36
IEK-3: Techno-Economic Systems Analysis Die Energietransformation aus systemanalytischer Sicht 07.10.2020 | PROF. DETLEF STOLTEN [email protected] DHV-Symposium "Was nun? Die Herausforderungen des Klimawandels im Spiegel der Wissenschaft" Bonn

Die Energietransformation aus systemanalytischer Sicht

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

IEK-3: Techno-Economic Systems Analysis

Die Energietransformation aus systemanalytischer Sicht

07.10.2020 | PROF. DETLEF STOLTEN

[email protected]

DHV-Symposium "Was nun? Die Herausforderungen des Klimawandels im Spiegel der Wissenschaft"

Bonn

IEK-3: Techno-Economic Systems Analysis

Setting the Scene

IEK-3: Techno-Economic Systems Analysis

Climate Change Mitigation Drives Green Hydrogen

Climate change CO2 equivalent

• Rising sea levels are posing a menace to the world economy• Storms increase in intensity, size, duration and water load• Extreme weather events like flooding and droughts increase• Harvests are going to decline (at the same time when the world population is expanding)

Local emissions

• PM2: small particulate matter reduces life quality, can reduce lifetime and cause cancer• NOx

Business opportunities

• Harnessing business opportunities through new and more efficient products• Legal and regulatory support is necessary since the system is tailored to the encumbents

The energy transition triggers great business opportunitiesObservation:If climate change gets tackled appropriately other issues are solved “by default“

IEK-3: Techno-Economic Systems Analysis

Basic Requirements for a Future Energy System• In 2050 CO2 emissions based on 1990 shall be reduced by 80-95 % in line w/ COP21• After the transition period energy should not be more expensive than today• Limited emissions shall be reduced

• Electricity, fuels and heat must be available with high reliability• All energy sectors need to be addressed• Teratogenic, carcinogenic and poisonous substances shall be avoided • Nuclear hazards to be considered• Radiative forcing to be considered (e.g. slip of methane w/ rf = 30) for new energy pathways

Paramount Topicso Storage

• Short term: grid stabilization (pumped hydro, batteries, gas storage etc)• Long term: compensate for sustainedly low power generation (only gas storage feasible)

o Transportation (from generation to consumption; connecting regions of different climate)o Compensation of fluctuating renewable inputo Spatial restrictionso Handling dichotomy between a very distributed (e.g. household PV) vs. very centralized

system (off-shore wind farms and coastal on-shore wind power generation) o Sector coupling

IEK-3: Techno-Economic Systems Analysis

Energy Pathways at a Glance

IEK-3: Techno-Economic Systems Analysis

An Approach of Ranking Renewable Energy Pathways

The simplest applicable energy pathways will in most cases turn out to be the most efficient, effective and cost effective

1. Direct use of power

2. Storage in batteries (grid stabilization)

3. Hydrogen storage (long-term storage, seasonal storage, trade of RE)

4. Methane storage

5. Liquid fuel production

• Power to chem comes in parallel

Quantitative storage requirements will probably be much higher than we anticipate today

All of the above mentioned storage options will be needed, owing to the limited applicability of the easier ones ( e.g. liquid jet fuel for aviation)

The complete energy chain needs to be considered for future decisions

Energy security requires substantial storage capacities – as implemented today

IEK-3: Techno-Economic Systems Analysis

The German Energy System

IEK-3: Techno-Economic Systems Analysis 8

Greenhouse Gas (GHG) Emissions in Germany Since 1990

[1] BMWi, Zahlen und Fakten Energiedaten - Nationale und Internationale Entwicklung. 2018: Berlin. [2] BRD, Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung. 2010: Berlin.[3] BMU, Klimaschutzplan 2050 - Klimaschutzpolitische Grundsätze und Ziele der Bundesregierung. 2016: Berlin.

