9
Mark Lundstrom 12/5/2014 ECE305 Fall 2014 1 ECE 305 Homework SOLUTIONS: Week 142 Mark Lundstrom Purdue University (12.13.14) 1) The sketch below shows an NPN BJT. Assume that it is in the forward active region with I C = 1.23 mA and I E = 1.27 mA . Answer the following questions. 1a) What is the common emitter current gain, β dc ? Solution: β dc I C I B = I C I E I C = 1.23 1.27 1.23 = 1.23 0.04 = 1.23 0.04 = 31 β dc = 31 1b) What is the common base current gain, α dc ? Solution: α dc I C I E = 1.23 1.27 = 0.97 α dc = 0.97 1c) What is the base transport factor, α T ? Solution: The base transport factor is a quantity that describes internal current components. Without additional information, it cannot be determined from the terminal currents. 1d) What is the emitter injection efficiency, γ ? Solution: The emitter injection efficiency is a quantity that describes internal current components. Without additional information, it cannot be determined from the terminal currents.

ECE305#Homework#SOLUTIONS:#Week#1492# - nanoHUB

  • Upload
    others

  • View
    13

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ECE305#Homework#SOLUTIONS:#Week#1492# - nanoHUB

Mark  Lundstrom     12/5/2014  

ECE-­‐305     Fall  2014  1  

ECE  305  Homework  SOLUTIONS:  Week  14-­‐2  Mark  Lundstrom  Purdue  University  

(12.13.14)    

1) The  sketch  below  shows  an  NPN  BJT.    Assume  that  it  is  in  the  forward  active  region  with  

IC = 1.23 mA  and   IE = 1.27 mA .    Answer  the  following  questions.  

 1a)   What  is  the  common  emitter  current  gain,   βdc ?        

Solution:  

βdc ≡

IC

IB

=IC

IE − IC

= 1.231.27 −1.23

= 1.230.04

= 1.230.04

= 31    

βdc = 31  

 1b)   What  is  the  common  base  current  gain,   α dc ?    

Solution:  

α dc ≡

IC

IE

= 1.231.27

= 0.97     α dc = 0.97  

 1c)   What  is  the  base  transport  factor,   αT ?    

Solution:  The  base  transport  factor  is  a  quantity  that  describes  internal  current  components.    Without  additional  information,  it  cannot  be  determined  from  the  terminal  currents.    

1d)   What  is  the  emitter  injection  efficiency,  γ ?    

Solution:  The  emitter  injection  efficiency  is  a  quantity  that  describes  internal  current  components.    Without  additional  information,  it  cannot  be  determined  from  the  terminal  currents.  

Page 2: ECE305#Homework#SOLUTIONS:#Week#1492# - nanoHUB

Mark  Lundstrom     12/5/2014  

ECE-­‐305     Fall  2014  2  

HW  Week  14-­‐2  Solutions  (continued)    1e)   What  is  the  emitter  injection  efficiency  assuming  that  there  is  no  recombination  in  

the  base?    

Solution:  If  there  is  no  recombination  in  the  base,  then  all  of  the  base  current  is  due  to  holes  that  are  back-­‐injected  into  the  emitter,   IEp .    Also,  since  there  is  no  base  

recombination,  the  electron  current  at  the  end  of  the  base  ( ICn )  is  equal  to  the  current  injected  into  the  base  from  the  emitter,   IEn .    Accordingly,    

IEp = IB = IE − IC = 0.04 mA  

IEn = ICn = IC = 1.23 mA  

γ ≡

IEn

IEn + IEp

= 1.271.27 + 0.04

= 0.97    

γ = 0.97    Note  that  when  there  is  no  recombination  in  the  base,  the  emitter  injection  efficiency  is  equal  to  the  common  base  current  gain,   γ =α dc  

   

 2) The  sketch  below  shows  an  NPN  BJT  biased  in  the  forward  active  region  with  the  four  

current  components  indicated.    Assume:    

IEn = 1.000 mA  

IEp = 0.005 mA  

ICn = 0.995 mA  

ICp ≈ 0  

 and  answer  the  questions  below.  

