14
Total 4730 registered members Log in .. ..Translate RSS Feed Home Sitemap Power Electric Directory Power Electric Links Advertise With Us Sponsorship ePlusMenuCAD™ F.A.Q. Order Your Licence Screenshots Download Design Documentation Electrical Software Electric Power Books Electrical Engineering General Knowledge LV-HV Technical Guides Basics of Energy Relays Heating Systems Learning AutoCAD Power Substations College Records AutoCAD Video Training Knowledge Theorems And Laws Page 1 of 14 Busbar Technical Specification | CsanyiGroup 4/10/2012 http://www.csanyigroup.com/busbar-technical-specification

Bus Bar Type Tests

Embed Size (px)

Citation preview

Page 1: Bus Bar Type Tests

Total 4730 registered membersLog in .. ..Translate RSS Feed

Home•Sitemap

Power Electric Directory

Power Electric Links

Advertise With Us

Sponsorship

ePlusMenuCAD™•F.A.Q.

Order Your Licence

Screenshots

Download•Design Documentation

Electrical Software

Electric Power Books

Electrical Engineering

General Knowledge LV-HV

Technical Guides

Basics of Energy

Relays

Heating Systems

Learning AutoCAD

Power Substations

College Records

AutoCAD Video Training

Knowledge

Theorems And Laws

Page 1 of 14Busbar Technical Specification | CsanyiGroup

4/10/2012http://www.csanyigroup.com/busbar-technical-specification

Page 2: Bus Bar Type Tests

Electrical Formulas

Electrical Machines

Technical Articles•Submit Article

Categories

About Us•

Search our website... GO

15

Share

Email It!Posted by ecsanyi on Tuesday, March 9, 2010 at 8:00 pm | Technical Articles | Categories | Submit Article

Busbar Technical Specification

5,461 views

Page 2 of 14Busbar Technical Specification | CsanyiGroup

4/10/2012http://www.csanyigroup.com/busbar-technical-specification

Page 3: Bus Bar Type Tests

Busbar Technical Specification

Copper busbars are normally part of a larger generation or transmission system. The continuous rating of the main components such as generators, transformers, rectifiers, etc., therefore determine the nominal current carried by the busbars but in most power systems a one to four second short-circuit current has to be accommodated.

The value of these currents is calculated from the inductive reactances of the power system components and gives rise to different maximum short-circuit currents in the various system sections.

. Performance under Short-circuit Conditions

Busbar trunking systems to BS EN 60439-2 are designed to withstand the effects of short-circuit currents resulting from a fault at any load point in the system, e.g. at a tap off point or at the end of a feeder run. .

Rating under Short-circuit Conditions

The withstand ability will be expressed in one or more of the following ways:

short-time withstand rating (current and time)1.

Page 3 of 14Busbar Technical Specification | CsanyiGroup

4/10/2012http://www.csanyigroup.com/busbar-technical-specification

Page 4: Bus Bar Type Tests

peak current withstand rating2.conditional short-circuit rating when protected by a short-circuit protective device (s.c.p.d.)3.

These ratings are explained in more detail:

1. Short-time Withstand Rating

This is an expression of the value of rms current that the system can withstand for a specified period of time without being adversely affected such as to prevent further service. Typically the period of time associated with a short-circuit fault current will be 1 second, however, other time periods may be applicable.

The rated value of current may be anywhere from about 10kA up to 50kA or more according to the construction and thermal rating of the system.

2. Peak Current Withstand Rating

This defines the peak current, occurring virtually instantaneously, that the system can withstand, this being the value that exerts the maximum stress on the supporting insulation.

In an A.C. system rated in terms of short-time withstand current the peak current rating must be at least equal to the peak current produced by the natural asymmetry occurring at the initiation of a fault current in an inductive circuit. This peak is dependent on the power-factor of the circuit under fault conditions and can exceed the value of the steady state fault current by a factor of up to 2.2 times.

