58
Jaeger/Blalock 01/03/04 Microelectronic Circuit Design McGraw-Hill Chapter 11 Operational Amplifiers Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock Chap 11-1 

Chap11 Operational Amplifiers

Embed Size (px)

Citation preview

Page 1: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 1/58

Page 2: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 2/58

Jaeger/Blalock 01/03/04

Microelectronic Circuit DesignMcGraw-Hill

Chapter Goals

• Understand behavior and characteristics of ideal differential and

operational amplifiers (op amps)

• Study non-ideal op-amp behavior 

• Demonstrate circuit analysis techniques for ideal and non-ideal

op amps

• Characterize inverting, non-inverting, summing and

instrumentation amplifiers, voltage follower and integrator 

• Learns factors involved in circuit design using op amps

• Understand frequency response limitations of op-amp circuits

• Find characteristics of cascaded amplifiers such as gain, input

resistance, output resistance and frequency response

Chap 11-2 

Page 3: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 3/58

Jaeger/Blalock 01/03/04

Microelectronic Circuit DesignMcGraw-Hill

Differential Amplifier Model: Basic

Represented by:

 A = open-circuit voltage gain

vid = (v+-v-) = differential input signal

voltage

 Rid  = amplifier input resistance

 Ro = amplifier output resistance

Signal developed at amplifier output is in

 phase with the voltage applied at the + input(non-inverting) terminal and 180o out of phase

with that applied at the - input (inverting)

terminal.

Chap 11-3 

Page 4: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 4/58

Jaeger/Blalock 01/03/04

Microelectronic Circuit DesignMcGraw-Hill

Differential Amplifier Model: With

Source and Load R L = load resistance

 RS  = Thévenin equivalent resistance

of signal source

v s = Thévenin equivalent voltage of 

signal source

vO  Avid 

 R L

 Ro R

 L

and vid 

vS 

 Rid 

 Rid 

 RS 

•Op amp circuits are mostly dc-coupled amplifiers. Signals vo and v s may have

a dc component representing a dc shift of the input away from Q-point.

•Op-amp circuits amplify both dc and ac components

 Av

vO

vS 

Rid 

 Rid 

 RS 

 R L

 Ro R

 L

Chap 11-4 

Page 5: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 5/58

Jaeger/Blalock 01/03/04

Microelectronic Circuit DesignMcGraw-Hill

Differential Amplifier Model: With

Source and Load (Example)• Problem: Calculate voltage gain

• Given Data: A = 100, Rid = 100k W, Ro = 100W, RS = 10k W, R L = 1000W

• Analysis:

• Ideal amplifier’s output depends only on input voltage difference and noton source and load resistances.This can be achieved by using fullymismatched resistance condition ( Rid >> RS or infinite Rid and Ro << R L 

or zero Ro ).

A = open-loop gain (maximum voltage gain available from the device)

 Av

vo

v s

Rid 

 Rid 

 RS 

 R L

 Ro R

 L

100 100k W10k W100k W

 

 

1000W100W1000W

 

 

82.6 38.3 dB

vO

 Avid 

or   Av

vO

vid 

 A

Chap 11-5 

Page 6: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 6/58

Jaeger/Blalock 01/03/04

Microelectronic Circuit DesignMcGraw-Hill

Ideal Operational Amplifier 

• The ideal op amp is a special case of an ideal differential amplifier withinfinite gain, infinite Rid and zero Ro .

 –  If A is infinite, vid 

is zero for any finite output voltage.

 –  Infinite input resistance Rid forces input currents i+ and i- to be zero.

• The ideal op amp has the following assumptions:

 –  Infinite common-mode rejection, power supply rejection, open-loop bandwidth, output voltage range, output current capability and slewrate

 –  Zero output resistance, input-bias currents and offset current, input-offset voltage.

vid  vO

 Aand lim

A vid  = 0

Chap 11-6 

Page 7: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 7/58

Jaeger/Blalock 01/03/04

Microelectronic Circuit DesignMcGraw-Hill

Inverting Amplifier Configuration

• Positive input is grounded.• Feedback network consisting of resistors R1 and R2 is connected

 between the inverting input, the signal source and the amplifier output

Chap 11-7 

Page 8: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 8/58

Page 9: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 9/58

Jaeger/Blalock 01/03/04

Microelectronic Circuit DesignMcGraw-Hill

Inverting Amplifier: Input and Output

Resistances

 Rout is found by applying a test current

(or voltage) source to the amplifier 

output and determining the resulting

voltage (or current). All independent

sources must be turned off. Hence, vs = 0

vx i2 R2 i1 R1

But i1= i2

vx i1( R2 R1)

Since v- = 0, i1= 0 and vx = 0

irrespective of the value of ix .

