27
EE141 1 Combinational Circu Chapter 6 (I) Chapter 6 (I) Designing Designing Combinational Combinational Logic Circuits Logic Circuits Dynamic CMOS Dynamic CMOS Logic Logic V1.0 5/4/2003

EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003

Embed Size (px)

DESCRIPTION

EE141 Combinational Circuits 3 Dynamic CMOS  In static circuits at every point in time (except when switching), the output is connected to either GND or V DD via a low resistance path.  Fan-in of n requires 2n (n N-type + n P-type) devices  Dynamic circuits rely on the temporary storage of signal values on the capacitance of high impedance nodes.  Requires on n + 2 (n+1 N-type + 1 P-type) transistors

Citation preview

Page 1: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003

EE1411

Combinational Circuits

Chapter 6 (I)Chapter 6 (I)

Designing Designing CombinationalCombinationalLogic CircuitsLogic Circuits

•Dynamic CMOS LogicDynamic CMOS Logic

V1.0 5/4/2003

Page 2: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003

EE1412

Combinational Circuits

Revision ChronicleRevision Chronicle 5/4:

Split Chapter 6 into two parts: Part I focuses on Static and Pass Transistor Logic. Part II focuses on Dynamic Logic

Page 3: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003

EE1413

Combinational Circuits

Dynamic CMOSDynamic CMOS In static circuits at every point in time (except when

switching), the output is connected to either GND or VDD via a low resistance path.

Fan-in of n requires 2n (n N-type + n P-type) devices

Dynamic circuits rely on the temporary storage of signal values on the capacitance of high impedance nodes. Requires on n + 2 (n+1 N-type + 1 P-type) transistors

Page 4: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003

EE1415

Combinational Circuits

Dynamic GateDynamic Gate

In1

In2 PDNIn3

Me

Mp

Clk

ClkOut

CL

Out

Clk

Clk

A

BC

Mp

Me

Two phase operation Precharge (Clk = 0) Evaluate (Clk = 1)

on

off

1off

on

((AB)+C)

Page 5: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003

EE1416

Combinational Circuits

Conditions on OutputConditions on Output

Once the output of a dynamic gate is discharged, it cannot be charged again until the next precharge operation.

Inputs to the gate can make at most one transition during evaluation.

Output can be in the high impedance state during and after evaluation (PDN off), state is stored on CL

Page 6: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003

EE1417

Combinational Circuits

Properties of Dynamic GatesProperties of Dynamic Gates Logic function is implemented by the PDN only

number of transistors is N + 2 (versus 2N for static complementary CMOS)

Full swing outputs (VOL = GND and VOH = VDD) Non-ratioed - sizing of the devices does not affect

the logic levels Faster switching speeds

reduced load capacitance due to lower input capacitance (Cin) reduced load capacitance due to smaller output loading (Cout) no Isc, so all the current provided by PDN goes into discharging CL

Page 7: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003

EE1418

Combinational Circuits

Properties of Dynamic GatesProperties of Dynamic Gates Overall power dissipation usually higher than static

CMOS no static current path ever exists between VDD and GND

(including Psc) no glitching Higher transition probabilities Extra load on Clk

PDN starts to work as soon as the input signals exceed VTn, so VM, VIH and VIL equal to VTn

Low noise margin (NML) Needs a precharge/evaluate clock

Page 8: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003

EE1419

Combinational Circuits

Issues in Dynamic Design 1: Issues in Dynamic Design 1: Charge LeakageCharge Leakage

CL

Clk

ClkOut

A

Mp

Me

Leakage sources

CLK

VOut

Precharge

Evaluate

Dominant component is subthreshold current

Page 9: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003

EE14110

Combinational Circuits

Solution to Charge LeakageSolution to Charge Leakage

CL

Clk

Clk

Me

Mp

A

B

Out

Mkp

Same approach as level restorer for pass-transistor logic

Keeper

Page 10: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003

EE14111

Combinational Circuits

Issues in Dynamic Design 2: Issues in Dynamic Design 2: Charge SharingCharge Sharing

CL

Clk

Clk

CA

CB

B=0

AOut

Mp

Me

Charge stored originally on CL is redistributed (shared) over CL and CA leading to reduced robustness

Page 11: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003

EE14112

Combinational Circuits

Charge Sharing ExampleCharge Sharing Example

CL=50fF

Clk

Clk

A A

B B B !B

CC

Out

Ca=15fF

Cc=15fF

Cb=15fF

Cd=10fF

Page 12: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003

EE14113

Combinational Circuits

Charge SharingCharge Sharing

Mp

Me

VDD

Out

A

B = 0

CL

Ca

Cb

Ma

Mb

X

CLVDD CLVout t Ca VDD VTn VX – +=

or

Vout Vout t VDD–CaCL-------- VDD VTn VX – –= =

Vout VDDCa

Ca CL+----------------------

–=

case 1) if Vout < VTn

case 2) if Vout > VTnB0

Clk

X

CL

Ca

Cb

A

Out

Mp

Ma

VDD

Mb

Clk Me

Page 13: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003

EE14114

Combinational Circuits

Solution to Charge RedistributionSolution to Charge Redistribution

Clk

Clk

Me

Mp

A

B

OutMkp

Clk

Precharge internal nodes using a clock-driven transistor (at the cost of increased area and power)