3. Conditional Short-circuit Rating

Short-circuit protective devices (s.c.p.ds) are commonly current-limiting devices; that is they are able to respond to a fault current within the first few milliseconds and prevent the current rising to its prospective peak value. This applies to HRC fuses and many circuit breakers in the instantaneous tripping mode. Advantage is taken of these current limiting properties in the rating of busbar trunking for high prospective fault levels. The condition is that the specified s.c.p.d. (fuse or circuit breaker) is installed up stream of the trunking. Each of the ratings above takes into account the two major effects of a fault current, these being heat and electromagnetic force.

The heating effect needs to be limited to avoid damage to supporting insulation. The electromagnetic effect produces forces between the busbars which stress the supporting mechanical structure, including vibrational forces on A.C. The only way to verify the quoted ratings satisfactorily is by means of type tests to the British Standard. .

Page 4 of 14Busbar Technical Specification | CsanyiGroup

4/10/2012http://www.csanyigroup.com/busbar-technical-specification

Page 5: Bus Bar Type Tests

Type Testing

Busbar trunking systems are tested in accordance with BS EN 60439-2 to establish one or more of the short circuit withstand ratings defined above. In the case of short-time rating the specified current is applied for the quoted time. A separate test may be required to establish the peak withstand current if the quoted value is not obtained during the short-time test. In the case of a conditional rating with a specified s.c.p.d. the test is conducted with the full prospective current value at the trunking feeder unit and not less than 105% rated voltage, since the s.c.p.d. (fuse or circuit breaker) will be voltage dependent in terms of let through energy. .

Application

It is necessary for the system designer to determine the prospective fault current at every relevant point in the installation by calculation, measurement or based on information provided e.g. by the supply authority. The method for this is well established, in general terms being the source voltage divided by the circuit impedance to each point. The designer will then select protective devices at each point where a circuit change occurs e.g. between a feeder and a distribution run of a lower current rating. The device selected must operate within the limits of the busbar trunking short-circuit withstand.

The time delay settings of any circuit breaker must be within the specified short time quoted for the prospective fault current. Any s.c.p.d. used against a conditional short-circuit rating must have energy limitation not exceeding that of the quoted s.c.p.d. For preference the s.c.p.d. recommended by the trunking manufacturer should be used. .

Voltage Drop

The requirements for voltage-drop are given in BS 7671: Regulation 525-01-02. For busbar trunking systems the method of calculating voltage drop is given in BS EN 60439-2 from which the following guidance notes have been prepared.

Voltage Drop

Figures for voltage drop for busbar trunking systems are given in the manufacturer’s literature.

The figures are expressed in volts or milli-volts per metre or 100 metres, allowing a simple calculation for a given length of run.

The figures are usually given as line-to-line voltage drop for a 3 phase balanced load.

The figures take into account resistance to joints and temperature of conductors and assume the system is fully loaded.

Page 5 of 14Busbar Technical Specification | CsanyiGroup

4/10/2012http://www.csanyigroup.com/busbar-technical-specification

Page 6: Bus Bar Type Tests

Standard Data

BS EN 60439-2 requires the manufacturer to provide the following data for the purposes of calculation, where necessary:

R20

the mean ohmic resistance of the system, unloaded, at 20ºC per metre per phase

X the mean reactance of the system, per metre per phase

For systems rated over 630A:

RT the mean ohmic resistance when loaded at rated current per metre per phase

Application

In general the voltage drop figures provided by the manufacturer are used directly to establish the total voltage drop on a given system; however this will give a pessimistic result in the majority of cases.

Where a more precise calculation is required (e.g. for a very long run or where the voltage level is more critical) advantage may be taken of the basic data to obtain a more exact figure.

Resistance – the actual current is usually lower than the rated current and hence the resistance of the conductors will be lower due to the reduced operating temperature. . Rx = R20 [1+0.004(Tc - 20)] ohms/metre and Tc is approximately Ta + Tr

1.

where Rx is the actual conductor resistance

Ta is the ambient temperature

Tr is the full load temperature rise in ºC (assume say 55ºC)

Power factor – the load power factor will influence the voltage drop according to the resistance and reactance of the busbar trunking itself. The voltage drop line-to-line ( ∆v) is calculated as follows:

2.