 

Page 3: ECE305#Homework#SOLUTIONS:#Week#1492# - nanoHUB

Mark  Lundstrom     12/5/2014  

ECE-­‐305     Fall  2014  3  

HW  Week  14-­‐2  Solutions  (continued)    

2a)    What  is  the  emitter  injection  efficiency?    Solution:      We  want  the  emitter  current  to  consist  almost  entirely  of  electrons  injected  into  the  base,  but  we  also  get  hole  injected  from  the  base  to  the  emitter.    The  emitter  injection  efficiency,  γ ,    is  the  ratio  of  the  current  we  want  to  the  total  current  across  the  forward  emitter-­‐base  junction.    

γ ≡

IEn

IEn + IEp

= 1.0001.000+ 0.005

= 0.995     γ = 0.995  

 2b)    What  is  the  base  transport  factor?  

 Solution:  The  base  transport  factor,   αT ,  is  the  ratio  of  the  electron  current  that  leaves  at  the  collector-­‐base  junction,   ICn  ,  to  the  electron  current  that  was  injected  at  emitter-­‐base  junction,   IEn .    

αT ≡

ICn

IEn

= 0.9951.000

= 0.995     αT = 0.995  

 2c)      What  is  the  common  emitter  current  gain?  

 Solution:  

βdc ≡

IC

IB

=ICn

IEp + IEn − ICn( ) =0.995

0.005+ 0.005= 99.5    

The  bas  current  consists  of  two  terms,  holes  that  are  injected  into  the  emitter  (

IEp  )  and  holes  that  recombine  with  electrons  in  the  base,   IEn − ICn( ) .    

βdc = 99.5  

 2d)    What  is  the  common  base  current  gain?  

 Solution:  

α dc ≡

IC

IE

=ICn

IEn + IEp

= 0.9951.000+ 0.005

= 0.990  

       

Page 4: ECE305#Homework#SOLUTIONS:#Week#1492# - nanoHUB

Mark  Lundstrom     12/5/2014  

ECE-­‐305     Fall  2014  4  

HW  Week  14-­‐2  Solutions  (continued)    

It  is  worth  noting  that  we  can  write:    

α dc =

ICn

IEn + IEp

=IEn

IEn + IEp

×ICn

IEn

= γ αT = 0.995× 0.995= 0.990  

α dc ≡

IC

IE

= γ αT = 0.990  

   3) The  four  current  components  for  the  two  diodes  in  a  PNP  transistor  are  defined  below.    

Assume  that  the  base  width  is  short  (i.e.   WB << Ln )  and  that  the  transistor  is  biased  in  the  forward  active  region  with   VCB = 0 .    The  common  emitter  current  gain  is   βdc = 100 .    Answer  the  following  questions  assuming  that  

ICp = 10 mA .    Note  that   VCB = 0  places  the  

transistor  on  the  borderline  of  the  active  and  saturation  regions.    The  behavior  is  continuous  from  one  region  to  the  next,  so  we  can  call  this  the  active  or  saturation  region.    It  is  better  to  consider  it  to  be  the  active  region,  because  it  takes  a  moderate  forward  bias  on  the  base-­‐collector  junction  to  really  get  into  the  saturation  region  and  see  the  collector  current  drop.  

 3a)    What  is   IEp ?    

Solution:    Since  the  base  is  short,  the  base  transport  factor,   αT ,  is  very  close  to  1.      Since,  

ICp =αT IEp ,  we  conclude  that   IEp = ICp  

IEp = 10 mA  

 3b)  What  is   IEn ?  

Solution:  In  the  active  region,  

IC ≈ ICp = 10 mA  

In  the  active  region,  the  base  current  is   IB = IC βdc = 0.1 mA  

Page 5: ECE305#Homework#SOLUTIONS:#Week#1492# - nanoHUB

Mark  Lundstrom     12/5/2014  

ECE-­‐305     Fall  2014  5  

HW  Week  14-­‐2  Solutions  (continued)    Since  the  base  is  short,   IB = IEn ,  so  we  conclude  

IEn = 0.1mA  

 3c)    What  is   ICn ?    

Solution:  Since  the  base-­‐collector  junction  is  zero-­‐biased,  

ICn = 0 mA  

 3d)    What  is  the  common  base  current  gain,   α dc  ?    