0out 

 R

Chap 11-9 

Page 10: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 10/58

Page 11: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 11/58

Jaeger/Blalock 01/03/04

Microelectronic Circuit DesignMcGraw-Hill

 Non-inverting Amplifier: Configuration

• Input signal is applied to the non-inverting input terminal.• A portion of the output signal is fed back to the negative input terminal.

• Analysis is done by relating voltage at v1 to input voltage v s and output

voltage vo .

Chap 11-11 

Page 12: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 12/58

Jaeger/Blalock 01/03/04

Microelectronic Circuit DesignMcGraw-Hill

 Non-inverting Amplifier:Voltage Gain,

Input Resistance and Output Resistance

But vid = 0 

Since i+= 0 

Since i- 0 : v1 vO

 R1

 R1 R2

and vS  vid  v1

vS  v1

vO vS 

 R1 R2

 R1

 Av vO

vS 

R1 R2

 R1

1R2

 R1

 

 Rin

vS

i  Rout is found by applying a test current source to amplifier output and

setting vs = 0. The resulting circuit is identical to that used for the output

resistance calculation for the inverting amplifier. Therefore  Rout = 0.

Chap 11-12 

Page 13: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 13/58

Jaeger/Blalock 01/03/04

Microelectronic Circuit DesignMcGraw-Hill

 Non-inverting Amplifier: Example

• Problem:Determine the characteristics of given non-inverting

amplifier 

• Given Data: R1 = 3 k W, R2 = 43 k W, v s= +0.1 V

• Assumptions: Ideal op amp

• Analysis:

Since i-= 0,

 Av 1R2

 R1

143k W3k W

vO AvvS (15.3)(0.1V) 1.53 V

iO vO

 R2 R1

1.53V 

43k W 3k W 33.3   A

Chap 11-13 

Page 14: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 14/58

Jaeger/Blalock 01/03/04

Microelectronic Circuit DesignMcGraw-Hill

Unity-gain Buffer 

• A special case of the non-inverting amplifier; also called avoltage

follower with infinite R1 and zero R2. Hence Av =1.

• Provides excellent impedance-level transformation while maintaining

signal voltage level.• Ideal voltage buffer does not require any input current and can drive

any desired load resistance without loss of signal voltage.

• Unity-gain buffer is used in may sensor and data acquisition systems.

Chap 11-14 

Page 15: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 15/58

Jaeger/Blalock 01/03/04

Microelectronic Circuit DesignMcGraw-Hill

Summing Amplifier 

• Scale factors for the 2 inputscan be independently adjusted by proper choice of  R2 and R1.

• Any number of inputs can beconnected to the summing

 junction through additional

resistors.• This circuit is also an example

of a simple digital-to-analogconverter.

Since negative amplifier input is

at virtual ground,

Since i-= 0, i3 = i1 + i2 ,

Chap 11-15 

i1 v1

 R1

  i2 v2

 R2

  i3 vO

 R3

vO  R3

 R1

v1 R3

 R2

v2 

Page 16: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 16/58

Jaeger/Blalock 01/03/04

Microelectronic Circuit DesignMcGraw-Hill

Difference Amplifier 

• Also called a differentialsubtractor, the circuit amplifiesthe difference between the inputsignals.

•  Rin2 is series combination of  R1 and R2 because i+ is zero.

• For v2 = 0, Rin1= R1 , as the circuitreduces to an inverting amplifier .

• For general case, i1 is a functionof both v1 and v2.

vo v

-i

2 R

2 v

-i

1 R

2

vo v-

 R2

 R1(v1v-)

R1 R

2

 R1

 

 

v-

 R2

 R1

v1

Also, v

R

2

 R1 R

2

v2

 

Since v- v

, vo

 R2

 R1

(v1v

2)

For  R2 R

1, v

o(v

1v

2)

Chap 11-16 

Page 17: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 17/58

Jaeger/Blalock 01/03/04

Microelectronic Circuit DesignMcGraw-Hill

Difference Amplifier: Example

• Problem: Determine V o, V +, V -, I o, I 1, I 2, I 3 .

• Given Data: R1 = 10 k W, R2 = 100 k W, V 1 = 5 V, V 2 = 3 V

• Assumptions: Ideal op amp - hence, V -= V + and I -= I += 0.