∆v = √ 3 I (R x cos Φ + X sin Φ) volts/metre

where I is the load current

Page 6 of 14Busbar Technical Specification | CsanyiGroup

4/10/2012http://www.csanyigroup.com/busbar-technical-specification

Page 7: Bus Bar Type Tests

Rx is the actual conductor resistance (Ω/m)

X is the conductor reactance (Ω/m)

Cos Φ is the load power factor

sin Φ = sin (cos-1 Φ )

Distributed Load – where the load is tapped off the busbar trunking along its length this may also be taken into account by calculating the voltage drop for each section. As a rule of thumb the full load voltage drop may be divided by 2 to give the approximate voltage drop at the end of a system with distributed load. .

3.

Frequency – the manufacturers data will generally give reactance (X) at 50Hz for mains supply in the UK. At any other frequency the reactance should be re-calculated. . Xf = x F/50

. where Xf is the reactance at frequency F in Hz

4.

.

Source: Siemens Barduct Busbar Specification

.

Related articles

Line Protection With Distance Relays•Short Circuit Parameters in Low Voltage AC Circuits•Arc-resistant low voltage switchgear•General about motors•The Power Factor•

Be nice and share this article with others! How to use all these nice buttons?

Page 7 of 14Busbar Technical Specification | CsanyiGroup

4/10/2012http://www.csanyigroup.com/busbar-technical-specification

Page 8: Bus Bar Type Tests

Recommend 6 people recommend this.

Posted by: ecsanyi on Tuesday, March 9, 2010 at 8:00 pm Tagged with: busbar, busbar trunking, distributed load, en 60439-2, fault current, frequency, insulation, peak current, Power factor, reactance, resistance, rms, short circuit, type testing, voltage drop, withstand rating

Turn Your Thoughts Into Words

Tell us what you're thinking... we care about your opinion! and oh, not to forget - if you want a picture to show with your comment, go get a free Gravatar!

Name (required)

Mail (will not be published) (required)

Website

Page 8 of 14Busbar Technical Specification | CsanyiGroup

4/10/2012http://www.csanyigroup.com/busbar-technical-specification

Page 9: Bus Bar Type Tests

CAPTCHA Code *

Submit Comment

Comments RSS Feed

Comments

One Response to “Busbar Technical Specification”

atiq says:29 September, 2011 at 12:07

I need a formula that how can i select the copper bus bar size according to the ampere ,for example i am having 630 amp/phase

Reply

1.

SUbscribe To Technical Articles•

7 Reasons to subscribe and receive

technical articles and updates via email:

Subscribe

Delivered via Google Feedburner

Page 9 of 14Busbar Technical Specification | CsanyiGroup

4/10/2012http://www.csanyigroup.com/busbar-technical-specification

Page 10: Bus Bar Type Tests

Electrical Engineering | Ads•

Electrical Engineering | Sponsors•

Electrical Engineering Articles•

Recent

Most Read

Comments

Superconducting transformers

Largest Tesla Coil Ever Built

ePlusMenuCAD 10 RC1 – New Release

ABB Power Transformers – A guide to manufacturing

Light Pollution

Line Protection With Distance Relays

UPS design criteria and selection

The New ETS4: Easy, Fast, Open

Arc-resistant low voltage switchgear

What is PowerLogic System?

Comparison Between Vacuum and SF6 Circuit Breaker viewed 25,517 times

ANSI standards for protection devices viewed 21,451 times

ANSI/IEC Relay Symbols viewed 19,689 times

Transformer heating and cooling viewed 14,042 times

Protection relays – important informations viewed 8,728 times

Maintenance Of SF6 Gas Circuit Breakers viewed 8,253 times

PLC-Based Monitoring Control System for Three-Phase Induction Motors Fed by PWM Inverter viewed 8,195 times

Gas-Insulated Switchgear Type 8DN8 viewed 7,710 times

Page 10 of 14Busbar Technical Specification | CsanyiGroup

4/10/2012http://www.csanyigroup.com/busbar-technical-specification

Page 11: Bus Bar Type Tests

Substation, Its Function And Types viewed 7,069 times

Air Insulated Substations – Bus/Switching Configurations viewed 7,063 times

Are Variable Frequency Drives Useful? - WATTS NEW

[...] PLC-Based Monitoring Control System for Three-Phase Induction Motors Fed by PWM Inverter (csanyigroup.com) [...]

mumbi masase

thank so much for your explanation.i think it has answered all my question.