Solution:  

α dc ≡

IC

IE

=IC

IC + IB

=IC

IC + IC βdc

= 11+1 βdc

=βdc

βdc +1    

α dc =

βdc

βdc +1= 100

101= 0.99  

α dc = 0.99  

 4) Consider  a  bipolar  junction  transistor.    All  three  regions  (emitter,  base  and  collector)  are  

composed  of  the  same  semiconductor  material  (except  for  doping  type/density).    The  excess  minority  carrier  concentrations  for  a  specific  bias  point  are  shown  in  the  figure  below  –  note  that  the  scale  is  linear  (although  the  concentrations  near  the  CB  junction  are  exaggerated  for  clarity).    Assume  that  T = 300 K  and  that  the  base  is  doped  at  NB = 1.0 ×10

17 cm−3  (NB is  either  NA  or  ND  you  will  need  to  figure  out  which.)    The  diffusion  coefficients  for  electrons  and  holes  are  Dn = 20 cm

2 /s  and  Dp = 10 cm2 /s  

respectively.  Answer  the  following  questions.    

5)  

 

Page 6: ECE305#Homework#SOLUTIONS:#Week#1492# - nanoHUB

Mark  Lundstrom     12/5/2014  

ECE-­‐305     Fall  2014  6  

HW  Week  14-­‐2  Solutions  (continued)    4a)     What  type  of  transistor  is  this?    NPN  or  PNP?    Explain  how  you  know.    

Solution  PNP.        The  plot  shows  the  excess  minority  carrier  densities  in  each  region,  so  the  majority  carriers  are  Emitter:    holes,  Base:    electrons,  Collector:  holes.    Hence,  it  is  a  PNP  transistor.  

 4b)     What  bias  regime  is  illustrated  in  the  figure?    

Solution:  The  emitter  base  junction  is  forward  biased  (because  we  have  a  positive  number  of  excess  carriers  on  each  side  of  the  junction).    The  base-­‐collector  junction  is  reverse-­‐biased  because  we  have  a  negative  excess  carrier  density  on  each  side.    FB  emitter-­‐base,  RB  base  collector,  means  that  the  bias  region  is    Forward  active  region  

 4c)     What  is  the  doping  density  in  the  emitter  (recall  that  NB  is  given)?    

Solution:  The  Law  of  the  Junction  gives  the  excess  hole  concentration  injected  into  the  base  as  

Δp x = 0( ) = ni

2

N DB

eqVBE kBT −1( )  and  the  excess  electron  concentration  injected  into  the  emitter  as  

Δn ′x = 0( ) = ni

2

N AE

eqVBE kBT −1( )  Dividing  the  first  equation  by  the  second:  

Δp x = 0( )Δn ′x = 0( ) =

N AE

N DB  From  the  plot     Δp x = 0( ) = 1×1012 cm-3

 and

  Δn ′x = 0( ) = 1×1011 cm-3 ,  so  

Δp x = 0( )Δn ′x = 0( ) = 10 =

N AE

1017  

so  we  conclude:  

N AE = 1018 cm-3  

     

Page 7: ECE305#Homework#SOLUTIONS:#Week#1492# - nanoHUB

Mark  Lundstrom     12/5/2014  

ECE-­‐305     Fall  2014  7  

HW  Week  14-­‐2  Solutions  (continued)    4d)     Which  of  the  following  best  describes  the  base  region?  Explain  your  answer.    

i)    the  base  width  is  much  larger  than  a  minority  carrier  diffusion  length  ii)    recombination  is  the  dominant  process  for  minority  carrier  flow  through  the  base  iii)  punch-­‐through  has  occurred  at  the  bias  point  illustrated  in  the  figure  iv)    all  of  the  above  v)    none  of  the  above    

Solution:    

The  base  width  is  much  shorter  than  a  minority  carrier  diffusion  length    

There  is  a  clear,  linear,  minority  carrier  diffusion  profile,  which  indicates  that  recombination  is  negligible,  so  the  minority  carrier  diffusion  length  is  much  longer  than  the  base  width  and  recombination  is  negligible.    