GH

G e

mis

sion

com

pare

d to

199

0 [%

]

Total emissions[1] Sector specific emissions[1]

Today Today

Mitigation targets of the Federal Government 2010[2]

Mitigation targets according to Climate Action Plan 2016[3]

• Achieving mitigation targets requires contributions from all sectors• No GHG palpable CO2 reduction in the transportation sector since 1990

TransportationIndustryPowerHouseholds

Target to stop climate changeat +2 centigrade(80% scenario)

IEK-3: Techno-Economic Systems Analysis 9

Substitution of Fossil Energy Leads to Increased Power Demand

0

200

400

600

800

1000

1200

Heute 2050 2050Gro

ssPo

wer

Pro

duct

ion1

in T

Wh

German Power Sector

1 excluding import and export

38 %

90 %

99 %

IEK-3: Techno-Economic Systems Analysis 10

Energy Transportation from North to South is Inherent for Renewables in DETotal Generation Potential ofWind & Solar Power in TWh/a

Levelized Cost of Electricity ofWind & Solar Power in ct€/kWh

IEK-3: Techno-Economic Systems Analysis

Projected Input of Off-shore Power into the German Power Grid

11

IEK-3: Techno-Economic Systems Analysis

Energy Transportation and Distrubution is Essential

12

Expansion of the power transportation grid crucial− National grid expansion plan until 2030 first step in the right direction− DC-DC power lines from north to south desriable

Transformation of the natural gas transport grid to hydrogen bears a great opportunity− Large quanties can be transported− Wide coverage possible w/o interrrupting the NG gas grid− Short lead time e.g. 5 years for conversion otjher 0-20 years for building new power lines− Low cost, since pipelines exist

The distribution grids will be strained most- Additional electrical load from

o Passenger vehicleso Heat pumpso Direct electrical heating

IEK-3: Techno-Economic Systems Analysis 13

ES 2050 Study*

Wege für die Energiewende – Kosteneffiziente und klimagerechte Transformationsstrategien für das deutsche Energiesystem bis zum Jahr 2050. Schriften des Forschungszentrums Jülich, Reihe Energie & Umwelt/Energy & Environment, Band/Volume 499; Robinius M., Markewitz P., Lopion P., Kullmann F., Heuser P.-M., Syranidis K., Cerniauskas S., Schöb T., Reuß M., Ryberg S., Kotzur L., Caglayan D., Welder L., Linßen J., Grube T., Heinrichs H., Stenzel P., Stolten D.:https://juser.fz-juelich.de/record/877960/files/Energie_Umwelt_499.pdf

ES 2050kurz

ES 2050lang

IEK-3: Techno-Economic Systems Analysis

Approach: Cross-sectoral Cost-optimization of the Entire Energy System under CO2-Emission Constraints from Today through 2050

14

Development boundaries

2030 2040 2050Today

Ener

gy s

yste

m

over 2000 interrelations

Transformation Strategy:• Cross-sectoral• Cost-optimal• Technologically unbiased

Wege für die Energiewende – Kosteneffiziente und klimagerechte Transformationsstrategien für das deutsche Energiesystem bis zum Jahr 2050. Schriften des Forschungszentrums Jülich, Reihe Energie & Umwelt/Energy & Environment, Band/Volume 499; Robinius M., Markewitz P., Lopion P., Kullmann F., Heuser P.-M., Syranidis K., Cerniauskas S., Schöb T., Reuß M., Ryberg S., Kotzur L., Caglayan D., Welder L., Linßen J., Grube T., Heinrichs H., Stenzel P., Stolten D.:https://juser.fz-juelich.de/record/877960/files/Energie_Umwelt_499.pdf

IEK-3: Techno-Economic Systems Analysis 15

0

100

200

300

400

500

Heute 2050 2050

Inst

alle

dPo

wer

/ G

WIncrease of Renewable Energy

Swift Action in Installing Renewable Energy Devices is Required

IEK-3: Techno-Economic Systems Analysis

CO2 Abatement Strategies for 80% and 95% @ 2050 Differ Notably

16

0

200

400

600

800

1000

Heute 2050 2050

TWh

/ ann

um

Natural Gas Sector1

Erdg

as

H2

H2

Erdg

as

Hydrogen Grid 2050

1 electricity demand

IEK-3: Techno-Economic Systems Analysis

Power to X Technology Represents the Basis for Sector Coupling

17

0

200

400

600

800

Heute 2050 2050

Ener

gyD

eman

d / T

Wh

Power to Liquids (PtL1) & power based hydrogen (H2)