Dattatraya

Its nice. I got several information. I have one request for u.. Can U pls send me some Electrical & Electronics books to my mail id.

Dattatraya

I like it... want more electrical details can u send to my mail id pls..

Wilson

Treba mi teorija, radim zavrsni iz frekventnih regulatora (:

Article Categories•

ANSI Standards AutoCAD Cables Energy And Power ePlusMenuCAD High Voltage Hydropower IEC Standards

Page 11 of 14Busbar Technical Specification | CsanyiGroup

4/10/2012http://www.csanyigroup.com/busbar-technical-specification

Page 12: Bus Bar Type Tests

KNX Lighting Low Voltage Medium Voltage Motors Power Substations Programmable Logic Controller Protection Relays SCADA Solar Energy Tips & tricks Transformers Updates And Announcements Variable Speed Drives Wind Power

Links•

Direktorijum Kvalitetnih Srpskih Sajtova

Visitors•

Page 12 of 14Busbar Technical Specification | CsanyiGroup

4/10/2012http://www.csanyigroup.com/busbar-technical-specification

Page 13: Bus Bar Type Tests

Live Traffic Feed•

See your visitors in RealTime! Get the Free Live Traffic Feed Get Feedjit Now!

A visitor from Dubai viewed "Busbar Technical Specification | CsanyiGroup" 0 secs ago

A visitor from Dar Es Salaam, Dar es Salaam viewed "AutoCAD Video Training | CsanyiGroup" 1 min ago

A visitor from Muscat, Masqat viewed "Motor Operation Efficiency Under Abnormal Conditions | CsanyiGroup" 7 mins ago

A visitor from Brisbane, Queensland left "ANSI/IEC Relay Symbols | CsanyiGroup" via std.iec.ch 9 mins ago

A visitor from Svrljig left "Nothing found for Vesti" via elektroenergetika.info 11 mins ago

A visitor from Svrljig viewed "Nothing found for Vesti" 12 mins ago

A visitor from Seoul, Seoul-tukpyolsi viewed "Gas-Insulated Switchgear Type 8DN8 | CsanyiGroup" 13 mins ago

A visitor from Hyderabad, Andhra Pradesh viewed "Comparison Between Vacuum and SF6 Circuit Breaker | CsanyiGroup" 15 mins ago

A visitor from Fredrikstad, Ostfold viewed "SIEMENS: Short Circuit Calculations | CsanyiGroup" 16 mins ago

A visitor from Mumbai, Maharashtra viewed "ANSI code 50BF - Breaker failure |

Page 13 of 14Busbar Technical Specification | CsanyiGroup

4/10/2012http://www.csanyigroup.com/busbar-technical-specification

Page 14: Bus Bar Type Tests

Portal Content•

ePlusMenuCAD | Development

Electric Power Books

Technical Articles

Electrical Design Software & Tools

AutoCAD | Video Training

Engineering Knowledge

Translate to your language•

Hindi

Arabic

Filipino

Spanish

EEP - Electrical Engineering Portal•

EEP is engineering portal dedicated to electrical science and education and it's core purpose is to spread knowledge and educate power engineers in fields of power substations, industrial automation, low voltage, medium voltage and high voltage applications etc.

EEP - Electrical Engineering Portal

Support Us•

Make a small donation, show us that you care about our work! Make a donation

Copyright © 2003-2010 Csanyigroup - Electrical Engineering Portal • Privacy Policy

Page 14 of 14Busbar Technical Specification | CsanyiGroup

4/10/2012http://www.csanyigroup.com/busbar-technical-specification