedlike#1…
• PresentationgroupsnextMonday:EGADIJ
FigurecourtesyNASA
Atmopsheric Windows
Excellentseeingoverahugeband!
1mm– 10m(300GHz– 30MHz)
Wavelengthsvs.FrequenciesUnfortunately,radiopeopletendtouseboth.
Remember:c=ln =3x108 m/s
n =300MHz=3x108 Hzó l =1mn =300GHz=3x1011 Hzó l =1mm
Handyreferencepoints:
Ppeta1015
Eexa1018
ffemto10-15
aatto10-18
LowEnergyLight
1mm(300GHz)photon:• 200yoctojoules• 2x10-22 Joules• 0.001eV
Insufficientforphotoelectric
effect!
1m(300MHz)photon:• 0.2yoctojoules• 2x10-25 Joules• 0.000001eV
E=hn
ThreeWaystoDetectLight
1.PhotonDetectors2.ThermalDetectors3.CoherentDetectors
n
DetectingRadioLight:Thermal
Bolometers:• justfancythermometers• heatupinresponsetopower• Presentlythemostsensitive
detectorsformicrowavelight• Stillnotenoughpowerinmost
radiosignalstobeviable
ImagefromWikipedia
Wave-particleDuality
• Optical:eV – canphoto-ionize• Radio:µeV – negligibleenergy/photon
Thinkwaves,notparticles.
Waves
...... ...
DetectingRadioLight:Coherent
Forgetparticlesandpower– justrecordthewaves.
Afeed couplesfreespacewavesintowaveguide.Thatmakesiteasiercontrolandmanipulatethelight.
Fromthere,wecan:• amplify• delay(phaseshift)
• filter• mix
• sample• correlate
CoherentdetectionrecordsElectricfields,bothamplitude andphase.
Coherent&IncoherentCoherentisunlikephotoncountingorthermaldetection.Thoseeachmeasurethepower intheincominglight,andareincoherent formsofdetection.
Coherent detectorsmeasureE(t)=SwA sin(wt+fw,t).Variationsinphasef containlotsofinformation,buttheoverallf isusuallyarbitrary&meaningless.
ThepowerofthesourceP µ <E2>µ |A|2 isoftenmoreusefulthantherawamplitudes,asitrelatestosourcetemperature,energyconservation,…
FeedsIn radio, large light, small focal planes – no Megapixel CCDs.• Radio “cameras” are still in the single- (or few-) pixel regime.• Feeds collect radiation from free space
e-
e-
e-
e-
e-
e-
e-
e-
e-
e-
e-
e-I=sin(2pnt)
V=sin(2pnt+f)
Forhighefficiency(toberesonant),afeed’ssizemustbeoforderl.
Receivers(Everythingbehindthefeed.)
WaveguideWeusuallythinkoflightinfreespaceorbulkmaterial.EMfieldswillalsopropagateinwaveguides.Awaveguideconfinesthesignaltotravelinonedirection.
Optical:Fiber
Microwave:MetalTubes/ microstrip
Radio:TransmissionLines/Cables/Microstrip
RFAmplifiersSemiconductorsarefastnow.
Manycommercialamplifiersexist,capableofamplifyingsignalsupto≈100GHz.
Incoherentdetection,wedirectlyamplify anEMwaveinwaveguide. MicrowaveDynamics
AlexanderGrahamBell
• Hugely influentialinradio.• Unitofsignalattenuation
namedafterhim.• 1Bel =10-foldlossofsignal• MorecommonlyusedB
• Nowwidelyusedlog-relative
DeciBels
PracticaldB dB Relative
Level
0 1x+10 10x+20 100x+30 1000x-10 0.1x-20 0.01x-30 0.001x+3 2x+26 400x
• dBnowusedeverywherelogscalesareneeded.
• cosmictimeoftengivenindBs,decibelsrelativetoasecond
• RadiopowergivenindBm (dB-milliWatts)ordBW (dB-Watts).
1dBW=+30dBm
DigitizersOnceit’sanicebigsignal,weconnectahighspeedvoltmeter(anAnalogtoDigitalConverter,ADC)toreaditout!
Aliasing&NyquistCanonlydistinguishfsamp/2totalbandwidth.
