23
191 BiBliography 1. Aderogba, K. (1976). On stokeslet in a two-fluid space. J. Engrg.Math. No.2, 10,143-151. 2. Aderogba, K. and Blake, J.R. (1978). Action of a force near the planar surface between semi-infinite immiscible liquids at very low Reynolds number. Addendum.Bull.Austral.Math.Soc, 19, 309-318. 3. Adler, J. and Sowerby, L. (1970). Shallow three dimensional flow with variable Surface tension. J. Fluid Mechanics, 42, 549-559. 4. Ananthakrishnan, P. and Yeung, R. W. (1994). Nonlinear Interaction of a Vortex Pair with Clean and Surfactant-Covered Free Surfaces. Wave Motion, 19, 343-365. 5. Aries R (1962). Vectors, Tensors and the basic equations of fluid mechanics. Englewood Cliffs, N.J. Prentice –Hall. 6. Baldoni, F. and Rajagopal, K.R. (1997). Conditions of compatibility for the solid-liquid interface. Quart. J. Appl. Maths. No. 3, 4, 401- 420. 7. Banerjee, R. (2002). Surface chemistry of the lung surfactant system: Techniques for in vitro evaluation. Current science, 82, 420-428. 8. Barentin, C., Ybert, C., Di Meglio, J. M. and Joanny, J. F. (1999). Surface shear viscosity of Gibbs and Langmuir monolayers. J. Fluid Mech. 397, 331-349.

BiBliography - Information and Library Network Centreshodhganga.inflibnet.ac.in/bitstream/10603/43483/1/biblography.pdf · 193 16. Brinkman, H.C. (1947). A calculation of the viscous

  • Upload
    vumien

  • View
    212

  • Download
    0

Embed Size (px)

Citation preview

191

BiBliography

1. Aderogba, K. (1976). On stokeslet in a two-fluid space. J.

Engrg.Math. No.2, 10,143-151.

2. Aderogba, K. and Blake, J.R. (1978). Action of a force near the

planar surface between semi-infinite immiscible liquids at very low

Reynolds number. Addendum.Bull.Austral.Math.Soc, 19, 309-318.

3. Adler, J. and Sowerby, L. (1970). Shallow three dimensional flow

with variable Surface tension. J. Fluid Mechanics, 42, 549-559.

4. Ananthakrishnan, P. and Yeung, R. W. (1994). Nonlinear

Interaction of a Vortex Pair with Clean and Surfactant-Covered

Free Surfaces. Wave Motion, 19, 343-365.

5. Aries R (1962). Vectors, Tensors and the basic equations of fluid

mechanics. Englewood Cliffs, N.J. Prentice –Hall.

6. Baldoni, F. and Rajagopal, K.R. (1997). Conditions of compatibility

for the solid-liquid interface. Quart. J. Appl. Maths. No. 3, 4, 401-

420.

7. Banerjee, R. (2002). Surface chemistry of the lung surfactant

system: Techniques for in vitro evaluation. Current science, 82,

420-428.

8. Barentin, C., Ybert, C., Di Meglio, J. M. and Joanny, J. F. (1999).

Surface shear viscosity of Gibbs and Langmuir monolayers. J.

Fluid Mech. 397, 331-349.

192

9. Basset, A.B. (1988). A treatise on hydrodynamics. Vol. I and Vol.

II, Cambridge Delingtion Bell and Co. London.

10. Batchelor, G.K. (1967). An introduction to Fluid Dynamics.

Cambridge University Press.

11. Berdon, C. and Leal, L.G (1982). Motion of a sphere in the

presence of a deformable interface I. Perturbation of the interface

from flat: the effect on drag and torque. J. Colloidal Interface Sci.

No. 1, 87, 62-80.

12. Blawzdziewicz, J., Vajnryb, E. and Loewenberg, M. (1999).

Hydrodynamic interactions and collision efficiencies of spherical

drops covered with an incompressible surfactant film. J.Fluid

Mech, 395, 29.

13. Blawzdziewicz J., Vlahovska, P. and Loewenberg, M. (2000).

Rheology of a dilute emulsion of surfactant-covered spherical

drops. Physica A, 276, 50 -85.

14. Boussinesq, J. (1913). Existence of Surface Viscosity in the Thin

Transition Layer Separating a Liquid from a Contiguous Fluid. Ann.

chem. phys. 29, 349-357.