Today

H2

PtL

4,4 mn t

12 mn t

1 Power-to-Liquid-Fuels (syn. Diesel, Benzin, Kerosin)

IEK-3: Techno-Economic Systems Analysis 18

Energy Sector: Projected Installed Power in Germany

0

100

200

300

400

500

2020 2030 2040 2050

Pow

er in

stal

led

/ GW

0

100

200

300

400

500

2020 2030 2040 2050Pow

er in

stal

led

/ GW

WasserstoffWasserkraftWind (Offshore)Wind (Onshore)Freiflächen-PVDachflächen-PVBiomasseAbfälleErdgasErdölSteinkohleBraunkohle

306 GW

471 GW

renewables

~ 120 GW

1 https://www.windbranche.de/windenergie-ausbau/deutschland

IEK-3: Techno-Economic Systems Analysis

Hydrogen Demand Triples for the 95% Scenario (no industry feedstock considered)

19

46

88

Stahlindustrie(Direktreduktion)

Prozesswärmesonst. Industrie

in TWh

Industry Energy Demand

Scenario 80: Hydrogen demand of 4 mn t (mostly transport and industry) Scenario 95: Hydrogen demand of 12 mn t across all sectors (incl. process heat)

Steel industry(H2 – direct reduction)Process heat other industry

0

2

4

6

8

10

12

14

2030 2040 2050 2030 2040 2050

Hyd

roge

n in

mn

t

Buildings Industry Energy Mobility

Wege für die Energiewende – Kosteneffiziente und klimagerechte Transformationsstrategien für das deutsche Energiesystem bis zum Jahr 2050. Schriften des Forschungszentrums Jülich, Reihe Energie & Umwelt/Energy & Environment, Band/Volume 499; Robinius M., Markewitz P., Lopion P., Kullmann F., Heuser P.-M., Syranidis K., Cerniauskas S., Schöb T., Reuß M., Ryberg S., Kotzur L., Caglayan D., Welder L., Linßen J., Grube T., Heinrichs H., Stenzel P., Stolten D.:https://juser.fz-juelich.de/record/877960/files/Energie_Umwelt_499.pdf

IEK-3: Techno-Economic Systems Analysis

Hydrogen and Methane Demand

20

Scenario 80: Hydrogen occurs in mobility and industry only, NG demand rises in between before dropping in 2050

Scenario 95: H2 in all sectors infrastructure development & supply chain analysis needed

Met

hane

dem

and

in T

Wh

Scenario 95

Scenario 80

0

2

4

6

8

10

12

14

2030 2040 2050 2030 2040 2050

Hyd

roge

n in

mn

t

Buildings Industry Energy Mobility

Wege für die Energiewende – Kosteneffiziente und klimagerechte Transformationsstrategien für das deutsche Energiesystem bis zum Jahr 2050. Schriften des Forschungszentrums Jülich, Reihe Energie & Umwelt/Energy & Environment, Band/Volume 499; Robinius M., Markewitz P., Lopion P., Kullmann F., Heuser P.-M., Syranidis K., Cerniauskas S., Schöb T., Reuß M., Ryberg S., Kotzur L., Caglayan D., Welder L., Linßen J., Grube T., Heinrichs H., Stenzel P., Stolten D.:https://juser.fz-juelich.de/record/877960/files/Energie_Umwelt_499.pdf

IEK-3: Techno-Economic Systems Analysis

PhotovoltaicsWind Power

Renewable Energies: Installed Capacities & Tech. Potentials [1]

21

[1] Robinius, M., Markewitz, P., Lopion, P. et al. (2019): Kosteneffiziente und klimagerechte Transformationsstrategien für das deutsche Energiesystem bis zum Jahr 2050. (Kurzfassung) Forschungszentrum Jülich GmbH