• Analysis: Using dc values, 

V  V - R2

 R1 R

2

V 2

100k W10k W100k W

3V  2.73 V 

 

 I 1 I 

2

V 1V 

-

 R1

5V -2.73V 

10k W227   A

V O

V 1 I 

1 R

1 I 

2 R

25V (227  A)(110k W)20.0 V 

 I O

 I 2227   A

Chap 11-17 

Page 18: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 18/58

Jaeger/Blalock 01/03/04

Microelectronic Circuit DesignMcGraw-Hill

Instrumentation Amplifier 

Combines 2 non-inverting amplifiers

with the difference amplifier to

 provide higher gain and higher input

resistance.

vO

 R

4

 R3

(vav

b)

vaiR

2i(2 R

1)iR

2 v

b

But, i

v1v

2

2 R1

vO

 R

4

 R3

1R

2

 R1

 

 

(v

1v

2)

Input resistance is infinite because

input current to both op amps is zero.

Output resistance is set to zero by the

difference amplifier.

Wk 15

Chap 11-18 

Page 19: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 19/58

Jaeger/Blalock 01/03/04

Microelectronic Circuit DesignMcGraw-Hill

Instrumentation Amplifier: Example

• Problem:Determine V O, V  A, V  B.

• Given Data: R1 = 15 k W, R2 = 150 k W, R3 = 15 k W, R4 = 30 k W,

V 1 = 2.5 V, V 2 = 2.25 V

• Assumptions: Ideal op amp. Hence, V - = V + and I - = I + = 0.

• Analysis:Using dc values,

V O

 R

4

 R3

1R

2

 R1

 

(V 

1V 

2) 30k W

15k W1150k W

15k W

 

 

(2.52.25)5.50V 

 I V 

1V 

2

2 R1

2.5V -2.25V 

2(15k W)

8.33   A

V  A

V 1 IR

22.5(8.33  A)(150k W)3.75 V 

V  B

V 2 IR

2 2.25(8.33  A)(150k W)1.00 V 

Chap 11-19 

Page 20: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 20/58

Jaeger/Blalock 01/03/04

Microelectronic Circuit DesignMcGraw-Hill

Active Low-Pass Filter 

A generalized inverting amplifier’s gain is 

 Av( s)

Vo( s)

Vs( s)

 Z 

2(s)

 Z 1(s)

In a single-pole low-pass filter,

 Z 1( s) R

1   Z 

2( s)

 R2

1 sC 

 

 R2

1

 sC 

 R

2

 sC  R2

1

 

 Av( s)

 R2

 R1

1

(1 sC  R2)

 R2

 R1

1

(1 s

  H 

)

 

  H 

2  f   H 

1 R

2C 

Chap 11-20 

Page 21: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 21/58

Jaeger/Blalock 01/03/04

Microelectronic Circuit DesignMcGraw-Hill

Active Low-Pass Filter (cont.)

• Single pole at   H 

• At frequencies below   H 

amplifier is an inverting

amplifier with gain set by ratio

of resistors R2 and R1.

• At frequencies above   H , the

amplifier response rolls of at

-20dB/decade.

• Cutoff frequency and gain can be independently set.

Chap 11-21 

Page 22: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 22/58

Jaeger/Blalock 01/03/04

Microelectronic Circuit DesignMcGraw-Hill

Active Low-pass Filter: Example

• Problem: Design an active low-pass filter 

• Given Data: Av = 40 dB, Rin = 5 k W, f  H = 2 kHz

• Assumptions: Ideal op amp, specified gain represents low-frequency

gain.

• Analysis:

Input resistance is controlled by R1 and voltage gain is set by R2 / R1.

Closest capacitor value of 160 pF lowers cutoff frequency to 1.95 kHz.

Another choice of 150 pF raises cutoff frequency to 2.08 kHZ.

 Av 1040dB /20dB 100

 R1 R

in5 k W and  A

v

 R2

 R1

    R2

100 R1 500 k W

  C  12  f  

 H  R

2 1

2 (200kHz )(510k W)156  pF 

Chap 11-22 

Page 23: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 23/58

Jaeger/Blalock 01/03/04

Microelectronic Circuit DesignMcGraw-Hill

Inverting Integrator 

• Feedback resistor  R2 in the inverting

amplifier is replaced by capacitor C.