15. Briley, P.B., Deemer, A.R. and Slattery, J.C. (1976). Blunt knife-

edge and disk surface viscometers. J. Colloid Interface Sci., 56, 1-

18.

193

16. Brinkman, H.C. (1947). A calculation of the viscous force exerted

by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A,

1, 27-34.

17. Casalis, G., Avalon, G. and Pineau, J.P. (1998). Spatial instability

of planar channel flow with fluid injection through porous walls.

Phys. Fluid, 10, 2558-2568.

18. Ceniceros, H.D. (2003). The effects of surfactants on the

formation and evolution of capillary waves. Phys. Fluids., 15(1),

245–256.

19. Chakrabarti, A. and Shail, R. (1984). The slow rotation of an

axisymmetric solid in the presence of a plane surfactant –

contaminated interface between two fluids. Indian J. pure appl.,

Math., 15 (11), 1244-1260.

20. Chen, B. and Noyla, A. (1982). A study of the stability of the

interface between two immiscible viscous fluids. Numerical

analysis lecture notes in maths, 909.

21. Choudhuri, D., Sri Padmavathi, B. (2010). A study of an arbitrary

Stokes flow past a fluid coated sphere in a fluid of a different

viscosity. ZAMP, 61(2), 317-328.

22. Clarke, A.N. and Wilson, D.J. (Eds.), (1983). Foam flotation:

Theory and application (Eds.), Chemical industries, 11, Marcel

Dekker, New York, 432 pp.

23. Cunningham, E. (1910). On the steady state fall of spherical

particles through fluid medium. Proc R Soc Lond, 83,357.

194

24. Curl and Davis (1968). Modern Fluid Dynamics. D.Van Nostrand

Company Ltd. London.

25. Danov, K.D (2001). On the Viscosity of dilute emulsions. Journal

of Colloid and Interface Science, 235,144-149.

26. Darcy, H. (1937). The flow of fluid through porous media.

McGraw-Hill, New York.

27. Dassios, G., Hadjinicolaou, M. and Coutelieris, F.A. (1995). Stokes

flow in spheroidal particle-in-cell models with Happel and

Kuwabara boundary conditions, Int. J. Engng. Sci. 33(10), 1465-

1490.

28. Dassios, G., Hadjinicolaou, M. and Payatakes, A.C (1994).

Generalized eigenfunctions and complete semiseparable solution

for Stokes flow in spheroidal coordinates. J. Quart. Appl. Math.

52, No-1,157-191.

29. Datta, S. (1977). Viscous channel flow induced by prescribed

injection. The mathematical Forum, 1, 9-19.

30. Datta, S. and Pandya, N. (2002). Deformation of the Drop with

Surfactant Layer. Journal of International Academy of Physical

Sciences, 6, 9-19.

31. Datta, S. and Shukla, M. (2003). Drag on flow past a cylinder with

slip, Bull. Cal. Math. Soc., 95 (1), 63–72.

32. Davis, A.M.J. (1971). Short surface waves due to an oscillating

half-immersed sphere. Mathematika. 18, 20-39.

195

33. Davis, A.M.J. (1974). Short surface waves in the presence of a

submerged sphere. SIAM J. Appl. Math 3, 27,464-478.

34. Davis, A.M.J. (1975). Short surface waves due to a heaving

sphere in a hemispherical lake. J. Inst. Maths Applica. 16,221-

237.

35. Davis, A.M.J. (1976). On the short surface waves due to an

oscillating partially immersed body. J. Fluid Mech. 4, 75,791-807.

36. Davis, A.M.J. (1980). The torque on a rotating body in a liquid

with a surfactant layer and its relation to the virtual mass of a

heaving body. Quart. J. Mech.Appl.Math.No 3, 33, 413-425.

37. Davis, A.M.J and O’Neil, M.E. (1979). The slow rotation of a

sphere submerged in a fluid with a surfactant layer. Int. J.

Multiphase Flow, 5, 413-425.

38. Deo, S. (2004). Stokes flow past a swarm of porous circular

cylinder with Happel and Kuwabara boundary conditions.

Sadhana, 29 (4), 381–387.

39. Deo, S. and Yadav, P.K. (2008). Stokes flow past a swarm of

porous nano cylindrical particles enclosing a solid core. I.J.M.M.S,

(published online)

40. Deo, S., Yadav, P.K. and Tiwari, A. (2010). Slow viscous flow

through a membrane built up from porous cylindrical particles with

an impermeable core. Applied Mathematical modeling, 34, 1329-

1343.

