34
Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

Embed Size (px)

Citation preview

Page 1: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

Discrete variational derivative methods:

Geometric Integration methods for PDEs

Chris Budd (Bath), Takaharu Yaguchi (Tokyo),Daisuke Furihata (Osaka)

Page 2: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

Have a PDE with solution u(x,y,t)

Variational structure (Lagrangian)*

Conservation laws *

Symmetries linking space and time

Maximum principles

)...,,,,,( yyxxyxt uuuuuFu =

Seek to derive numerical methods which respect/inherit qualitative features of the PDE including localised pattern formation

Page 3: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

Cannot usually preserve all of the structure and

Have to make choicesNot always clear what the choices should be

BUT

GI methods can exploit underlying mathematical links between different structures:

Well developed theory for ODEs, supported by backward error analysis

Less well developed for PDEs

Talk will describe the Discrete Variational Derivative Method which works well for PDEs with localised solutions and exploits variational structures

Page 4: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

Eg. Computations of localised travelling wave solution of the KdV eqn

Runge-Kutta based method of lines

Discrete variational method

Solution has low truncation error

Solution satisfies a variational principle

Page 5: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

1. Hard to develop general structure preserving methods for all PDEs so will look at PDEs with a Variational Structure.

Definition, let u be defined on the interval [a,b]

J(u) = G(u,ux ) dxa

b

J(u + δu) − J(u) ≡δG

δu∫ δu dx + Ο δu2

( )

eg.

J(u + δu) − J(u) = (Gu∫ δu + Guxδux ) dx = (Gu∫ −

d

dxGux

)δu dx

δG

δu= Gu −

d

dxGux

Page 6: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

∂u

∂t=

∂x

⎝ ⎜

⎠ ⎟α

δG

δu, J = G(u,ux ) dx∫

PDE has a Variational Form if

Example 1: Heat equation

Example 2: Heat equation (again)

ut =uxx

G(u) =u2

2,

δG

δu=u, ut =

∂x

⎝ ⎜

⎠ ⎟2δG

δu, α = 2

ut =uxx

G(u) = −ux

2

2,

δG

δu=uxx , ut =

δG

δu, α = 0

Page 7: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

Example 3: KdV Equation

Example 4: Cahn Hilliard Equation

ut = − (6 uux + uxxx )

G(u,ux ) = − u3 +ux

2

2,

ut =∂

∂x

⎝ ⎜

⎠ ⎟δG

δu, α =1

ut =∂ 2

∂x 2p u + r u3 + q uxx( )

G(u,ux ) = pu2

2+ r

u4

4− q

ux2

2, α = 2

Page 8: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

Example 5: Swift-Hohenberg Equation

ut = −(1+ ∂x2)2 u + ru + μu2 − γu3

G(u) = −u2

2+ ux

2 −uxx

2

2+ r

u2

2+ μ

u3

3− γ

u4

4

ut =δG

δu, α = 0.

Integral of G is the Lagrangian L.

Page 9: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

Variational structure is associated with dissipation or conservation laws:

Theorem 1: If

α =0,2, −1( )1+α / 2

dJ /dt ≤ 0, α =1 dJ /dt = 0.

Proof:

dJ /dt = dG /dt dx∫ = Gu∫ ut + Guxuxt dx =

δG

δu∫ ut dx

=δG

δu∫ ∂

∂x

⎝ ⎜

⎠ ⎟α

δG

δudx

α = 0 ⇒ dJ /dt =δG

δu

⎝ ⎜

⎠ ⎟2

dx ≥ 0,∫

α =1 ⇒ dJ /dt =1

2

δG

δu

⎝ ⎜

⎠ ⎟2 ⎡

⎣ ⎢

⎦ ⎥ = 0,

α = 2 ⇒ dJ /dt = − ∂x

δG

δu

⎝ ⎜

⎠ ⎟

⎝ ⎜

⎠ ⎟∫2

dx ≤ 0.

ut ∂G /∂ux[ ]a

b= 0

Page 10: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

2. Discrete Variational Derivative Method (DVDM)

[B,Furihata,Ide,Matsuo,Yaguchi]

Aims to reproduce this structure for a discrete system.

1.Describe method

2. Give examples including the nonlinear heat equation

3. (Backward) Error Analysis

Idea:

Discrete ‘energy’

Discrete integral and discrete integration by parts €

U nk ≈ u(nΔt,kΔx)

Gd (Ukn ) ≈ G(u(nΔt,kΔx))

Page 11: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

Jd (U) − Jd (V ) = TδGd

δ(Uk,Vk )∑ (Uk −Vk ) Δx

Define:

Where the integral is replaced by the trapezium rule

J nd = T Gd U n

k( )k

∑ Δx

Now define the Discrete Variational Derivative by:

Discrete Variational Derivative Method

Ukn +1 −Uk

n

Δt=

δGd

δ Ukn +1,Uk

n( )€

α =0

Page 12: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

Some useful results

Definitions

δ+ Uk =Uk +1 −Uk

Δx, δ− Uk =

Uk −Uk−1

Δx, δ (1) Uk =

Uk +1 −Uk−1

2Δx

δ (2) Uk = δ +δ− Uk =Uk +1 − 2Uk + Uk−1

Δx 2

Summation by parts

T (δ +∑ fk ) gk = − T fk∑ (δ− gk )