Power
Freq
Mixers
sin(w1t+f1)sin(w2t+f2)=½[cos((w1- w2)t+(f1- f2))-
cos((w1+w2)t+(f1+f2))]
HeterodyneDetectors
(GMRTuses5stagesofup- &down-mixing.)
HeterodyneBatDetector
DesignProblems!
Iwanttorecord120-150MHzasefficientlyaspossible.WhatmixersandsamplingratedoIuse?
Iwanttorecord20-220MHzasefficientlyaspossible.WhatmixersandsamplingratedoIuse?
30MHzBandwidthà 60MSps120-150MHzbandà LOat120MHz,150MHz,or90MHz.
200MHzBandwidthà 400MSps20-220MHzbandà LOat220MHz.
DigitalLightAfterdigitization,dowhateveryouwanttothelight.
Forexample:
• Channelize:FourierTransformtosplitfrequencies(ArbitrarilyfineDn resolution,noneedforprisms.)
• Integrate:sumupincomingpower|E|2(Equivalenttoathermaldetection.)
• Correlate:combinethelightfromfarawayantennas(Moreifyoueverstudyinterferometry.)
RJTemperature
Forradio&mm,usuallykT >>hn,sowe’reinRayleigh-Jeansregime.
Withinaband,blackbodypowerislinearlyrelatedtotemperature.
“Temperature”isafrequentunitofsignal&noisepower.
P =kTDn(AlsomeansthermalnoisefromourinstrumentTrcvr issignificant.)
SystemTemperature
We want to measure
We can measure the total system power:
Psource =kTsourceDn
Includesallpowerbeforeandaftertheantenna,includingamplifiers,cables,pickup,crosstalk,ADCs,etc.Atlowfrequencies,everything isglowingthermally.
HowdowegetTsource?
RadiometerEquation
Bandwidth(Dn)andtime(t)giveindependentmeasurements,andtheRadiometerEquation givesfundamentalnoise:
Low-energydetectorsdon’thave“readnoise”inelectrons.Theymeasurelightinyourwaveguide.
NotethatALL powerinthesystemaddstothenoise.Thegoalforalow-noisesystemistominimizepower.
N
RadioFrequencyInterference(RFI)Lightpollutionatlongwavelengths.
• AMRadio• FMRadio• BroadcastTV• RADAR• CellPhones• CBRadio• Electronics• Etc…
3kHz100km
300kHz1km
3MHz100m
30MHz10m
300MHz1m
3GHz10cm
30GHz1cm
UnitedStatesRFSpectrumAllocation
Howbadisit?HowhotaretheFMbroadcastsfromtheCNtower?
Total:350kW Wikipedia
Wikipedia
Back-of-the-Envelope!Whatistheflux(inJy)ofthe350kWofFMradiocomingofftheCNtoweratUofT?Assumeanisotropictransmitter.
BandwidthofFM:20MHzDistancetotheCN:≈2km1Jy=10-26 W/m2/Hz
S=350kW/(4p x(2km)2)/20MHz=3x10-10 W/m2/Hz=3x1016 Jy =30PJy
Wikipedia
Brightcelestialsourcesareoforder1Jy.ThebrightestcelestialsourceisCassiopeiaA,about105 Jy at100MHz.TheCNtowerisBRIGHT.
Lab#2
Radiometers&ThermalNoise
PartI:Receivers,Stats&Spectra
TheAirSpy Receiver
TheAirSpy Receiver
TheAirSpy Receiver
airspy_rx –f 1000 –a 1 –t 4 –v 15 –m 15 -l 14–n 1000000 –d –r my_data.dat
USB- microUSB
IMPORTANT:RECORDDATAINTO/tmp ONTHELAPTOPS!