196

41. Dipietro, N.D., Huh, C. and Cox, R.G. (1978). The hydrodynamics

of the spreading of one liquid on the surface of another. J. Fluid

Mech., No.3, 84, 529-549.

42. Dravid, V., Songsermpong, S., Zhengjun, X., Corvalan C, M., and

Sojka, P. E. (2006). Two-Dimensional modeling of the effects of

insoluble surfactant on the breakup of a liquid filament. Chemical

Engineering Science 61, 3577-3585.

43. Edwards, D. A., Brenner, H. and Wasan, D. T. (1991). Interfacial

Transport Processes and Rheology. Butterworth-Heinemann.

44. Eggers. J. (1995). Theory of drop formation. Phys. Fluids. A7,

941-953.

45. Erickson, J.L. (1952). Thin liquid Jets. J. Rat. Mech.Anal, 1, 521-

538.

46. Foda, M. and Cox, R. G. (1980). The Spreading of Thin Liquid

Films on a Water-Air Interface. Journal of Fluid Mechanics, 101,

33-51.

47. Gaines, G.L. (1966). Insoluble Monolayers at Liquid-Gas

Interfaces. Interscience.

48. Garner, F.H. and Skelland, A.H.P. (1955). Some factors affecting

droplet behavior in liquid-liquid systems. Chemical Eng. Science,

4(4), 149-158.

49. Goodrich, F.C. (1969). The theory of absolute surface shear

viscosity-I. Proc.Roy.Soc., A310, 359-372.

197

50. Goodrich, F.C, Allen, L.H. and Chatterjee, A.K. (1971). The theory

of absolute surface shear viscosity-III. The rotating ring problem.

Proc.R.Soc.A, 320, 537-547.

51. Goodrich, F.C. and Chatterjee, A.K. (1969). The theory of absolute

surface shear viscosity-II.The rotating disc problem. J. Colloid

Interface Sci. 34, 36-42.

52. Goodrich, F.C. and Chatterjee, A.K. (1970). The theory of absolute

surface shear viscosity-II. The rotating disc problem. J. Colloid

Interface Sci., 34, 36-42.

53. Griffith, R.M. (1960). Mass transfer from drops and bubbles.

Chem. Eng. Sci. 12, 198-213.

54. Griffith, R.M. (1962). The effect of surfactant on the terminal

velocity of drops and bubbles. Chem. Engng Sci. 17, 1057.

55. Grotberg, J.B. (1994). Pulmonary Flow and Transport Phenomena.

Annual Reviews of Fluid Mechanics, 26, 529-571.

56. Hadmard, J. (1911). Mouvement permanent lent dune sphere

liquid visquese dans un liquid visqueux. Compt. Rend. Acad. Sci.

Paris Ser.A-B.152, 1735-1739.

57. Happel, J. (1958). Viscous flow in multiparticle systems: Slow

motion of fluid relative to beds of spherical particles. J. A. I. Ch.

E., 4, No.-2,197-201.

58. Happel, J. (1959). Viscous flow relative to arrays of cylinders,

A.I.Ch. E, 5(2), 174-177.

198

59. Happel, J. and Brenner, H. (1983). Low Reynolds Number

Hydrodynamics. Printice Hall Englewood Cliffs, NJ.

60. Harkins, W. and Kirkwood, J. (1938). The viscosity of monolayers:

theory of the surface slit viscosimeter. J. Chem. Phys. 6, 53.

61. Harper, J.F. (1973). On bubbles with small immobile adsorbed

films rising in liquid at low Reynolds numbers. J. Fluid. Mech., 58,

539-545.

62. Harper, J.F. (1974). On spherical bubble rising steadily in dilute

surfactant solutions. Quart. J Mech. Appl. Math, 27, 87-100.

63. Harper, J.F. (1982). Surface activity and bubble motion. Appl. Sci.

Res, 38, 343-352.

64. Harper, J.F. (1988). The rear stagnation region of a bubble rising

steadily in a dilute surfactant solution. Quart.J.Mech.Appl.Math.

No.2, 41,203-213.

65. Hirsa, A.H., Lopez, J.M. and Miraghaie, R. (2001). Measurement

and computation of hydrodynamics coupling at an air/water

interface in the presence of an insoluble monolayer. J.Fluid

Mech., 443, 271-292.

66. Hirsa, A. H., Lopez, J. M. and Miraghaie, R. (2002). Determination

of surface shear viscosity via deep-channel flow with inertia.

J.Fluid Mech, 470, 135-149.