• The circuit uses frequency-dependentfeedback.

iS 

v

 R  i

C C 

dvO

dt 

Voltage at the circuit’s output at

time t is given by the initial

capacitor voltage integral of the

input signal from start of integration interval, here, t = 0.

Integration of an input step signal

results in a ramp at the output.

Chap 11-23 

Since iC iS ,

dvO

1

 RC  v

S d  

vOt 

1

 RC vS  

0

d   vO

0

vO

0 V C 

0

Page 24: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 24/58

Jaeger/Blalock 01/03/04

Microelectronic Circuit DesignMcGraw-Hill

Differentiator 

• Input resistor  R1 in the inverting

amplifier is replaced by capacitor C.

• Derivative operation emphasizes high-frequency components of input signal,

hence it is less often used than the

integrator.

i R

v

O

 R  i

S C 

dvS 

dt 

Since i R iS , vO  RC dv

dt 

Output is scaled version of the

derivative of the input voltage.

Chap 11-24 

Page 25: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 25/58

Jaeger/Blalock 01/03/04

Microelectronic Circuit DesignMcGraw-Hill

Cascaded Amplifiers

• Connecting several amplifiers in cascade can meet design specifications not

met by a single amplifier (output of one stage connected to input of next).

• Each amplifier is built by using an op amp with parameters A, Rid  , Ro, called

the open-loop parameters that describe the op amp with no external elements.

•   Av , Rin , Rout are closed-loop parameters that describe both the closed-loop op

amp with the feedback network as well as the overall composite (cascaded)

amplifier.

Chap 11-25 

Page 26: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 26/58

Jaeger/Blalock 01/03/04

Microelectronic Circuit DesignMcGraw-Hill

Two-port Model for 3-stage Cascade

Amplifier 

• Each amplifier in the 3-stage cascaded amplifier is replaced by its 2-portmodel.

vo A

vAv

 s

 RinB

 RoutA

 RinB

 

 A

vB

 RinC 

 RoutB

 RinC 

 

 A

vC 

 Av

vo

v s

 AvA AvB AvC If  Rout = 0

 Rin= RinA and   Rout = RoutC = 0

Chap 11-26 

Page 27: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 27/58

Jaeger/Blalock 01/03/04

Microelectronic Circuit DesignMcGraw-Hill

 Non-ideal Operational Amplifier 

• Various error terms arise in practical operational amplifiers due to non-

ideal behavior.

• Some of the non-ideal characteristics include:

 –  Finite open-loop gain that results in gain error  –   Non zero output resistance

 –  Finite input resistance

 –  Finite CMRR 

 –  Common-mode input resistance

 –  DC offst voltage and input currents

 –  Output voltage and current limits

Chap 11-27 

Page 28: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 28/58

Jaeger/Blalock 01/03/04

Microelectronic Circuit DesignMcGraw-Hill

Finite Open-loop Gain

v1

R1

 R1  R2

vo

  vo

  R

1

 R1 R

2

is called the

feedback factor. 

vo  Av

id  A(v s v

1) A(v

 s   vo)

 Av

v

o

v s

A

1 A  

 A  is called the loop gain.

For  A  >>1,

 Aideal 

1

  1

 R2

 R1

vid 

v s

v1 v

 s  v

o

vid  v s A  1 A  

v s v s

1 A  

Although no longer zero , vid is

small for large A . 

Chap 11-28 

Page 29: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 29/58

Jaeger/Blalock 01/03/04

Microelectronic Circuit DesignMcGraw-Hill

Gain Error 

• Gain Error is given by

GE = (ideal gain) - (actual gain)

For non-inverting amplifier,

• Gain error is also expressed as a fractional or percentage

error.

GE  1  

A1 A  

1  (1 A  )

 

 FGE 

1

  

A

1 A  1

  

1

1 A   1

 A  

Chap 11-29 

Page 30: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 30/58

Jaeger/Blalock 01/03/04

Microelectronic Circuit DesignMcGraw-Hill

Gain Error: Example

• Problem: Find ideal, actual gain and gain error in percent

• Given data: Closed-loop gain of 200 (46 dB); open-loop gain of op

amp is 10,000 (80 dB).

• Approach: Amplifier is designed to give ideal gain and deviations

from ideal case are determined. Hence,

 R1 and R2 are not noramlly designed to compensate for finite open-loop

gain of amplifier.