[2] Fraunhofer ISE: https://energy-charts.de/power_inst_de.htm[3] Bundesnetzagentur: EEG-Anlagenstammdaten (https://www.marktstammdatenregister.de/MaStRApiDokumentation/)

0

100

200

300

400

500

600

700

Wind(onshore)

Wind(offshore)

PV(rooftop)

PV(open field)

Inst

. Cap

acity

in G

W

Tech. PotentialScenario 95Scenario 80

today [2]today [2] today [2] today [3]

620 GW

82 GW

190 GW246 GW

548

37 12

231153

3422

6346

10463

IEK-3: Techno-Economic Systems Analysis

Sector Coupling

IEK-3: Techno-Economic Systems Analysis

Sector Coupling: What is to be Coupled?

Energy sectors• Public power • Transportation• Industry• Residential

To be coupled• Public power to transport (direct via overhaead lines, batteries or indirect via hydrogen or PtL)• Public power to industry energy demand ( via Ac-AC; AC-gas; substituting proprietary power

generation of industry, coal, oil and natural gas)• Public power to industry matter demand (substituting coal, oil and natural gas incl. reformed

hydrogen; another 450 TWh)• Residental (via heat heat pumps or power via power based fuels for heating)

IEK-3: Techno-Economic Systems Analysis

Power Grid Gas GridTruck transportElectrolysis

H2-Storage

Households

Transportation

Industry

Power to Chem

Power to GasPower to Fuel

Green Electricity Fluctuates / Hydrogen Generation Serves for Storage & Sector Coupling

Power Generation• Photovotaics• Windpower• Hydropower• etcetera

Applications

orLH2-storage,

LOHC, etcetera

H2 re-electrification

Curtailment

ElectrolysisDemand line

Elec

trica

lpow

er /

GW Weather year 2015

IEK-3: Techno-Economic Systems Analysis

Electrolytic Water Splitting to Generate Hydrogen

Electrical energy is used to split the water molecule into hydrogen and oxygen

The hydrogen is stored; the oxygen is generally vented

Two major technologies:• Alkaline electrolysis

− Proven: > 100MW− Cheaper− Less flexible− Bulkier− No precious metals

• Polymer Electrolyte Membrane (PEM) Electrolysis − Up to 10 MW currently− main developement strain currently

H2O → H2 + ½ O2 ↑+ hel Efficiency of 70%LHV can be attained

IEK-3: Techno-Economic Systems Analysis

PFSA membranes:Ex. Nafion

Diaphragms:Ex. Zirfon

Acid (Nafion) Alkaline (KOH)Anode 2H2O 4H+ + O2 + 4e- 2OH- 1/2O2 + H2O + 2e-

Cathode 4H+ + 4e- 2H2 2H2O + 2e- 2OH- + H2

PEM and Alkaline Electrolysis in Detail

IEK-3: Techno-Economic Systems Analysis

Gasholders

Spherical gas vessels

Ground storage assemblies

Pipe storage facilities

Maximum pressure [bar] 1.01 - 1.5 5 - 20 40 - 1000 20 - 100Storage capacity [scm] < 6 x 104 < 3 x105 < 1 x 104 < 9 x 105

Invest/ storagecapacity ‡ [€/scm] ? 20 - 50 50 - 180 20 - 50

Near-Surface Gas Storage Facilities

IEK-3: Techno-Economic Systems Analysis

Depleted oil / gas fields

Aquifers Salt caverns Rock caverns / abandoned

mines

Working volume [scm] 1010 108 107 106

Cushion gas 50 % up to 80 % 20 - 30 % 20 - 30 %

Gas qualityreaction and contamination withgases present, microorganismand minerals

saturation with water vapor

Annual cycling cap. only seasonal seasonal & frequent

Gaseous Hydrogen: Geologic Gas Storage Facilities

Investment in rock salt caverns: approx. 40 ct/kWh installed capacity

IEK-3: Techno-Economic Systems Analysis

Liquid Hydrogen

Great mass storage option, if• LH2 can easily be transported by truck, train or ship