199

67. Hocking, L.M. (1977). A moving fluid interface. Part 2. The

removal of the force singularity by a slip flow. J. Fluid. Mech.

No.2, 79, 209-229.

68. James, A. J. and Lowengrub, J. S. (2004). A surfactant-conserving

volume-of-fluid method for interfacial flows with insoluble

surfactant. J. Comput. Phys., 201, 685–722.

69. Jordan, M., Eppenberger, H.M, Sucker, H., Widmer, F. and

Einsele, A. (1994). Interactions between animal cells and gas

bubbles: The influence of serum and pluronic F68 on the physical

properties of the bubble surface. Biotech. and Bioengg. 43(6),

446-454.

70. Kirsh, V.A. (1996). Aerosol filters made of porous filters. Colloid

Journal, 58(6), 737-740.

71. Kirsh, V.A. (2006). Stokes flow past periodic rows of porous

cylinders. Theoretical foundation of chemical engineering, 40(5),

465-471.

72. Kunesh, J.G., Brenner, H., O’Neil, M.E. AND Falade, A. (1985).

Torque measurements on a stationary axially positioned sphere

partially and fully submerged beneath the free surface of a slowly

rotating viscous fluid. J. Fluid Mech., 154, 29-42.

73. Kuwabara, S. (1959). The forces experienced by randomly

distributed parallel circular cylinders or spheres in a viscous flow

at small Reynolds number. J. Phys. Soc. Japan, 14, 527-532.

200

74. Kuznestov, A.V. (1996). Analytical investigation of the fluid flow in

the interface region between a porous medium and a clear fluid in

channels partially filled with a porous medium. Appl. Sci. Res., 56,

53-57.

75. Kvashnin, A.G (1979). Cell model of suspension of spherical

particles. Fluid Dynamics, 14,598- 602.

76. Kwan, Y., Park, J. and Shen, J. (2010). A mathematical and

numerical study of incompressible flows with a surfactant

monolayer. Discrete and continuous dynamical systems, 28,181-

197.

77. Lai, M.-C. Tseng, Y.-H. and Huang, H. (2008). An immersed

boundary method for interfacial flow with insoluble surfactant. J.

Comput. Phys., 227, 7279–7293.

78. Lai, M.-C., Tseng, Y.-H. and Huang, H. (2010). Numerical

Simulation of Moving Contact Lines with Surfactant by Immersed

Boundary Method. J. Comput. Phys., 8 (4), 735–757.

79. Lamb, H. 1945. Hydrodynamics. Dover Pub. N.Y.

80. Langevin, D. (2002). Viscoelasticity of monolayer. Encyclopedia of

surface and colloid science, Dekkar, 5584-5599.

81. Langlois, W.E. (1964). Slow Viscous Flow. Macmillan.

82. Lee, J. and Pozrikidis, C. (2006). Effect of surfactants on the

deformation of drops and bubbles in Navier- Stokes flow. Comput.

Fluids, 35, 43–60.

201

83. Lee, S.H. and Leal, L.G. (1980). Motion of a sphere in the

presence of a plane interface. Part 2. An exact solution in bipolar

coordinates. J. Fluid Mech. 98, 193.

84. Lee, S.H. and Leal, L.G. (1982). Particle motion near a deformable

fluid interface. Adv. Colloid Interface Sci., 17, 61-81.

85. Lee, S.H. and Leal, L.G. (1982). The motion of a sphere in the

presence of a deformable interface II. A numerical study of the

translation of a sphere normal to an interface. J. Colloid Interface

Sci. No. 1, 87, 81-106.

86. Lemlich, R. (1972). Adsubble Processes: Foam Fractionation and

bubble fractionation. Journal of geophysical research, 77(27),

5204-5210.

87. Levan, M.D. (1981). Motion of a droplet with a Newtonian

interface. J. Colloid Interface Sci. 83, 11-17.

88. Levan, M.D. and Newman, J. (1976). The effect of surfactant on

terminal and interfacial velocities of bubble or drop. J. AIChE J.

22, 695-701.

89. Levich, V.G. (1962). Physiochemical Hydrodynamics.

90. Li, X.J. and Mao, Z.S. (2001). The Effect of surfactant on the

motion of a buoyancy-driven drop at intermediate Reynolds nos: A

numerical approach. J. Colloid Interface Sci. 240, 307-322.

202

91. Li, X.J. and Pozrikidis, C. (1997). Effects of surfactants on drop

deformation and on the rheology of dilute emulsions in Stokes

flow. J.Fluid Mech., 341, 165-194.