• Analysis:

200

1  

 

 Av A

1 A   104

1104

200

196 FGE 200196200

0.02 or 2

Chap 11-30 

Page 31: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 31/58

Jaeger/Blalock 01/03/04 Microelectronic Circuit DesignMcGraw-Hill

 Non-zero Output Resistance

Output terminal is driven by test source v x and

current i x is calculated to determine output

resistance (all independent sources are turned

off). The equivalent circuit is same for  both 

inverting and non-inverting amplifiers.

 Rout 

v

 x

i x

Chap 11-31 

Page 32: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 32/58

Page 33: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 33/58

Jaeger/Blalock 01/03/04 Microelectronic Circuit DesignMcGraw-Hill

Open-loop Gain Design: Example

• Problem: Design non-inverting amplifier and find open-loop gain

• Given Data: Av = 35 dB, Rout = 0.2 W, Ro = 250 W

• Analysis:

 Av

1035dB /20dB 56.2 and    1

 Av

1

56.2

 Rout 

R

o

1 A   0.2W

 A

1

  

 Ro

 Rout 

1

 

 

56.2

250

0.2 1

 

 

7.0310

4

96.9 dB

Chap 11-33 

Page 34: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 34/58

Jaeger/Blalock 01/03/04 Microelectronic Circuit DesignMcGraw-Hill

Finite Input Resistance: Non-inverting

Amplifier 

Test voltage source v x

is applied to

input and current i x is calculated.

i x

v

 xv

1

 Rid 

Assuming i-<<i2 implies i1 = i2.

v1i

1 R

1i2 R

1

v1

R1

 R1  R

2

vo  v

o

v1  ( Av

id ) A  (v

 xv

1)

v1 A  

1 A  v x

i x

v x

A  

1 A  v x

 Rid 

v x

(1 A  ) Rid 

 Rin

 Rid 

(1 A  )

Chap 11-34 

Page 35: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 35/58

Jaeger/Blalock 01/03/04 Microelectronic Circuit DesignMcGraw-Hill

Finite Input Resistance: Inverting

Amplifier 

 Rin

v x

i x

i x R

1v

-

i x

 R1 v

-

i x

 R1 removed

i1 i-i

2 v

1

 Rid 

v1v

o

 R2

v1

 Rid 

v1 Av

1

 R2

G1 i

1v

1

1

 Rid 

1 A R

2

 Rin

 R1 R

id 

 R2

1 A

 

 

 R

1 R2

1 A

 

 

For large A, Rin= R1

Chap 11-35 

Page 36: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 36/58

Jaeger/Blalock 01/03/04 Microelectronic Circuit DesignMcGraw-Hill

Finite Common-Mode Rejection Ratio

(CMRR)

 A (or  Adm)= differential-mode gain

 Acm = common-mode gain

vid = differential-mode input voltage

vic = common-mode input voltage

A real amplifier responds to the signal

common to both inputs, called the

common-mode input voltage. In

general,

vo A v

id 

Acm

vic

 A

 

 

 A v

id 

vic

CMRR 

 

 

CMRR  A A

cm

Ideal amplifier has Acm = 0, but for a real

amplifier,

v1 vic

vid 

2   v2 vic

vid 

2

vo A(v

1v

2) A

cmv1 v2

2

 

vo A(v

id ) A

cm(v

ic)

Chap 11-36 

Actual sign of CMRR isn’t known before hand 

as only a lower bound is given.

Page 37: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 37/58

Jaeger/Blalock 01/03/04 Microelectronic Circuit DesignMcGraw-Hill

Finite Common-Mode Rejection Ratio:

Example

• Problem: Find error introduced by finite CMRR.

• Given Data: A = 2500, CMRR = 80 dB, v1 = 5.001 V, v2 = 4.999 V

• Assumptions: Op amp is ideal except for finite gain and CMRR. Here,CMRR of 80 dB corresponds to CMRR of ±104. Assume CMRR = + 104.

• Analysis:

Error introduced by common-mode input is 25% of differential input voltage.

Also,

vid 

5.001V  4.999V 0.002 V 

vic

5.001V  4.999V 2

5.000 V 

vo A v

id  v

ic

CMRR

 

  2500 0.002 5.000

104

 

 

V 6.25 V

whereas desired output is vo Av

id  5.00 V 

 

 Acm

A

CMRR  2500

100000.25 or  12 dB

Chap 11-37 

Page 38: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 38/58

Jaeger/Blalock 01/03/04 Microelectronic Circuit DesignMcGraw-Hill

Voltage Follower Gain Error 

due to CMRR 

vid 

v s

vo  v

ic

v s

vo

2

vo

 A v s

vo

v s

vo

2CMRR

 

 

 Av

vo

v s

 A1 1

2CMRR

 

 

1 A1 1

2CMRR

 

 

Ideal gain for the voltage follower 

is unity. The gain error is

GE1 Av

1 A

CMRR

1 A1 1

2CMRR

 

 

Since, both A and CMRR are

normally >>1,

GE 1

 A

1

CMRR First term is due to finite amplifier 

gain; second term shows that CMRR 

may introduce an even larger error.