YOURHOMEDIRECTORYWILLNOTWORK.Youcancopy
itoverforposterityonceyouhaveagooddataset.
airspy_rx –f 1000 –a 1 –t 4 –v 15 –m 15 -l 14–n 1000000 –d –r my_data.dat
airspy_rx –f 1000 –a 1 –t 4 –v 15 –m 15 -l 14–n 1000000 –d –r my_data.dat
airspy_rx –f 1000 –a 1 –t 4 –v 15 –m 15 -l 14–n 1000000 –d –r my_data.dat
airspy_rx –f 1000 –a 1 –t 4 –v 15 –m 15 -l 14–n 1000000 –d –r my_data.dat
airspy_rx –f 1000 –a 1 –t 4 –v 15 –m 15 -l 14–n 1000000 –d –r my_data.dat
airspy_rx –f 1000 –a 1 –t 4 –v 15 –m 15 -l 14–n 1000000 –d –r my_data.dat
airspy_rx –f 1000 –a 1 –t 4 –v 15 –m 15 -l 14–n 1000000 –d –r my_data.dat
airspy_rx –f 1000 –a 1 –t 4 –v 15 –m 15 -l 14–n 1000000 –d –r my_data.dat
ADCsRevisited
• MeasureVoltage,expressinbits.
• Repeataftersometime,typically≈ms.
• Usedeverywhere:thermometers,motors,magneticfields,etc.
• Radiojustdoesitfaster.
Volta
ge
t
0V
5V
0
63
t
ADCsRevisited2-bitDigitizer
ADCsRevisited3-bitDigitizer
ADCsRevisited4-bitDigitizer
000012-bitADCvalmy_data.dat
• AirSpy uses12-bitADC.
• PCsusuallydealwith8bit=1Bytechunks.
• AirSpy packsits12bnumbersinto16b=2B,soPCscanhandlemoreeasily.
Padding Data
airspy_rx –f 1000 –a 1 –t 4 –v 15 –m 15 -l 14–n 1000000 –d –r my_data.dat
my_data.dat
• AirSpy ADCissymmetric:0Vishalf-waybetweenminandmaxvalues.
• 12-bitrange:0-4095
• 0Vßà 211 =2048
• Togetvoltageinbits,needADCval – 211
airspy_rx –f 1000 –a 1 –t 4 –v 15 –m 15 -l 14–n 1000000 –d –r my_data.dat
my_data.dat
In [1]: import numpy as np
In [2]: data = np.fromfile('my_data.dat',dtype='int16') - 2**11;
In [3]: data.shapeOut[3]:(1000000,)
In [4]: data.mean()Out[4]: 13.6037
airspy_rx –f 1000 –a 1 –t 4 –v 15 –m 15 -l 14–n 1000000 –d –r my_data.dat
In [5]: import matplotlib.pyplot as plt
In [6]: plt.plot(data[10000,11000],'.');In [7]: plt.xlabel('Sample number');In [8]: plt.ylabel('ADC Reading [bits]');In [9]: plt.title(’Raw samples from AirSpy');In [10]: plt.show();
CentralLimitTheoremForany underlyingprobabilitydistribution,thedistributionofasumofrealizationstendstowardGaussianasthenumberbecomeslarge.
Example:(fair)coinflip.heads=0,tails=1.
Normal‘ol EMWaves• Most(natural)thingsthatgenerateradiophotonsare
complicated,drivenbyQMandthermalprocesses.• CLT:neteffectwillbeanormallydistributedE-field.• Averageanddeviationmayvarywithfrequency,time,
direction,polarization,….• CLT:sumstillnormal!
TemperatureofaRadioWave
Tµ Pµ <E2>
RJtemperatureisthevarianceofourcoherentsignal!
c2 DistributionsSum-of-squaresofk samplesdrawnfromanormaldistribution.
Comeupfrequentlyinerroranalysis!(CLT:ck2à Gaussianforlargek)
Mean à kVariance à 2k
In [11]: f=np.fft.fft(d[0:2**19].reshape(-1,1024),\axis=1 );
In [12]: s=(f.real**2+f.imag**2).sum(axis=0);In [13]: plt.plot(10*np.log10(s[0:512]), '.');In [14]: plt.xlabel('Frequency Bin');In [15]: plt.ylabel('Power [dB arb]');In [16]: plt.title('Spectrum from AirSpy');In [17]: plt.show();
TestingNormality
IfthesignalisGaussian,theRadiometerEquation willhold:
Low-energydetectorsdon’thave“readnoise”inelectrons.Theymeasurelightinyourwaveguide.
ALL powerinthesystemaddstothenoise.Youshouldchecktherelationinnarroworbroadfreq bands.
N
GoodLuck!