4e)     What  is  the  emitter  injection  efficiency  (numerical  answer)?    Solution:  The  hole  current  injected  from  the  emitter  to  the  base  is  

JEp = q

Dp

WB

ni2

N DB

eqVBE /kBT −1( )    (The  base  is  short,  so  we  use  the  base  width,  not  the  diffusion  length.)    The  electron  current  injected  from  the  base  to  the  emitter  is  

JEn = q

Dn

Ln

ni2

N AE

eqVBE /kBT −1( )  (The  emitter  is  long,  so  we  use  the  electron  diffusion  length,  not  the  emitter  width.)  For  later  use,  we  note:  

JEn

JE p

=Dn

Dp

Ln

WB

N DB

N AE

 

The  emitter  injection  efficiency  is  

γ =

JE p

JE p + JEn

= 11+ JEn JE p

= 1+Dn

Dp

Ln

WB

N DB

N AE

⎝⎜

⎠⎟

−1

 

Putting  in  numbers:  

γ = 1+

Dn

Dp

Ln

WB

N DB

N AE

⎝⎜

⎠⎟

−1

= 1+ 20 cm2 s10 cm2 s

1µm0.2 µm

1017 cm-3

1018 cm-3

⎝⎜⎞

⎠⎟

−1

= 1+1( )−1= 0.5  

γ = 0.5  

Page 8: ECE305#Homework#SOLUTIONS:#Week#1492# - nanoHUB

Mark  Lundstrom     12/5/2014  

ECE-­‐305     Fall  2014  8  

HW  Week  14-­‐2  Solutions  (continued)    

4f)     What  is   βdc  for  this  transistor?    

Solution:  Because  there  is  no  recombination  in  the  base,    

JEp = JCp = JC = q

Dp

WB

ni2

N DB

eqVBE /kBT −1( )  Because  there  is  no  recombination  in  the  base:  

JEn = JB = q

Dn

Ln

ni2

N AE

eqVBE /kBT −1( )  

βdc ≡

JC

JB

=Dn

Dp

Ln

WB

N DB

N AE

= 1       βdc = 1  

Note  that  beta  is  very  low  for  this  transistor  because  the  emitter  injection  efficiency  is  low.    We  should  increase  the  emitter  doping  and/or  decrease  the  base  width  to  increase  the  emitter  injection  efficiency.      

5)   Consider  the  impact  of  changing  some  important  BJT  device  parameters  on  some  key  figures  of  merit.    For  each  of  the  four  changes  below,  explain  whether  the  change  increases,  decreases,  or  has  no  effect  on:    i)  the  base  transport  factor,   αT ,  ii)  the  emitter  injection  efficiency,γ ,  and  iii)  the  current  gain,   βdc .    

5a)   Increase  the  base  width.    Solution:      i) the  base  transport  factor,   αT    DECREASES  ii) the  emitter  injection  efficiency,γ  DECREASES    iii) the  current  gain,   βdc .    DECREASES    

5b)     Increase  the  base  lifetime.    Solution:      i) the  base  transport  factor,   αT    INCREASES  ii) the  emitter  injection  efficiency,γ  NO  EFFECT  (Assuming  that  we  are  talking  

about  a  good  transistor,  there  is  very  little  base  recombination.    Increasing  the  lifetime  and  making  base  recombination  even  less,  will  not  have  much  effect.)  

 iii) the  current  gain,   βDC .    INCREASES  (Whether  it  increases  a  little  or  a  lot  depends  

on  the  emitter  injection  efficiency.)    

Page 9: ECE305#Homework#SOLUTIONS:#Week#1492# - nanoHUB

Mark  Lundstrom     12/5/2014  

ECE-­‐305     Fall  2014  9  

HW  Week  14-­‐2  Solutions  (continued)    

5c)   Increase  the  base  doping  (assume  that  mobility,  lifetime,  and  base  width    do  not  change).    

Solution:      i) the  base  transport  factor,   αT    NO  EFFECT  ii) the  emitter  injection  efficiency,γ  DECREASES    iii) the  current  gain,   βdc .    DECREASES  

 5d)   Increase  the  emitter  doping.  (Assume  that  mobility  and  lifetime  do  not  change.)  

 Solution:      i) the  base  transport  factor,   αT    NO  EFFECT  ii) the  emitter  injection  efficiency,γ  INCREASES    iii) the  current  gain,   βDC .    INCREASES