92. Linton, M. and Sutherland, K.L. (1957). Dynamic surface forces,

drop circulation and liquid-liquid mass transfer. Proceedings of the

2nd International congress of surface activity,London,494-502.

93. Longuent-Higgins, M.S. (1980). A technique for time-dependent

free surface flows. Proc. Roy. Soc. London. No.1747, A371, 441-

451.

94. Longuent-Higgins, M.S. (1980). On the forming of sharp corners

at a free surface. Proc. Roy. Soc. London. No1747, A371, 53-478.

95. Longuent-Higgins, M.S. (1980). A technique for time-dependent

free surface flows. Proc. Roy. Soc. London. No. 1747, A371, 441-

451.

96. Lopez, J. M. and Chen, J. (1998). Coupling between a

viscoelastic Gas/Liquid Interface and a swirling vortex Flow. J.

Fluid Engineering, 120, 655-661.

97. Lopez, J. M. and Hirsa, A. (1998). Direct determination of the

dependence of the surface shear and dilatational viscosities on the

thermodynamic state of the interface: theoretical foundations. J.

Colloid Interface Sci. 206, 231-239.

98. Lopez, J. M. and Hirsa, A. (2000). Surfactant influenced

gas/liquid interfaces: nonlinear equation of state and finite surface

viscosities. J. Colloid Interface Sci., 229, 575-583.

203

99. Lopez, J. M. and Hirsa, A. (2001). Oscillatory Driven Cavity with

an Air/Water Interface and an Insoluble Monolayer: Surface

Viscosity Effects. J. Colloid Interface Sci., 242, 1-5.

100. Lopez, J.M., Miraghaie, R. and Hisra, A.H. (2002). Non-Newtonian

behavior of an insoluble monolayer, effect of inertia. J. Colloid

interfaces Sci., 248, 103-110.

101. Lucassen –Reynders, E.H. (1976). Adsorption of surfactants

monolayers at gas-liquid and liquid-liquid interfaces. Prog. Surf.

Membr. Sci., 10, 253-260.

102. Lyklema, J. (1991). Fundamentals of interface and colloid

Science. Volume I: Fundamentals. Academic Press Limited.

103. Majdalani, J. and Zhou, C. (2003). Moderate to large injection

and suction driven channel flows with expanding or contracting

walls. ZAMM, 83, 181-196.

104. Mannheimer, R. J. and Schechter, R. S. (1970). An improved

apparatus and analysis for surface rheological measurements. J.

Colloid Interface Sci. 32, 195-211.

105. Masliyah, J.H., Neale, G., Malysa, G. and Van devan, T.C.

(1987). Creeping flow over a composite sphere: Solid core with

porous shell. Chem. Eng. Sci., 42, 245-253.

106. Mason, D.P. and Moremedi, G.M. (2011). Effects of non-uniform

interfacial tension in small Reynolds number flow past a spherical

liquid drop. Pramana –Journal of physics, 77, 493-507.

204

107. Masschaele, K. Vandebril, S. and Vermant, J. and Madivala, B.

Interfacial Rheology. Encyclopedia of life support system.

108. Matthews, M.T. and Hill, J.M. (2006). Flow around nano spheres

and nano cylinders. Quart. J. Mech. Appl. Math, 59 (2), 191–210.

109. McLaughlin, J. B. (1996). Numerical simulation of bubble motion

in water. Journal of Colloid and Interface Science, 184, 614–625.

110. Mehta, G.D. and Morse, T.F. (1975). Flow through charged

membranes, J. Chem. Phys, 63 (5), 1878-1889.

111. Miller, C.A. and Scriven, L.E. (1968). The oscillation of a liquid

droplet immersed in another fluid. J Fluid Mech. 32, 417-435.

112. Miller, R., Ferri, J.K, Javadi, A., Kragel, J., Mucic, N. and

Wustneck, R. (2010). Rheology of interfacial layers. Colloid Polym

Sci., 288,937-950.

113. Miller, R. and Liggieri, L. (2009). Interfacial Rheology (Progress in

science and interface science).

114. Miller, R., Wustneck, R., Kragel, J. and Kretzschmar, G. (1996).

Dilatational and shear rheology of adsorption layers at liquid

interfaces. Colloids and interfaces A: Physiochemical and Engng.

Aspects, 111, 75-118.