T fk∑ δ (2) gk = − T δ−∑ fk δ−gk

Page 13: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

Gd = f l∑ (Uk ) gl+(δk

+Uk ) gl−(δk

−Uk ),df

d(U,V )=

f (U) − f (V )

U −V

δGd

δ(Uk,Vk )=

df l

d(Uk,Vk )l

∑ gl+(δk

+Uk ) gl−(δk

−Uk ) + gl+(δk

+Vk ) gl−(δk

−Vk )

2

−δk+W l

−(Uk,Vk ) −δk−W l

+(Uk,Vk )

Generally [Furihata], if

W l±(Uk,Vk ) =

f l (Uk ) + f l (Vk )

2

⎝ ⎜

⎠ ⎟gl

m(δ mUk ) + glm(δ mVk )

2

⎝ ⎜

⎠ ⎟

dgl±

d(δk±Uk,δk

±Vk )

Page 14: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

Example 1:

G(u) = −ux

2

2+ F(u) ≈ Gd (Uk ) = −

1

2

(δ +Uk )2 + (δ−Uk )2

2

⎧ ⎨ ⎩

⎫ ⎬ ⎭+ F(Uk )

δGd

δ(Uk,Vk )= δ (2) Uk + Vk

2

⎝ ⎜

⎠ ⎟+

dF

d(Uk,Vk )

Heat equation F(u)=0:

Ukn +1 −Uk

n

Δt= δ (2) Uk

n +1 + Ukn

2

⎝ ⎜

⎠ ⎟

Crank-Nicholson Method

Page 15: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

knn

dk

nk

nk

UU

G

t

UU

),( 1)(

1

+

+

=Δ−

δδδ α

∂u

∂t=

∂x

⎝ ⎜

⎠ ⎟α

δG

δu,

More generally, if

Set

Eg. KdV

Ukn +1 −Uk

n

Δt= δk

(1) δGd

δ(Ukn +1,Uk

n )= δk

(1) (Ukn )2 + Uk

nUkn +1 + (Uk

n +1)2 + δk(2) Uk

n + Ukn +1

2

⎝ ⎜

⎠ ⎟

⎣ ⎢

⎦ ⎥

Page 16: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

Jd (U n +1) − Jd (U n ) = TδGd

δ(U n +1,U n )k

∑ (U n +1 −U n )Δx = T δ (α ) δGd

δ(U n +1,U n )k

⎝ ⎜

⎠ ⎟

δGd

δ(U n +1,U n )k

∑ ΔxΔt

> 0 α = 0, = 0 α =1, < 0 α = 2

Conservation/Dissipation Property

A key feature of DVDM schemes is that they inherit the conservation/dissipation properties of the PDE and hence have nice stability propertiesTheorem 2: For any N periodic sequence satisfying DVDM

Jd (U n +1) − Jd (U n ), > 0 α = 0, = 0 α =1, < 0 α = 2

Proof.

by the summation by parts formulae

Page 17: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

Example 2: Nonlinear heat equation

42,0)1()0(,

423 uu

Guuuut

u xxxxx +−===+=

∂∂

Ukn +1 −Uk

n

Δtn

=1

2δ (2) Uk

n +1 + Ukn

( ) +1

4Uk

n +1( )

3+ Uk

n +1( )

2Uk

n + Ukn +1 Uk

n( )

2+ Uk

n( )

3

( )

Implementation : Can prove this has a solution if time step small enough: choose this adaptively

• Predict solution at next time step using a standard implicit-explicit method

• Correct using a Powell Hybrid solver

Page 18: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

G

U

U

n

J(U)

Page 19: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

t

Page 20: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

x

u

Page 21: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

Example 3: Swift-Hohenberg Equation

ut = −(1+ ∂x2)2 u + ru + μu2 − γu3

G(u) = −u2

2+ ux

2 −uxx

2

2+ r

u2

2+ μ

u3

3− γ

u4

4

U n +1 −U n

Δt= −

1

21+ δ (2)( )

2U n +1 + U n

( ) + f U n +1,U n( ),

f (u,v) =r

2(u + v) +

μ

3u2 + uv + v 2

( ) −γ

4u3 + u2v + uv 2 + v 3

( ).