Chap 11-38 

Page 39: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 39/58

Page 40: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 40/58

Jaeger/Blalock 01/03/04 Microelectronic Circuit DesignMcGraw-Hill

DC Error Sources

Input-Offset Voltage

With inputs being zero, theamplifier output actually

rests at some non-zero dc

voltage level. The equivalent

dc input offset voltage is

The amplifier is connected as

a voltage-follower to give an

output voltage equal to the

offset voltage.

V OS 

V O A

 

vO

 A vid 

v

ic

CMRR V 

OS 

 

To include effect of offset voltage,

If vid = 0,

Thus, CMRR is a measure of how

total offset voltage changes from

its dc value when common-mode

voltage is applied.

vO

 Av

ic

CMRRV 

OS 

 

 A(v

OS )

CMRR  vic

vOS 

Chap 11-40 

Page 41: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 41/58

Jaeger/Blalock 01/03/04 Microelectronic Circuit DesignMcGraw-Hill

DC Error Sources

Input-Offset Voltage (Example)

Problem: Find quiescent dc voltage

at output.

Given data: R1 = 1.2 k W, R2 = 99k W,

Assumptions: Ideal op amp except

for non-zero offset voltage.

V OS 

3mV

Output voltage is given by

Actual sign of V OS  is unknown as

only upper bound is given. Note: Offset voltage of most IC op

amps can be manually adjusted by

adding a potentiometer as shown.

V OS 

1 99k W1.2k W

 

(0.003) 0.25 V

Chap 11-41 

Page 42: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 42/58

Jaeger/Blalock 01/03/04 Microelectronic Circuit DesignMcGraw-Hill

DC Error Sources

Power Supply Rejection Ratio (PSRR)

• Power supply voltages change due to long-term drift or noise on

supplies.

• Equivalent input offset voltage changes in response to power supply

voltage changes.

• PSRR measures the ability of amplifier to reject power supply

variations.

• PSRR indicates how offset voltage changes in response to change in

 power supply voltages.

• Generally PSRR values for v+ and v- are different.

• Both CMRR and PSRR both degrade rapidly with frequency increase.

PSRR  vv

OS 

(usually expressed in dB

PSRR  v-v

OS (usually expressed in dB

Chap 11-42 

Page 43: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 43/58

Jaeger/Blalock 01/03/04 Microelectronic Circuit DesignMcGraw-Hill

DC Error Sources

Input-Bias and Offset Currents

 I OS 

 I  B1

 I  B2

Bias currents I  B1 and I  B2 (  base

currents in BJTs or gate currents in

MOSFETs or JFETs) are similar in

value with directions depending on

internal amplifier circuit type.

In inverting amplifier shown, I  B1 is

shorted out by ground connection.

Since, inverting input is at virtual

ground, amplifier output is forced to

supply I  B2 through R2 .Sign of offset current is unknown

as only upper bound is given.

V O

 I  B2

 R2

Chap 11-43 

Page 44: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 44/58

Jaeger/Blalock 

01/03/04

Microelectronic Circuit Design

McGraw-Hill

DC Error Sources: Input-Bias and Offset

Currents - Bias Current Compensation

Bias current compensation

resistor  R B is used in series with

non-inverting input. Output due

to I  B1 alone is

V O

 I  B1

 R B

1R

2

 R1

 

By superposition,

if .

Since, offset current is typically 5-10

times smaller than the individual biascurrents, dc output voltage error can be

reduced by using bias compensation.

V O

 I  B2

 R2 I 

 B1 R

 B1

 R2

 R1

 

V O

( I  B2

 I  B1

) R2

 I OS 

 R2

 R B

R

1 R

2

 R1 R

2

 

Chap 11-44 

Page 45: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 45/58

Jaeger/Blalock 

01/03/04

Microelectronic Circuit Design

McGraw-Hill

DC Error Sources: Input-Bias and Offset

Currents - Errors in Integrator 

At t < 0, reset switch is closed,

circuit becomes a voltage-follower,

V O

V OS 

At t = 0, reset switch is opened, and

circuit starts integrating its own offset

voltage and bias current. Using

superposition analysis,

Output becomes ramp with slope

determined by V OS and I  B2, and it

eventually saturates at one of the power supplies.

vO(t )V 

OS V OS 

 RC t  I  B2

C t 

Chap 11-45 

Page 46: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 46/58

Jaeger/Blalock 

01/03/04

Microelectronic Circuit Design

McGraw-Hill

Output Voltage and Current Limits

Practical op amps have limitedoutput voltage and current ranges.