115. Morduchow, M. (1957). On laminar flow through a channel or

tube with injection: application of method of averages. Quart. J.

Appl. Math, 14, 361-368.

205

116. Muradoglu, M, Tryggvason, G. (2008). A front-tracking method

for computations of interfacial flows with soluble surfactants, J.

Comput. Phys., 227, 2238–2262.

117. Nayfeh, AH (1973). Perturbation methods (John Wiley and Sons).

118. Oguz. H.N. and Sadhal. S.S. (1988). Effects of soluble and

insoluble surfactants on the motion of drops. Journal of fluid

mechanics, 194,563-579.

119. Oldroyed, J.G. (1955). The effect of interfacial stabilizing films on

the elastic and viscous properties of emulsions. Proc. Roy. Soc.

A232, 567-577.

120. O’ Neill, M.E. and Ranger, K.B. (1979). On the rotation of a rotlet

or sphere in the presence of an interface. J. Multiphase flow, 5,

143-148.

121. O’Neill, M.E. and Ranger, K.B. (1981). Flow past a sphere

straddling the interface of a two-phase system. J.Appl. Maths.

and Phys. (ZAMP). 32, 479-477.

122. O’ Neill, M.E. and Ranger, K.B. (1982). Axi-symmetric stokes flow

in a straight semi-infinite or finite pipe. Utilitas Math. 20, 65-76.

123. O’ Neill, M.E., Ranger, K.B. and Brenner, H. (1986). Slip at the

surface of a translating-rotating sphere bisected by a free surface

bounding a semi-infinite viscous fluid: Removal of contact line

singularity. Phy. Fluid, 29,913-924.

206

124. O’ Neill, M.E. and Yano, H. (1988). The slow rotation of a sphere

straddling a free surface with a surfactant layer. Quart. J. Mech.

Appl. Math, 41(4), 479-501.

125. Padmavathi, B.S., Amarnath, T. and Nigam, S.D. (1993).

Stokes flow past a porous sphere using Brinkman’s model.

Zeitschrift für Angewandte Mathematik und Physic(ZAMP), 44,

No. 5, 929-939.

126. Padmavathi, B.S., Amarnath, T. and Palaniappan. D. (1994).

Stokes flow past a permeable surface (Non-axisymmetric

Problem). Z. Angew. Math. Mech. (ZAMM) 74, 290-292.

127. Padmavathi, B.S., Rajasekhar, G.P. and Amarnath, T. (1998). A

note on complete general solutions of Stokes equations. Quart. J.

Mech. Appl. Math., 51, No. 3, pp. 383-388.

128. Pai, S.I. (1956). Viscous flow theory. Van Nostrand, Princeton,

NJ.

129. Pearson, J.R.A. (1958). On convection cells induced by surface

tension. Journal of fluid mechanics, 4(5), 489-500.

130. Pintar, A. J., Israel, A. B. and Wasan, D. T. (1971). Interfacial

shear viscosity phenomena in solutions of macromolecules. J.

Colloid Interface Sci. 37, 52-67.

131. Pop, I. and Cheng, P. (1992). Flow past a circular cylinder

embedded in a porous medium based on the Brinkman model,

Int. J. Eng. Sci., 30 (2), 257–262.

207

132. Prosperetti, A. (1977). Viscous effects on perturbed spherical

flows. Q. Appl. Math 35, 339-352.

133. Prosperetti, A. (1980). Free oscillations of drops and bubbles: The

initial-value problem. J Fluid Mech., 100, 333-347.

134. Raja Sekhar, G.P. Padmavathi, B.S. and Amarnath, T. (1997).

Complete general solution of the Brinkman equations, Z. Angew.

Math. Mech., 77, 555-556.

135. Ramabhadran, R. E., Byers, C. H. and Friedly, J. C. (1976). On

the Dynamics of Fluid interfaces. A.I.Ch.E.J., 22, 872.

136. Raman Murthy, J.V. and Bahali, N.K. (2009). Steady flow of

micropolar fluid through a circular pipe under a transverse

magnetic field with constant suction/injection. International

Journal of Applied Mathematics and Mechanics 5 (3), 1–10.

137. Ranger, K.B. (1978). Circular disk straddling the interface of two-

phase flow. Int, J. Multiphase flow, 4, 263-277.

138. Reid, W.H. (1960). The oscillations of a viscous liquid drop.

Q.Appl.Maths 18, 86-89.

139. Rybczynski, W. (1911). ..U ber die fortschreitende Bewegung einer

..flussigen Kugel in einem

..za hen Medium. Bull. Int. Acad. Sci.