Page 22: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

r = −1, μ =1, γ = −0.15, x ∈ [0,10π ], Periodic BCs

u(x,0) =10 * rand(0,1)

Page 23: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

L =u2

2∫ − ux

2 +uxx

2

2+ r

u2

2+ μ

u3

3− γ

u4

4dx

Page 24: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

3. Backward Error Analysis

This gives some further insight into the solution behaviour

Idea: Set

U k

n = u (nΔt,kΔx)

Try to find a suitable function and ‘nice’ operator A so that

u t = A ∂xα δG

δu €

G (u )

First consider semi-discrete form then fully discrete

Page 25: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

Example of the heat equation: Derived scheme

Ukn +1 −Uk

n

Δt= δk

(2) Ukn +1 + Uk

n

2

⎝ ⎜

⎠ ⎟

This can be considered to be given by applying the Averaging Vector Field (AVF) method to the ODE system

dUk

dt= δk

(2) Uk( )

Uk (t) = U (y,kΔx)

U t = U xx +Δx 2

12U xxxx + Ο(Δx 4 )

U t = Uxx +Δx 2

12U txx + Ο(Δx 4 )

U t = AU xx + Ο(Δx 4 ), A = 1−Δx 2

12

∂ 2

∂x 2

⎝ ⎜

⎠ ⎟

−1

Backward error approximation

Ill-posed equation this satisfiesEquivalent eqn. to same

order

Well posed backward error eqn which we can improve using Pade

Page 26: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

Backward Error Equation has a Variational Structure

U t = A∂x2 δG

δU , G =

U 2

2

d

dtG dx =

δG

δU ∫∫ U t dx =

δG

δU ∫ A ∂x

2 δG

δU dx = − A1/ 2∂x

δG

δU

⎝ ⎜

⎠ ⎟∫2

dx ≤ 0.

With the dissipation law:

Now apply the AVF method to the modified ODE and apply backward error analysis to this:

Page 27: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

Set

u (n Δt,k Δx) = Ukn + h.o.t.

And apply the backward error formula for the AVF

u t = f (u ), f i = f i +Δt 2

12f j

i fkj f k + Ο(Δt 4 )

To give

u t = 1+Δt 2

12A∂xx A∂xx

⎝ ⎜

⎠ ⎟A ∂xxu

As the full modified equation satisfied by

u (n Δt,kΔx) = Ukn + Ο(Δt 4 + Δx 4 )

This equation has a full variational structure!

Page 28: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

Variational structure

u t = 1+Δt 2

12A∂xx A∂xx

⎝ ⎜

⎠ ⎟A∂xx

δu 2

2

⎝ ⎜

⎠ ⎟

δu ,

d

dtu 2∫ dx ≤ 0

Can do very similar analysis for the KdV eqn

u t = B∂x +Δt 2

12B∂x

δG

δu B∂x

δG

δu B∂x

⎝ ⎜

⎠ ⎟δG

δu , G(u ) = − u 3 +

u x2

2−

Δx 2

6uxx

2

B = 1−Δx 2

6∂xx

⎝ ⎜

⎠ ⎟

−1

d

dtG dx = 0∫Conservation law

The modified eqn also admits discrete soliton solutions which satisfy a modified [Benjamin] variational principle

Page 29: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

Eg. Computations of localised travelling wave solution of the KdV eqn

Runge-Kutta based method of lines

Discrete variational method

Solution has low truncation error

Solution satisfies a variational principle

Page 30: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

Conclusions

• Discrete Variational Derivative Method gives a systematic way to discretise PDEs in a manner which preserves useful qualitative structures

• Backward Error Analysis helps to determine these structures

• Method can be extended (with effort) to higher dimensions and irregular meshes

• ? Natural way to work with PDEs with a variational structure ?

Page 31: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

1. Start with a motivating ODE example which will be useful later.

Hamiltonian system

dq /dt = ∂H /∂p, dp /dt = −∂H /∂q

Conservation law:

Separable system (eg. Three body problem)€

H( p,q) = C

H( p,q) ≡ T( p) + V (q)

Page 32: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

Suppose the ODE has the general form

du /dt = f (u)

Set

U n ≈ u(n Δt)

Averaged vector field method (AVF) discretises the ODE via:

U n +1 −U n

Δt= f (1−ξ ) U n + ξ U n +1

( ) dξ0

1

Page 33: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

Properties of the AVF:

1. If f(u) = dF/du then

U n +1 −U n

Δt=

F U n +1( ) − F(U n )

U n +1 −U n

2. For the separable Hamiltonian system

u = (p,q)

Qn +1 − Qn

Δt=

T P n +1( ) − T P n

( )

P n +1 − P n ,P n +1 − P n

Δt= −

V Qn +1( ) −V (Qn )

Qn +1 − Qn

3. Cross-multiply and add to give the conservation law

T P n +1( ) + V Qn +1

( ) = T P n( ) + V Qn

( )

Page 34: Discrete variational derivative methods: Geometric Integration methods for PDEs Chris Budd (Bath), Takaharu Yaguchi (Tokyo), Daisuke Furihata (Osaka)

Backward error analysis of the AVF method

Set

U n = u (n Δt)

To leading order the modified equation satisfied by

For the separable Hamiltonian problem this gives

du i /dt = f i(u ) +Δt 2

12f, j

i f,kj f k (u ) + Ο Δt 4

( )

dq /dt = 1−Δt 2

12TppVqq

⎝ ⎜

⎠ ⎟Tp + Ο(Δt 4 ), d p /dt =− 1−

Δt 2

12TppVqq

⎝ ⎜

⎠ ⎟Vq + Ο(Δt 4 )

So, to leading order

T( p ) + V (q ) = C + Ο(Δt 4 )

Conservation law plus a phase error of

Ο Δt 2( )

u (t)