Voltage: Limited to several volts

less than power supply span.

Current: Limited by internalcircuitry (to limit power 

dissipation or protect against

accidental short circuits).

Current limit specified as

minimum load resistance that theamplifier can drive with a given

voltage swing. e. g.:

iO

10V

5k W2 mA

For inverting amplifier,

iO

i L

i F 

v

O

 R L

v

O

 R2

 R1

v

O

 R EQ

 R EQ

 R L

( R1

 R2

)

 R EQ

 R L

R2

Chap 11-46 

Page 47: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 47/58

Jaeger/Blalock 

01/03/04

Microelectronic Circuit Design

McGraw-Hill

Output Voltage and Current Limits:

Example

• Problem: Design inverting

amplifier with given

specifications.

• Given Data: Av = 20 dB,

 

Magnitude of output

current less than 2.5 mA.

 R L

5 k W, vO

10 V 

• Assumptions: Ideal op amp except for 

limited output current.

• Analysis:

We choose R1 = 10 k Wand R2 = 100 k W, 

 providing an input resistance of 10 k W.

Maximum output current will be:

 R EQ

 R L

R2

10V 

2.5mA 4 k W

iO

10V 

100k W10V 

5k W2.1 mA2.5 mA

Chap 11-47 

Since R L 5k W,  R2 20k WFor  Av 20dB,  R2 10 R1

Page 48: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 48/58

Page 49: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 49/58

Jaeger/Blalock 

01/03/04

Microelectronic Circuit Design

McGraw-Hill

Frequency Response of Op Amps:

General Case (Example)

• Problem: Find transfer function describing frequency-

dependent amplifier voltage

gain.

 AO

1080dB/20dB 104

  B

103rad / s

 Av(  s ) A

 B

 s  B

107

 s103

Frequency values are often

expressed in Hz.

 f   B

 

 B

159  Hz 

 f  T 

 

2 1.59  MHz 

Chap 11-49 

Page 50: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 50/58

Page 51: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 51/58

Jaeger/Blalock 

01/03/04

Microelectronic Circuit Design

McGraw-Hill

Frequency Response of Op Amps:

 Non-inverting Amplifier (Example)

• Problem: Characterize frequency response of a non inverting amplifier.

• Given data:  Ao = 105 = 100 dB, f T = 107 Hz, desired Av = 1000 = 60 dB

• Assumptions: Amplifier is described by a single-pole transfer function.

• Analysis:

 f   B

f  T 

 AO

107 Hz 

105 100 Hz 

 f   H 

f   B

(1 AO  )100(1105103)10.1 kHz 

   1 A

v(0)

11000

103

 Av( s)

AO 

 B

 s  B 105(2 )(102) s(2 )(102)

2 107

 s200 

 Av( s) A

 B

 s  B

(1 AO  )

2 107

 s2.02 104 

Op amp transfer 

function

 Non-inverting amplifier 

transfer function

Chap 11-51 

Page 52: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 52/58

Jaeger/Blalock 

01/03/04

Microelectronic Circuit Design

McGraw-Hill

Frequency Response of Op Amps:

Inverting Amplifier 

 Av(  s )

 R2

 R1

 

 A( s)  1 A( s)  

 Av(  s )

 R2

 R1

 

 

 AO 

 B

 s  B

  

1A

 B

 s  B

  

 R

2

 R1

 

 

 AO  

1 AO  

 s

(1 AO  ) 

 B

1

For  Ao  >>1,

 Av(  s )

 R

2

 R1

 

 AO  

1 AO   s

  H 

1

 R

2

 R1

 

 s

  H 

1

  H 

 T 

 AO

1 AO  

  T 

Chap 11-52 

Page 53: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 53/58

Jaeger/Blalock 

01/03/04

Microelectronic Circuit Design

McGraw-Hill

Frequency Response of Op Amps:

Inverting Amplifier (Example)

• Problem: Characterize frequency response of inverting amplifier.