Cracovie. A1911, 40-46.

140. Ryskin, G. and Leal, L. G. (1983). Orthogonal mapping. Journal of

Computational Physics, 50, 71–100.

208

141. Ryskin, G. and Leal, L.G. (1984). Numerical solution of free-

boundary problems in fluid mechanics. Part 1. The finite-

difference technique. Journal of Fluid Mechanics, 148, 1–17.

142. Ryskin, G. and Leal, L.G. (1984). Numerical solution of free-

boundary problems in fluid mechanics. Part 2.Buoyancy-driven

motion of a gas bubble through a quiescent liquid. Journal of

Fluid Mechanics, 148, 19–35.

143. Sacchetti, M., Yu, H. and Zografi, G. (1993). Hydrodynamic

coupling of monolayers with subphase. J. Chem. Phys. 99, 563-

566.

144. Sadhal, S.S and R.E. Johnson (1983). Stokes flow past bubbles

and drops partially coated with thin films. Part I. Stagnant cap of

surfactant film-exact solution. J. Fluid Mech., 126, 237-250.

145. Savic, P. (1953). Circulation and distortion of liquid drops falling

through a viscous medium. Nat. Res. Counc. Can., Div Mech.

Engng Rep. MT-22.

146. Schechter, R.S. and Farley, R.W. (1963). Interfacial tension

gradients and droplet behavior. Can .J. Chem. Engng, 41,103-

107.

147. Schneider, J.C., O’Neill, M.E. and Brenner, H. (1973). On the slow

viscous rotation of a body straddling the interface between two

immiscible semi-infinite fluids. Mathematika. 20, 175-196.

209

148. Schwartz, D. K., Knobler, C. M. and Bruinsma, R. (1994). Direct

observation of Langmuir monolayer flow through a channel. Phys.

Rev. Lett. 73, 2841-2844.

149. Scriven, L.E. (1960). Dynamics of a fluid interface: Equation of

motion for Newtonian surface fluids. Chem. Eng. Sci., 12, 98-

108.

150. Seth, G.S, Ansari, Md. S. and Nandkeolyar, R. (2010). Unsteady

Hydromagnetic Couette flow induced due to accelerated

movement of one of the porous plates of the channel in a rotating

system. International Journal of Applied Mathematics and

Mechanics 6 (7), 24-42.

151. Shail, R. (1978). The torque on a rotating disk in the surface of a

liquid on absorbed film. J.Engrg. Math, 12, 59-76.

152. Shail, R. (1979). The slow rotation of an axisymmetric solid

submerged in a fluid with a surfactant layer-I. The rotating disk

in a semi-infinite fluid. Int. J. Multiphase Flow, 5, 169-183.

153. Slattery, J.C. (1990). Interfacial transport phenomenon. New

York: Springer-Verlag.

154. Slattery, J.C. (1964). Surface-I: Momentum and moment-of-

momentum balance for moving surface. Chem. Engrg. Sci., 19,

379-385.

155. Stechkina, I.B. (1979). Drag of porous cylinders in a viscous fluid

at low Reynolds numbers. Fluid Dynamics, 14 (6), 912–915.

210

156. Sternling, C. V. and Scriven, L. E. (1959). Interfacial Turbulence:

Hydrodynamic Instability and the Marangoni Effect. American

Institute of Chemical Engineers Journal, 5, 514-523.

157. Stone, H.A. (1990). A simple diversion derivation of the time-

dependent convective-diffusion equation for surfactant transport

along a deforming interface. Phys. Fluids. No.1, A2, 111-112.

158. Stone, H.A. (1994). Dynamics of drop deformation and breakup

in viscous fluid. Ann. Rev. Fluid Mech., 26, 65-102.

159. Stone, H.A. (1995). Fluid motion of monomolecular films in a

channel flow geometry. Phys. Fluids, 7, 2931-2937.

160. Stone, H. A. and Ajdari, A. (1998). Hydrodynamics of particles

embedded in a flat surfactant layer overlying a sub phase of finite

depth. J. Fluid Mech. 369, 151-173.

161. Stone, H.A. and Leal, L.G. (1990). The effect of surfactants on

drop deformation and breakup. J.Fluid Mech. 220, 161-186.

162. Taylor, T.D. and A. Acrivos (1964). On the deformation and drag

of a falling viscous drop at low Reynolds number. J. Fluid Mech.,

18, 466-476.