Page 14: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003

EE14115

Combinational Circuits

Issues in Dynamic Design 3: Issues in Dynamic Design 3: Backgate CouplingBackgate Coupling

CL1

Clk

Clk

B=0

A=0

Out1Mp

Me

Out2

CL2In

Dynamic NAND Static NAND

=1 =0

Page 15: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003

EE14116

Combinational Circuits

Backgate Coupling EffectBackgate Coupling Effect

-1

0

1

2

3

0 2 4 6

Vol

tage

Time, ns

Clk

In

Out1

Out2

Page 16: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003

EE14117

Combinational Circuits

Issues in Dynamic Design 4: Clock Issues in Dynamic Design 4: Clock FeedthroughFeedthrough

CL

Clk

Clk

B

AOut

Mp

Me

Coupling between Out and Clk input of the precharge device due to the gate to drain capacitance. The voltage of Out can rise

above VDD. The fast rising (and falling edges) of the clock couple to Out.

Page 17: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003

EE14118

Combinational Circuits

Clock FeedthroughClock Feedthrough

-0.5

0.5

1.5

2.5

0 0.5 1

Clk

Clk

In1

In2

In3

In4

Out

In &Clk

Out

Time, ns

Vol

tage

Clock feedthrough

Clock feedthrough

Page 18: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003

EE14119

Combinational Circuits

Other EffectsOther Effects

Capacitive coupling Substrate coupling Minority charge injection Supply noise (ground bounce)

Page 19: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003

EE14120

Combinational Circuits

Cascading Dynamic GatesCascading Dynamic Gates

Clk

Clk

Out1In

Mp

Me

Mp

Me

Clk

Clk

Out2

V

t

Clk

In

Out1

Out2 V

VTn

Only 0 1 transitions allowed at inputs!

Page 20: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003

EE14121

Combinational Circuits

Domino LogicDomino Logic

In1

In2 PDNIn3

Me

Mp

Clk

Clk Out1

In4 PDNIn5

Me

Mp

Clk

ClkOut2

Mkp

1 11 0

0 00 1

Page 21: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003

EE14122

Combinational Circuits

Why Domino?Why Domino?

Clk

Clk

Ini PDNInj

Ini

Inj

PDN Ini PDNInj

Ini PDNInj

Like falling dominos!

Page 22: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003

EE14123

Combinational Circuits

Properties of Domino LogicProperties of Domino Logic

Only non-inverting logic can be implemented Very high speed

static inverter can be skewed, only L-H transition Input capacitance reduced – smaller logical effort

Page 23: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003

EE14124

Combinational Circuits

Designing with Domino LogicDesigning with Domino Logic

Mp

Me

VDD

PDN

Clk

In1In2

In3

Out1

Clk

Mp

Me

VDD

PDN

Clk

In4

Clk

Out2

Mr

VDD

Inputs = 0during precharge

Can be eliminated!

Page 24: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003

EE14125

Combinational Circuits

Footless DominoFootless Domino

The first gate in the chain needs a foot switchPrecharge is rippling – short-circuit currentA solution is to delay the clock for each stage

VDD

Clk Mp

Out1

In1

1 0

VDD

Clk Mp

Out2

In2

VDD

Clk Mp

Outn

InnIn3

1 0

0 1 0 1 0 1

Page 25: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003

EE14126

Combinational Circuits

Differential (Dual Rail) DominoDifferential (Dual Rail) Domino

A

B

Me

Mp

Clk

ClkOut = AB

!A !B

MkpClk

Out = ABMkp Mp

Solves the problem of non-inverting logic

1 0 1 0

onoff

Page 26: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003

EE14127

Combinational Circuits

np-CMOSnp-CMOS

In1

In2 PDNIn3

Me

Mp

Clk

Clk Out1

In4 PUNIn5

Me

MpClk

Clk

Out2(to PDN)

1 11 0

0 00 1

Only 0 1 transitions allowed at inputs of PDN Only 1 0 transitions allowed at inputs of PUN

Page 27: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003

EE14128

Combinational Circuits

NORA LogicNORA Logic

In1

In2 PDNIn3

Me

Mp

Clk

Clk Out1

In4 PUNIn5

Me

MpClk

Clk

Out2(to PDN)

1 11 0

0 00 1

to otherPDN’s

to otherPUN’s

WARNING: Very Sensitive to Noise!