12
Complexity in Carbonate Systems Jon Hill 1 Andrew Curtis 1 Rachel Wood 2 Dan Tetzlaff 3 1 Univeristy of Edinburgh 2 Schlumberger Cambridge Research and University of Cambridge 3 Schlumberger Boston Research

Complexity in Carbonate Systems Jon Hill 1 Andrew Curtis 1 Rachel Wood 2 Dan Tetzlaff 3 1 Univeristy of Edinburgh 2 Schlumberger Cambridge Research and

Embed Size (px)

Citation preview

Page 1: Complexity in Carbonate Systems Jon Hill 1 Andrew Curtis 1 Rachel Wood 2 Dan Tetzlaff 3 1 Univeristy of Edinburgh 2 Schlumberger Cambridge Research and

Complexity in Carbonate Systems

Jon Hill1

Andrew Curtis1

Rachel Wood2

Dan Tetzlaff3

1Univeristy of Edinburgh

2Schlumberger Cambridge Research and University of Cambridge

3Schlumberger Boston Research

Page 2: Complexity in Carbonate Systems Jon Hill 1 Andrew Curtis 1 Rachel Wood 2 Dan Tetzlaff 3 1 Univeristy of Edinburgh 2 Schlumberger Cambridge Research and

Jon Hill, Andrew Curtis, Rachel Wood, Dan TetzlaffSlide 2

Carbonate Deposition

• There are known differences between siliciclastic and carbonate deposition– In-situ production– Internal vs. external controls

• Carbonates are less predictable – why?• Which processes control this unpredictability?

– Physicochemical vs. Biological

Page 3: Complexity in Carbonate Systems Jon Hill 1 Andrew Curtis 1 Rachel Wood 2 Dan Tetzlaff 3 1 Univeristy of Edinburgh 2 Schlumberger Cambridge Research and

Jon Hill, Andrew Curtis, Rachel Wood, Dan TetzlaffSlide 3

Carbonate Complexity

• Presence of both internal and external forcings on carbonate production rates

• Internal forcings have feedback mechanisms

• E.g. Andros Island tidal flats (Rankey, 2002) – fractal distribution of facies

Algal MarshOpen Channelsand Ponds

Mangrove

Page 4: Complexity in Carbonate Systems Jon Hill 1 Andrew Curtis 1 Rachel Wood 2 Dan Tetzlaff 3 1 Univeristy of Edinburgh 2 Schlumberger Cambridge Research and

Jon Hill, Andrew Curtis, Rachel Wood, Dan TetzlaffSlide 4

Complexity

• Previous work has indicated that carbonate deposition is complex– Statistical properties (e.g. Wilkinson, et. al, 1997)– Modelling work (e.g. Burgess and Emery, 2005)

• Implications for stratigraphic interpretation

Here, complexity means complicated and unpredictable

Page 5: Complexity in Carbonate Systems Jon Hill 1 Andrew Curtis 1 Rachel Wood 2 Dan Tetzlaff 3 1 Univeristy of Edinburgh 2 Schlumberger Cambridge Research and

Jon Hill, Andrew Curtis, Rachel Wood, Dan TetzlaffSlide 5

Open sea water CaCO3

supersaturated

Residence Time = 0

Residence Time ~ 1-100 days

Model Formulation

0 50 100 150 200 250Residence Time in the Lagoon (days)

0

0.2

0.4

0.6

0.8

1

Per

cen

tag

e o

f M

axim

um G

row

th 0 0.2 0.4 0.6 0.8 10

5

10

15

20

25

30

35

40

45

50

Wat

er D

epth

(m

)

Percentage of Maximum Growth

0 500 1000 1500 2000 2500 30000

0.2

0.4

0.6

0.8

1

Wave Power (W/m )2

Per

cen

tag

e o

f M

axim

um G

row

th

• Forward model, Carbonate GPM – an extension of a siliciclastic model, GPM

• Model includes:– Erosion and transport

– Two carbonate types

– Carbonate production based on:

• Carbonate supersaturation

• Light levels

• Wave energy

• Based on physical and chemical parameters only

Hypothesis: Does carbonate complexity require biological controls?