Liquefaction• Current energy loss of liquefaction >30% of hydrogen energy content• Future systems have a potential of 7 kWh/kg or 21% loss• Current plants 150 l/h – 20000l/h (up to 47 MW)• Specific evaporation low for large storage tanks• Evaporated H2 can be used and is not lost in most cases• Current plants amount to at most 40 MW H2 • Hence, current H2 liquefaction is NOT being done centrally in the sense of

energy systems

IEK-3: Techno-Economic Systems Analysis

Lulls of 2- 3 Weeks are to be Expected in Central Europe

30

European electricity grid considered

Hydrogen Storage has the Potential to Furnish the Energy Demand during Lulls

IEK-3: Techno-Economic Systems Analysis

Worldwide H2 Allocation (Reference Scenario) - Flows in million tons

31

4.21

39.9

4.5 4.0 1.1

26.4

9.0

6.332.8

31.036.8

8.8

10.8

3.6

2.5

8.83.6

Germany Japan Europe USA China India Southeast AsiaDemand in Mt/a 4.57 6.7 31.4 41.7 70.9 36.8 38.1Import cost in €/kg 3.61 3.83 3.86 3.68 4.05 3.84 3.99

4.0

18.7

12.2

North AmericaUSA

C. & S. AmericaBrazil

EuropeAfricaMiddle EastEurasiaAsia Pacific

ChinaIndiaJapan H2 flows in Mt

24.7

38.1

IEK-3: Techno-Economic Systems Analysis

Example of NG Pipeline Reassignment Potential for GermanyMultiple Tube Pipelines Considered Only w/ a single tube (NG distribution not interupted)

32

2020-2025 2035-2040Market Potential(Perimeter 50km):Population (2017):~23,5 mn (~28%)

GDP (2017):~800 bn € (~27%)

Market Potential(Perimeter 50km):

Population (2017) [1]:~67 mn (~81%)GDP (2017) [2]:

~2.500 bn € (~83%)

[1] Eurostat (2018). Bevölkerung am 1. Januar nach Altersgruppen, Geschlecht und NUTS 3 Regionen.[2] Eurostat (2018). Bruttoinlandsprodukt (BIP) zu laufenden Marktpreisen nach NUTS-3-Regionen.

22%Poulation.22% GDP

6% Population.5% GDP

Distance: ~420 km Distance: ~2600 km

IEK-3: Techno-Economic Systems Analysis

Final Geospatial Results: Scenario for 20 million FCV

GH2-Pipeline LH2-TrailerGH2-Trailer GH2-TrailerGH2-Pipeline

IEK-3: Techno-Economic Systems Analysis

Transportation Application as an Example (numbers for passenger vehicles)

34

Combustion engine (bio-fuels)Efficiency: 50 % x 25 % = 13 %

(W2T) (T2W)

Battery vehicle (renewable electricity)Efficiency: 80 % x 85 % = 68 %

(W2T) (T2W)

Fuel cell vehicle (renewable electricity)Efficiency: 63 % x 60 % = 38 %

(W2T) (T2W)

Combustion engine (CO2-based fuels)Efficiency: 70 % x 50 % x 25 % = 9 %

(H2) (plant) (T2W)T2W: tank-to-wheelW2T: well-to-tankW2W: well-to-WheelW2W = total efficincy

Today‘sW2W Effciency

≈18%w/ combustion

engines

Furthermore:Trucks (from LDV to HDV)Local Trains (cruising range 600 to 1000 km)

IEK-3: Techno-Economic Systems Analysis

Fuel Cells are on the Market

Emission-free transportartion from paasenger vehicles via trains to long haul trucks

750 km cruising range

400 km cruising range

34 t truck

600 km cruising range

327 passengers

© Hyundai © Alstom © Hyundai

35

IEK-3: Techno-Economic Systems Analysis

Thank You for Your [email protected]

ISBN: 978-3-527-33238-02016

ISBN: 978-3-527-33012-62012

ISBN: 978-3-527-33240-3 2016

ISBN: 978-3-527-33239-72013

ISBN: 978-3-527-33002-72010