163. Tharapiwattananon. N., Scamehorn, J.F. and Somechai, Osuwan

et al. (1996). Surfactant recovery from water using foam

fraction. Separation science and technology, 31(9), 1233-1258.

164. Thind. B.B. and Wallace. D.J. (1984). Modified flotation technique

for quantitative determination of of mite populations in feed

211

stuffs. Journal of the Association of official analytical chemists,

67,866-868.

165. Tryggvason, G., Abdollahi-Alibeik, J., Willmarth, W.W. and Hirsa,

A. (1992). Collision of a Vortex Pair with a Contaminated Free

Surface. Physics of Fluids A, 4, 1215-1229.

166. Ubal, S., Giavedoni, M.D. and Saita F.A. (2005). The formation of

faraday waves on a liquid covered with an insoluble surfactant

influence of the surface equation of state. Latin American Applied

Research, 35, 59-66.

167. Uchida, S. (1949). Viscous Flow in Multiparticle Systems: Slow

Viscous Flow through a Mass of Particles, Int. Sci. Technol. Univ.

Tokyo (in Japanese) 3, 97 – Abstract, Ind. Eng. Chem. 46 (1954)

1194–1195 (translated by T. Motai).

168. Vanden, J.M. and Smith, F.T. (2008). Surface Tension effects on

interaction between two fluids near a wall. Quarterly Journal of

Mechanics and Applied Mathematics, 61,117-128.

169. Vandyke, M. 1964. Perturbation method in Fluid Mechanics.

Academic Press, N.Y.

170. Vasin, S.I and Filippov, A.N. (2009). Cell models for flows in

concentrated media composed of rigid impenetrable cylinders

covered with a porous layer. Colloid Journal, 71, (2), 141-155.

171. Vasin, S.I., Filippov, A.N. and Starov, V.M. (2008). Hydrodynamic

permeability of membranes built up by particles covered by

212

porous shells: Cell models. Advances in Colloid and Interface

Science, 139, 83-96.

172. Wang, H. T. and Leighton, R. I. (1990). Direct Calculation of the

Interaction between Subsurface Vortices and Surface

Contaminants. Proceedings of the 9th OMAE Conference,

Houston, TX, Feb., ASME, NY, Vol. I, Part A.

173. Warszynski, P., Jachimska, B. and Malysa, K. (1996).

Experimental evidence of the existence of non-equilibrium

coverages over the surface of the floating bubble. Colloids and

Surfaces A: Physicochemical Engineering Aspects, 108, 321–325.

174. Wasserman, M.L. and Slattery, J.C. (1969). Creeping flow past a

fluid globule when a trace of surfactant is present. A.I.Ch.E.J. 15

(4), 533547.

175. Whitaker, S. (1968). Introduction to Fluid Mechanics. Prentice

Hall Englewood Cliffs, NJ.

176. Xu, J.J., Li, Z., Lowengrub, J.S. and Zhao, H.K. (2006). A level-

set method for interfacial flows with surfactant. J.Computer.Phys.

212,590-616.

177. Yang, M. and Leal, L.G. (1983). Particle motion in stokes flow

near a plane fluid-fluid interface, Part I. Slender body in a

quiescent fluid. J. Fluid Mech. 136,393-421.

178. Yih, Chia –Shun (1968). Fluid motion induced by Surface Tension

variation. Physics of fluid, 11, 477-480.

213

179. Yuan, S.W.1967. Foundations of Fluid Mechanics. Printice-Hall

Inc., Englewood Cliffs, NJ., USA.

180. Zhang, Y. and Basaran, O.A. (1995). An experimental study of

dynamics of drop formation. Phys. Fluids., 7, 1184.

181. Zhang, Y. and Finch, J. A. (1999). Single bubble terminal

velocity-experiment and modelling. In B. K. Parekh & J. D. Miller

(Eds.), Advances in flotation technology (pp. 83–94). Society of

Mining, Metallurgy and Exploration, Inc. Littleton, CO, USA.

182. Zhang, Y. Gomez, C. and Finch, J.A. (1996). Terminal velocity of

a 1.5 mm diameter bubble in water alone and surfactant

solutions columns. Proceedings of the international symposium on

column floatation (Eds: Gomez, C. and Flinch, J.A.), CIM, 63-69.

183. Zhou, Z.A., Egiebor, N.O. and Plitt L.R. (1992). Frother effect of a

single bubble motion in a water column. Can. Met. Quarterly,

31(1), 11-16.