Page 6: Complexity in Carbonate Systems Jon Hill 1 Andrew Curtis 1 Rachel Wood 2 Dan Tetzlaff 3 1 Univeristy of Edinburgh 2 Schlumberger Cambridge Research and

Jon Hill, Andrew Curtis, Rachel Wood, Dan TetzlaffSlide 6

0 100 200 300 400 500 600 700 800 900 10000

20

40

60

80

100

120

140

160

180

200

Time (kyr)

Rel

ativ

e S

ea L

evel

(m

)

Model Input

• Input:– Sea level– Starting topography

Page 7: Complexity in Carbonate Systems Jon Hill 1 Andrew Curtis 1 Rachel Wood 2 Dan Tetzlaff 3 1 Univeristy of Edinburgh 2 Schlumberger Cambridge Research and

Jon Hill, Andrew Curtis, Rachel Wood, Dan TetzlaffSlide 7

Model Output

• Output is a 3D volume of sediment

• Timelines drawn every 5kyr

ReefLagoon

Page 8: Complexity in Carbonate Systems Jon Hill 1 Andrew Curtis 1 Rachel Wood 2 Dan Tetzlaff 3 1 Univeristy of Edinburgh 2 Schlumberger Cambridge Research and

Jon Hill, Andrew Curtis, Rachel Wood, Dan TetzlaffSlide 8

Residence Time

• Residence time reacts to changes in the topography

Area of high residence time

Residence Time

IslandsDiversion of

flow

Velocity Snapshot

Page 9: Complexity in Carbonate Systems Jon Hill 1 Andrew Curtis 1 Rachel Wood 2 Dan Tetzlaff 3 1 Univeristy of Edinburgh 2 Schlumberger Cambridge Research and

Jon Hill, Andrew Curtis, Rachel Wood, Dan TetzlaffSlide 9

Cycles

• Cycles picked on points of rapid deepening of water• Around 90 cycles were generated in 1Myr• Each run produced different cycles

– Different Fischer plot– Cannot correlate

-10

-8

-6

-4

-2

0

2

4

6

8

0 10 20 30 40 50 60 70 80 90 100

Cycle Number

Cum

ulat

ive

Dis

tanc

e fro

m M

ean

Cyc

le

Thic

knes

s (m

)

0 100 200 300 400 500 600 700 800 900 10000

20

40

60

80

100

120

140

160

180

200

Time (kyr)

Rel

ativ

e S

ea L

evel

(m

)

Note: linear sea level change

Page 10: Complexity in Carbonate Systems Jon Hill 1 Andrew Curtis 1 Rachel Wood 2 Dan Tetzlaff 3 1 Univeristy of Edinburgh 2 Schlumberger Cambridge Research and

Jon Hill, Andrew Curtis, Rachel Wood, Dan TetzlaffSlide 10

0 200 400 600 800 1000-1.5

-1

-0.5

0

0.5

1

1.5

Time (kyr)

Wat

er D

epth

(m

)

Water Depth

Rapid initial growth

Different limiting depths

Page 11: Complexity in Carbonate Systems Jon Hill 1 Andrew Curtis 1 Rachel Wood 2 Dan Tetzlaff 3 1 Univeristy of Edinburgh 2 Schlumberger Cambridge Research and

Jon Hill, Andrew Curtis, Rachel Wood, Dan TetzlaffSlide 11

0 0.02 0.04 0.06 0.08 0.110

-6

10-5

10-4

10-3

10-2

10-1

100

101

Frequency (kyr-1

)

Pow

er

Power Spectrum

No dominant periodicity

Page 12: Complexity in Carbonate Systems Jon Hill 1 Andrew Curtis 1 Rachel Wood 2 Dan Tetzlaff 3 1 Univeristy of Edinburgh 2 Schlumberger Cambridge Research and

Jon Hill, Andrew Curtis, Rachel Wood, Dan TetzlaffSlide 12

Conclusions

• A tiny difference of 1m in initial topography produces very different results

• The model generates autocycles– Different in each run and cannot be correlated

• Average depth converges to different limit• Power spectrum shows no structure

– No simple predictability

• Simple, physicochemical processes produce complex behaviour without biological controls