• Given data:  Ao = 2x105, f T = 5x105 Hz, desired Av = -100 or 40 dB

• Assumptions: Amplifier is described by single-pole transfer function.

• Analysis:

 f   B f  

 AO

510

5

 Hz 2105 2.5  Hz 

 f   H 

f   B

(1 AO  ) 2.5 Hz (1 2105

101) 4.95 kHz 

 Av( s) A

 B

 s  B  

 s  B 5105(2 )

 s(2 )(2.5)

106 

 s5 

 Av( s)

 R2

 R1

 

 

 AO  

 B

 s  B(1 A

O  )

9.90105 

 s9.91103 

Op amp transfer 

function

Inverting amplifier 

transfer function

   11 A

v(0)

1101

Chap 11-53 

Page 54: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 54/58

Jaeger/Blalock 

01/03/04

Microelectronic Circuit Design

McGraw-Hill

Frequency Response of Cascaded

Amplifiers

 Av( s) V 

oN ( s)

V  s( s)

V o1

V  s

V o2

V o1

...V 

oN 

V o( N -1)

 Av( s) A

v1( s) A

v2( s)... A

vN ( s)

Assume that stages do not interact,

 Av( s) Av1(0)

1 s

  H 1

 

 

 Av2(0)

1 s

  H 2

 

 

...  AvN (0)

1 s

  HN 

 

 

 Av(0) A

v1(0) A

v2(0)... A

vN (0)

Bandwidth of the cascade

amplifier is the frequency at

which gain is reduced by -3

dB from its low frequencyvalue.

 Av( j 

 H )

Av1

(0) Av2

(0)... AvN 

(0)

2

For identical stages,

 Av( j 

 H )

Av1

(0)

 N 

2

  H 

  H 1

21/ N 1

Chap 11-54 

f d d

Page 55: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 55/58

Jaeger/Blalock 

01/03/04

Microelectronic Circuit Design

McGraw-Hill

Frequency Response of Cascaded

Amplifiers: Example

• Problem: Calculate gain and bandwidth of a 2-stage

amplifier with

• Approach: Av = Av1 Av2 

Find Av( 0 ), apply definition of 

 bandwidth to find f  H .

• Analysis:

 Av1

500

1 s

2000

   Av2

250

1 s

4000

 Av( s) 125,0001 s

2000

 

 

1 s

4000

 

 

 Av(0)(500)(250)125,000 or 102 dB

 Av( j ) 1.25105

1  2

200021  2

40002

  H  is defined by

 A( j  H 

) A

mid 

2

Av(0)

21.25105

2

1  2

20002

 

 

1  2

40002

 

 

2    f   H 

267 Hz

Bandwidth of the cascaded amplifier is

less than that of the individual stages.

Chap 11-55 

Si l i i i

Page 56: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 56/58

Jaeger/Blalock 

01/03/04

Microelectronic Circuit Design

McGraw-Hill

Large Signal Limitations

Slew Rate and Full-Power Bandwidth

• Slew rate: Maximum rate of change of voltage at output of op amp. Typicalvalues range from 0.1V/s to 10V/s.

• For given frequency, slew rate limitsmaximum signal amplitude that can beamplified without distortion.

vO

V  M 

sin t 

dvO

dt max

V  M 

cos t max

V  M  

For no signal distortion,

Full-power bandwidth is highest

frequency at which a full-scale

signal can be developed.

V  M   SR

V  M 

SR

 

 f   M 

SR

2 V  FS 

Chap 11-56 

O i l A lifi M M d l f

Page 57: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 57/58

Jaeger/Blalock 

01/03/04

Microelectronic Circuit Design

McGraw-Hill

Operational Amplifier Macro Model for 

Frequency Response

• Macro Models are simplified circuit representations that model terminal behavior of op amps and attempt to include all non-ideal limitations of op amps - A large number of parameters can be adjusted to model op amp behavior.

• To model single-pole roll-off, an auxiliary “dummy” loop (voltage-controlled voltagesource v1 in series with R and C ) is added to original 2-port.

• RC product chosen to give desired -3dB point for open loop amplifier.

 Av( s) v

o( s)

v1( s)

A

 B

 s  B

for    B

1 RC 

Chap 11-57 

Page 58: Chap11 Operational Amplifiers

7/27/2019 Chap11 Operational Amplifiers

http://slidepdf.com/reader/full/chap11-operational-amplifiers 58/58

J /Bl l k Mi l t i Ci it D i

End of Chapter 11

Ch 11 58